Advanced Control

March 14, 2013 École Centrale Paris, Châtenay-Malabry, France

slides partly inspired by E. Zitzler: "Bio-inspired Optimization and Design", lecture@ETH

Anne Auger INRIA Saclay – Ile-de-France

Dimo Brockhoff INRIA Lille – Nord Europe

Course Overview

Date		Торіс
Fri, 11.1.2013	DB	Introduction to Control, Examples of Advanced Control, Introduction to Fuzzy Logic
Fri, 18.1.2013	DB DB	Fuzzy Logic (cont'd), Introduction to Artificial Neural Networks
Fri, 25.1.2013	AA	Bio-inspired Optimization, discrete search spaces
Fri, 1.2.2013	AA	The Traveling Salesperson Problem
Fri, 22.2.2013	AA	Continuous Optimization I
Fri, 1.3.2013	AA	Continuous Optimization II
Fr, 8.3.2013	DB	Controlling a Pole Cart
Do, 14.3.2013	DB	Advanced Optimization: multiobjective optimization, constraints,
Tue, 19.3.2013		written exam (paper and computer)

next Tuesday exam at ! 9h45-13h00 !

Remark to last lecture

All information also available at

http://researchers.lille.inria.fr/~brockhof/advancedcontrol/

(exercise sheets, lecture slides, additional information, links, ...)

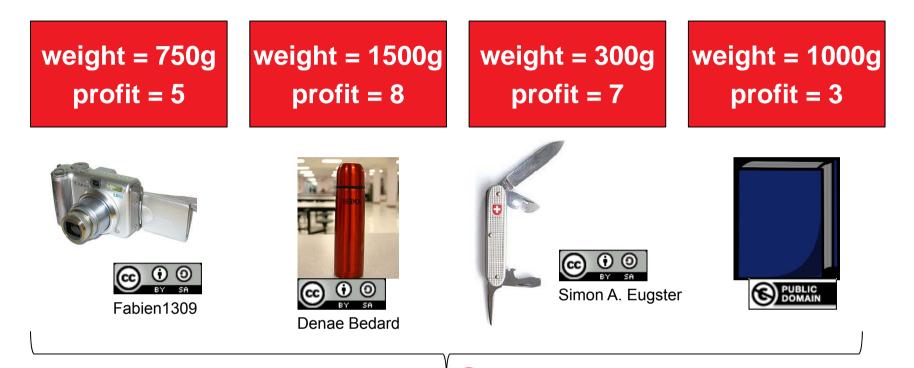
(More) Advanced Concepts of Optimization

(Evolutionary) Multiobjective Optimization + MCDM Constrained Optimization Possible Thesis Projects

The Single-Objective Knapsack Problem

Joadl

൭



Single-objective Goal:

choose a subset that

- maximizes overall profit
- w.r.t a weight limit (constraint)

The Multiobjective Knapsack Problem

Single-objective Goal:

choose a subset that

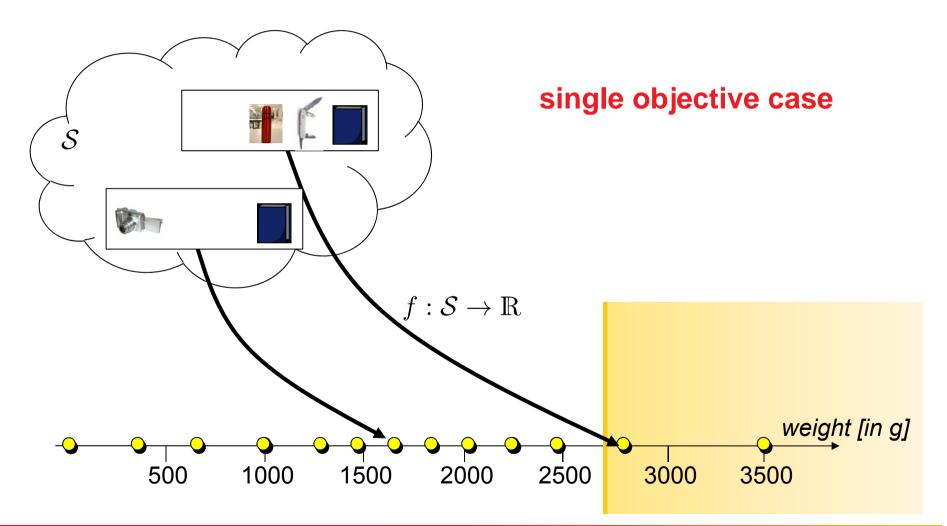
- maximizes overall profit
- w.r.t a weight limit (constraint)

Multiobjective Goal:

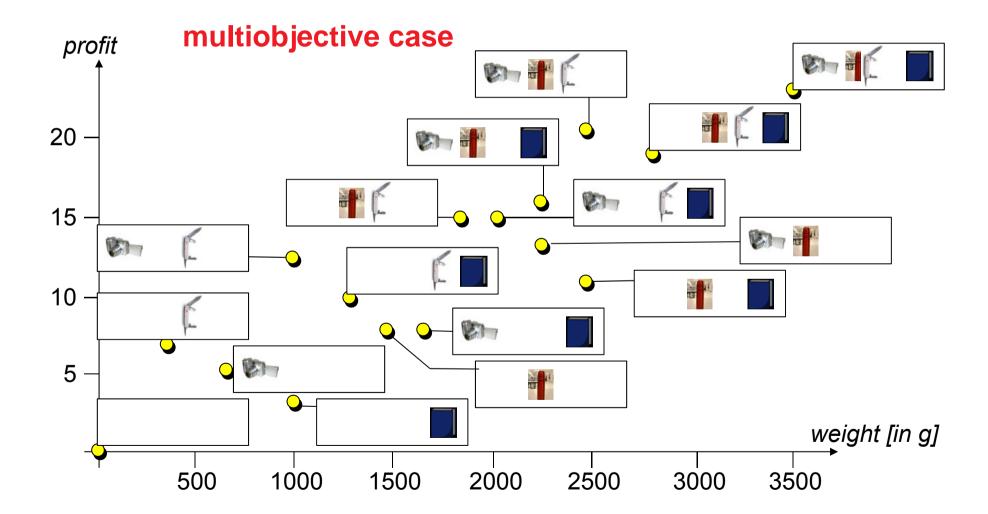
Choose a subset that

- maximizes overall profit
- minimizes overall weight

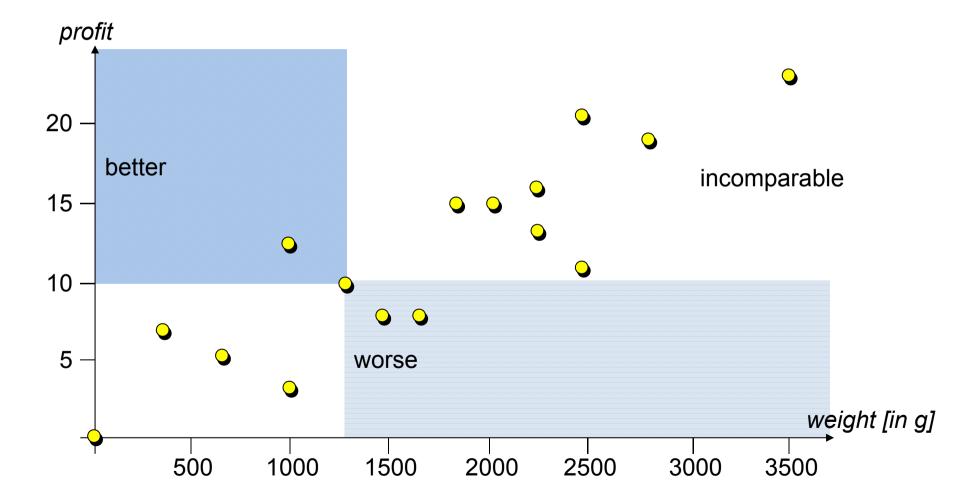
Knapsack problem: all solutions plotted



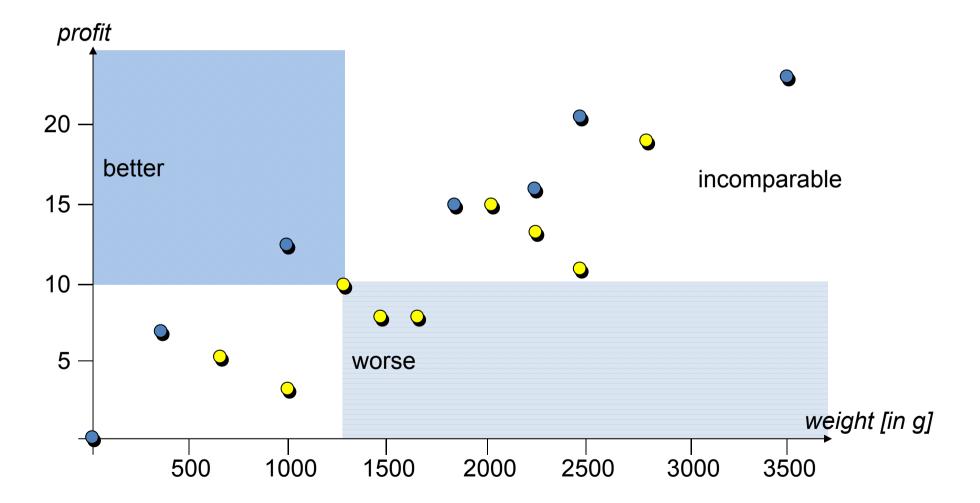
Knapsack problem: all solutions plotted



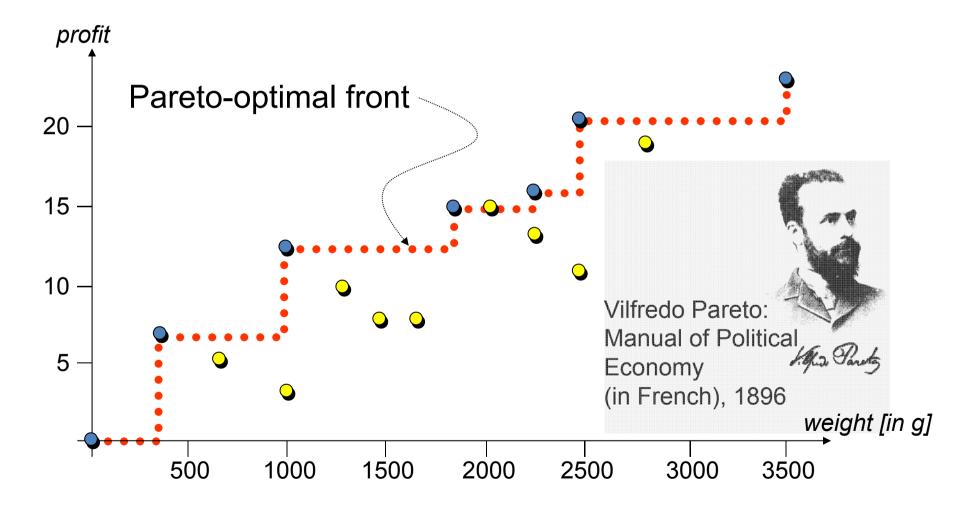
Knapsack problem: all solutions plotted



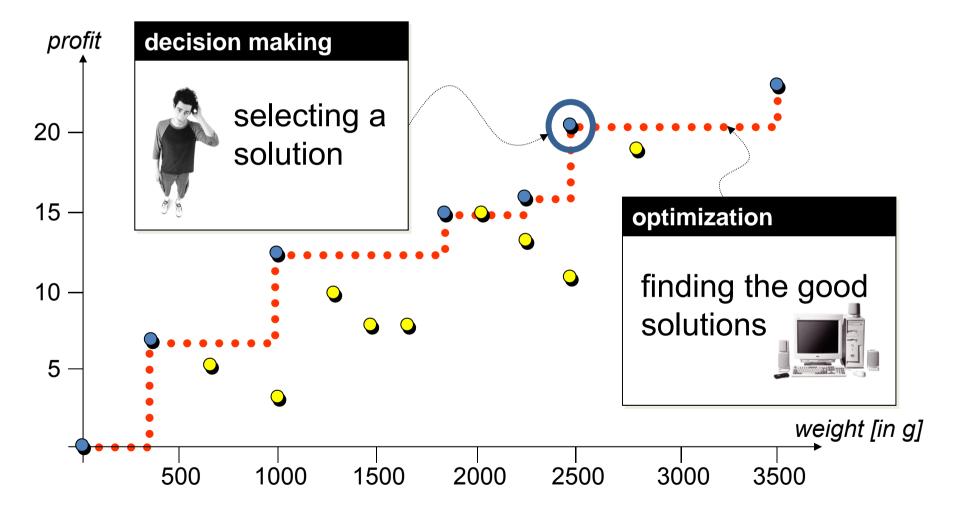
Observations: ① there is no single optimal solution, but
② some solutions () are better than others ()



Observations: ① there is no single optimal solution, but ② some solutions () are better than others ()

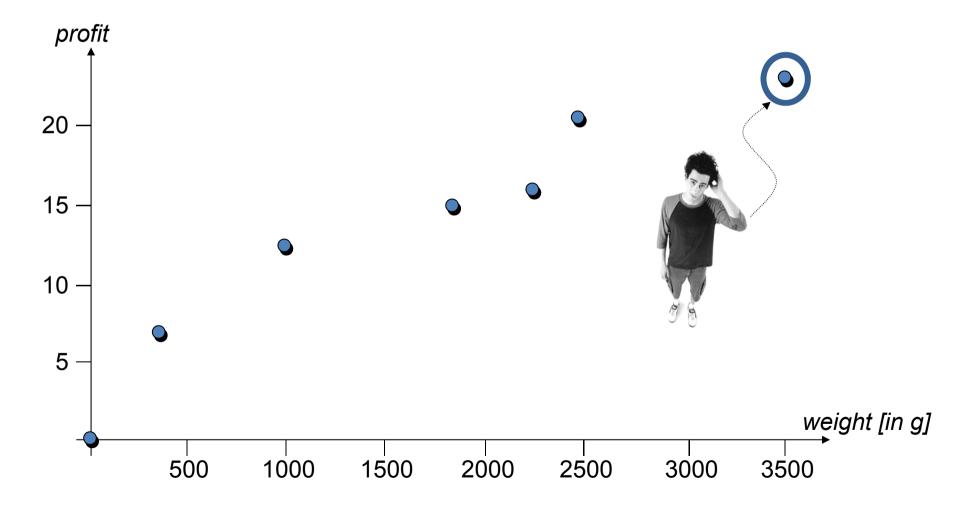


Observations: ① there is no single optimal solution, but
② some solutions () are better than others ()



Decision Making: Selecting a Solution

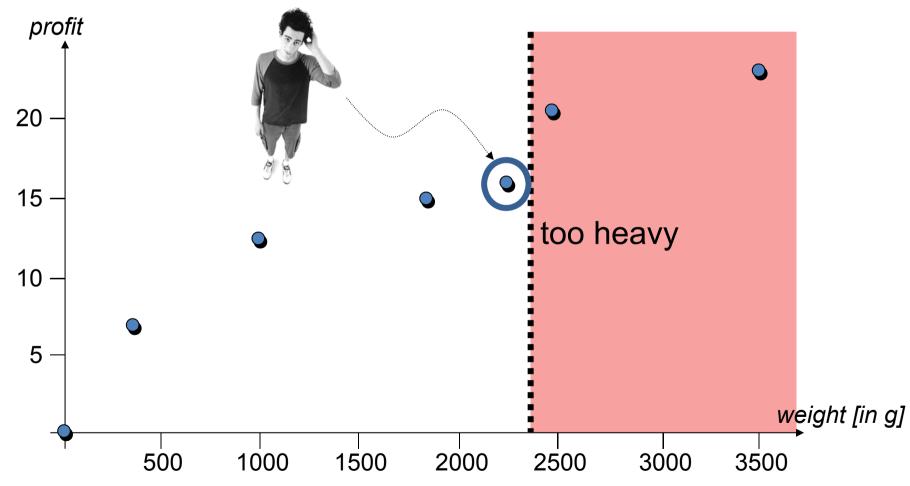
profit more important than weight (ranking)



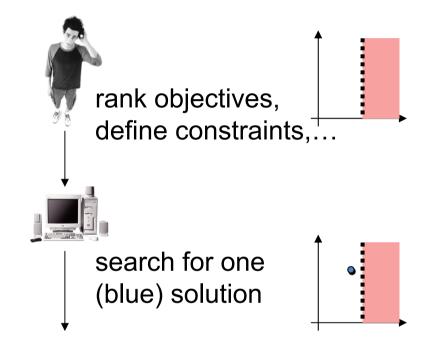
Decision Making: Selecting a Solution

Possible Approach:

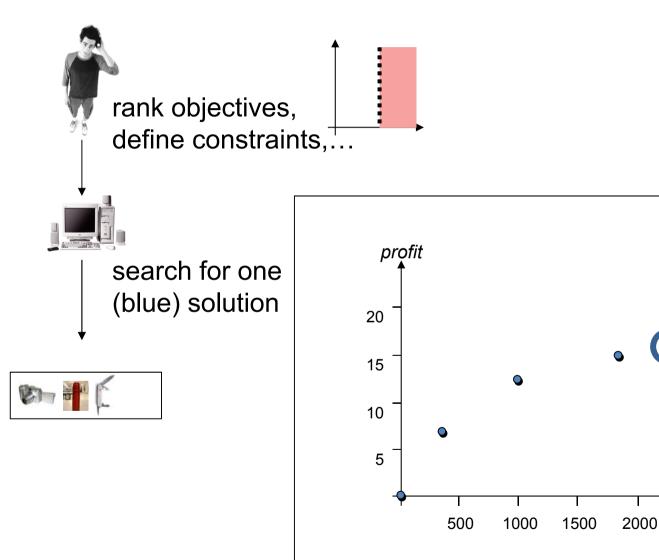
- profit more important than weight (ranking)
- weight must not exceed 2400 (constraint)



Before Optimization:



Before Optimization:



2500

weight

0

3500

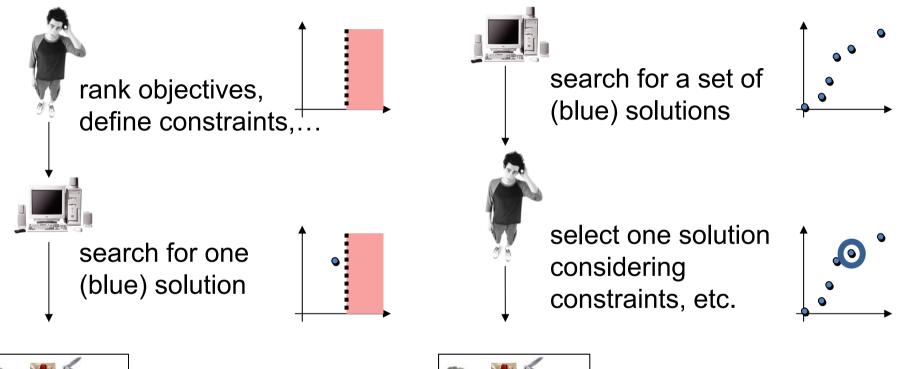
too expensive

3000

When to Make the Decision

Before Optimization:

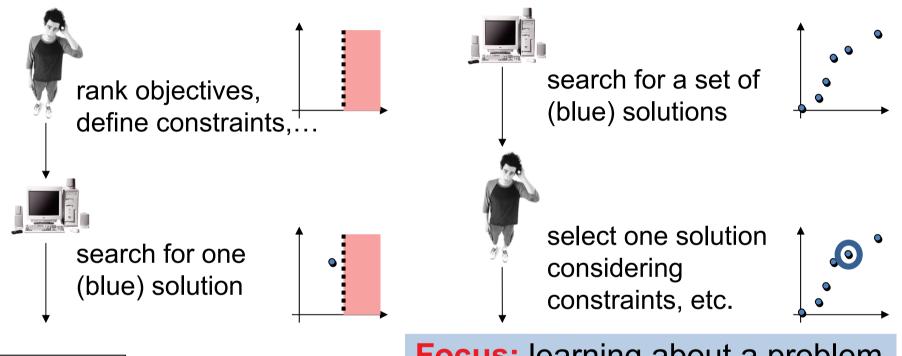
After Optimization:



When to Make the Decision

Before Optimization:

After Optimization:



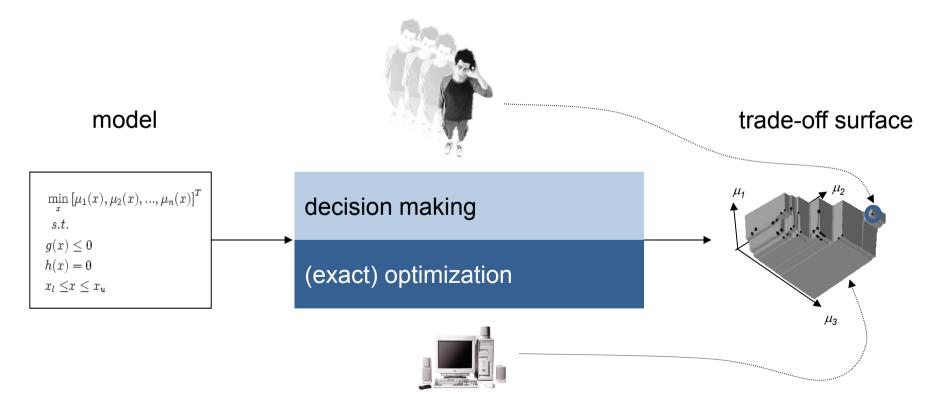
Focus: learning about a problem

- trade-off surface
- interactions among criteria
- structural information

Multiple Criteria Decision Making (MCDM)

Definition: MCDM

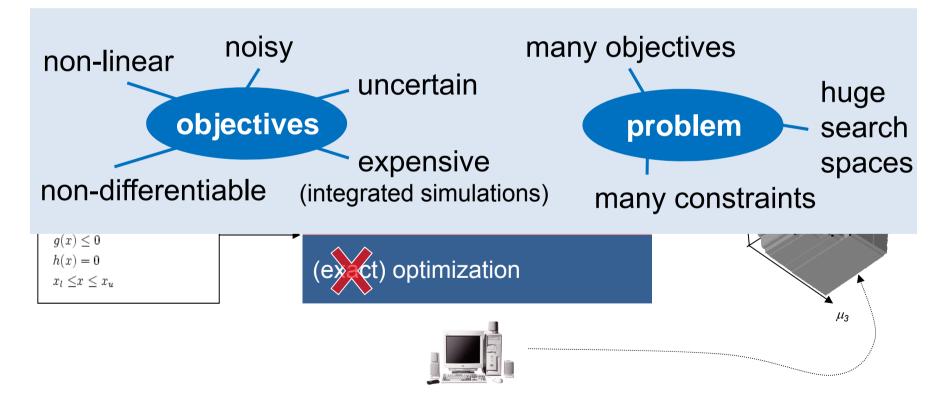
MCDM can be defined as the study of methods and procedures by which concerns about multiple conflicting criteria can be formally incorporated into the management planning process



Multiple Criteria Decision Making (MCDM)

Definition: MCDM

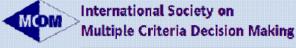
MCDM can be defined as the study of methods and procedures by which concerns about multiple conflicting criteria can be formally incorporated into the management planning process

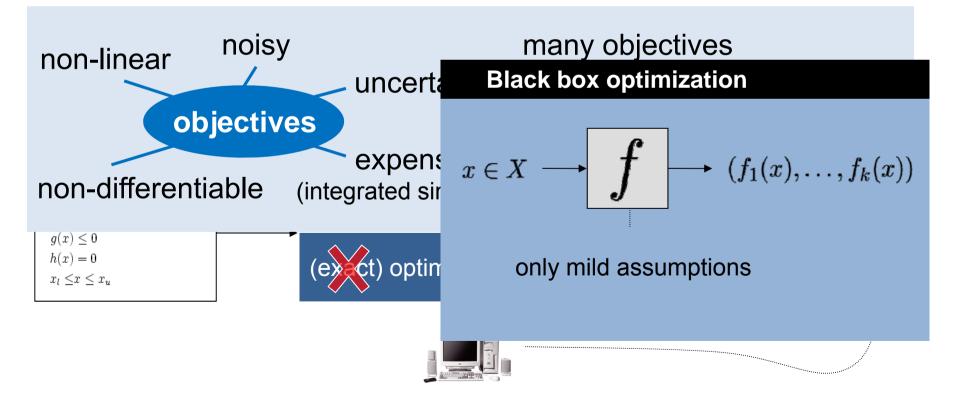


Multiple Criteria Decision Making (MCDM)

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which concerns about multiple conflicting criteria can be formally incorporated into the management planning process



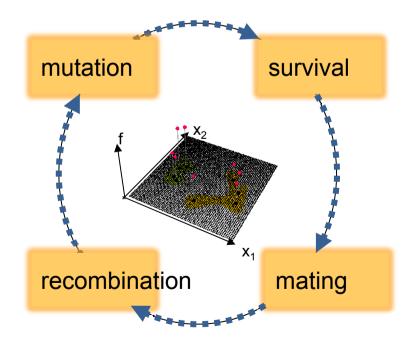


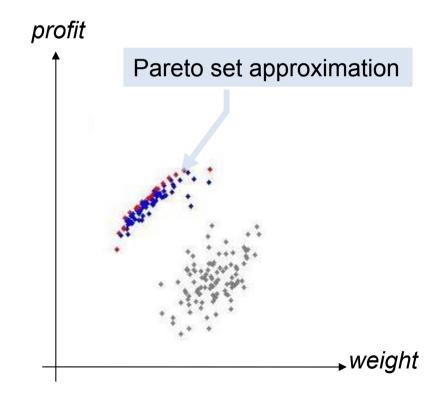
Evolutionary Multiobjective Optimization (EMO)

Definition: EMO

EMO = evolutionary algorithms / randomized search algorithms

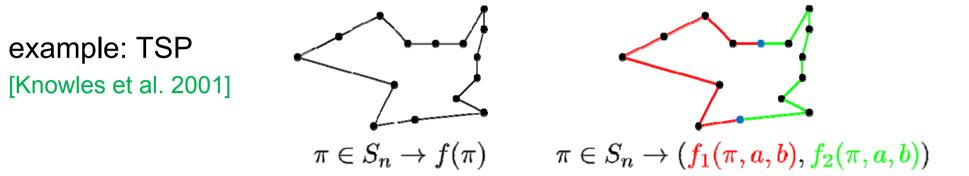
- applied to multiple criteria decision making (in general)
- used to approximate the Pareto-optimal set (mainly)





Multiobjectivization

Some problems are easier to solve in a multiobjective scenario



Multiobjectivization

by addition of new "helper objectives" [Jensen 2004]

job-shop scheduling [Jensen 2004], frame structural design [Greiner et al. 2007], theoretical (runtime) analyses [Brockhoff et al. 2009]

by decomposition of the single objective

TSP [Knowles et al. 2001], minimum spanning trees [Neumann and Wegener 2006], protein structure prediction [Handl et al. 2008a], theoretical (runtime) analyses [Handl et al. 2008b]

The Big Picture

Basic Principles of Multiobjective Optimization

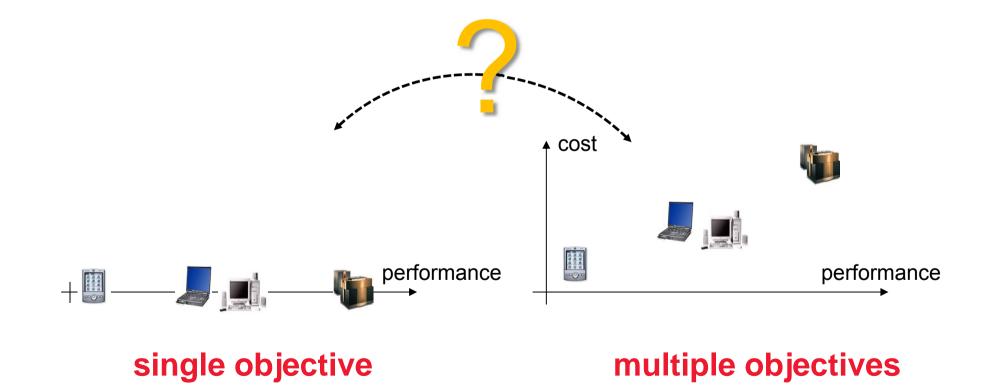
- algorithm design principles and concepts
- performance assessment

Selected Advanced Concepts

- indicator-based EMO
- preference articulation

A Few Examples From Practice

What makes evolutionary multiobjective optimization different from single-objective optimization?



A General (Multiobjective) Optimization Problem

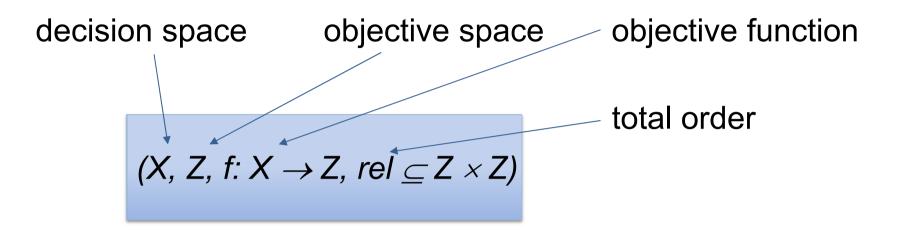
A multiobjective optimization problem: $(X, Z, \mathbf{f}, \mathbf{g}, \leq)$

 $\begin{array}{ll} X & {\rm search \, / \, parameter \, / \, decision \, space} \\ Z = {\mathbb R}^n & {\rm objective \, space} \\ {\mathbf f} = (f_1, \ldots, f_n) & {\rm vector-valued \, objective \, function \, with} \\ f_i : X \mapsto {\mathbb R} \\ {\mathbf g} = (g_1, \ldots, g_m) & {\rm vector-valued \, constraint \, function \, with} \\ g_i : X \mapsto {\mathbb R} \\ \leq \subseteq Z \times Z & {\rm binary \, relation \, on \, objective \, space} \end{array}$

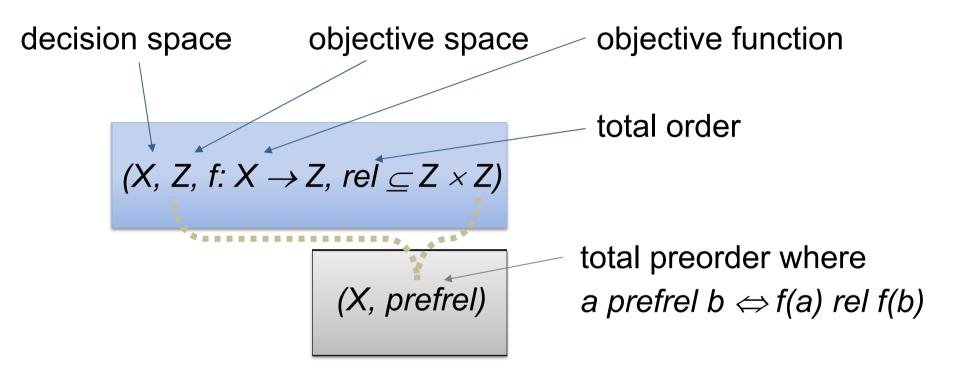
Goal: find decision vector(s) $\mathbf{a} \in X$ such that

• for all
$$1 \le i \le m : g_i(\mathbf{a}) \le 0$$
 and
• for all $\mathbf{b} \in X : \mathbf{f}(\mathbf{b}) \le \mathbf{f}(\mathbf{a}) \Rightarrow \mathbf{f}(\mathbf{a}) \le \mathbf{f}(\mathbf{b})$

A Single-Objective Optimization Problem

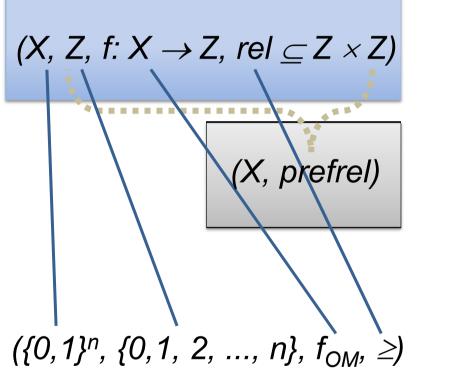


A Single-Objective Optimization Problem



A Single-Objective Optimization Problem

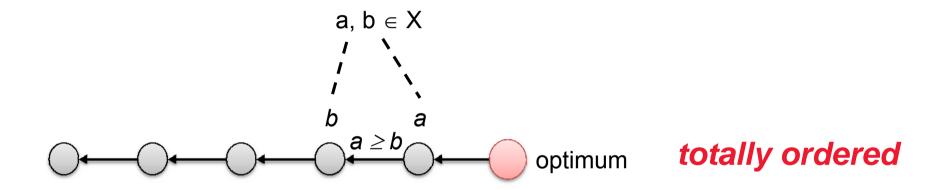
Example: ONEMAX Problem



where $f_{OM}(a) = \sum_i a_i$

Simple Graphical Representation

Example: \geq (total order)



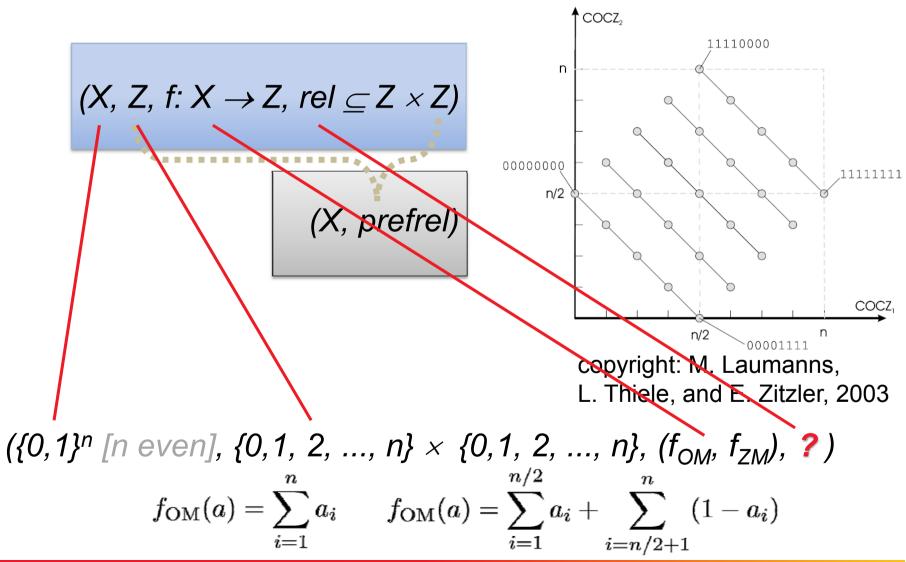
≤ is a total order if

- 1) $a \le b$ and $b \le a$ then a = b (antisymmetry),
- 2) $a \le b$ and $b \le c$ then $a \le c$ (transitivity), and
- 3) $a \le b$ or $b \le a$ (totality).

see, e.g., wikipedia

A Multiobjective Optimization Problem

Example: Counting Ones Counting Zeros Problem (COCZ)



Preference Relations

decision space objective space objective functions partial order $(X, Z, f: X \rightarrow Z, rel \subseteq Z \times Z)$ preorder where a prefrel b : \Leftrightarrow f(a) rel f(b) (X, prefrel)

preorder on search space **induced** by **partial order** on objective space

Parenthesis: Relations

≤ is a **preorder** if

1) $a \le a$ (reflexivity) for all a in P and 2) $a \le b$ and $b \le c$ then $a \le c$ (transitivity)

≤ is a **partial order** if

1) $a \le a$ (reflexivity) for all a in P, 2) $a \le b$ and $b \le a$ then a = b (antisymmetry), and 3) $a \le b$ and $b \le c$ then $a \le c$ (transitivity).

see, e.g., wikipedia

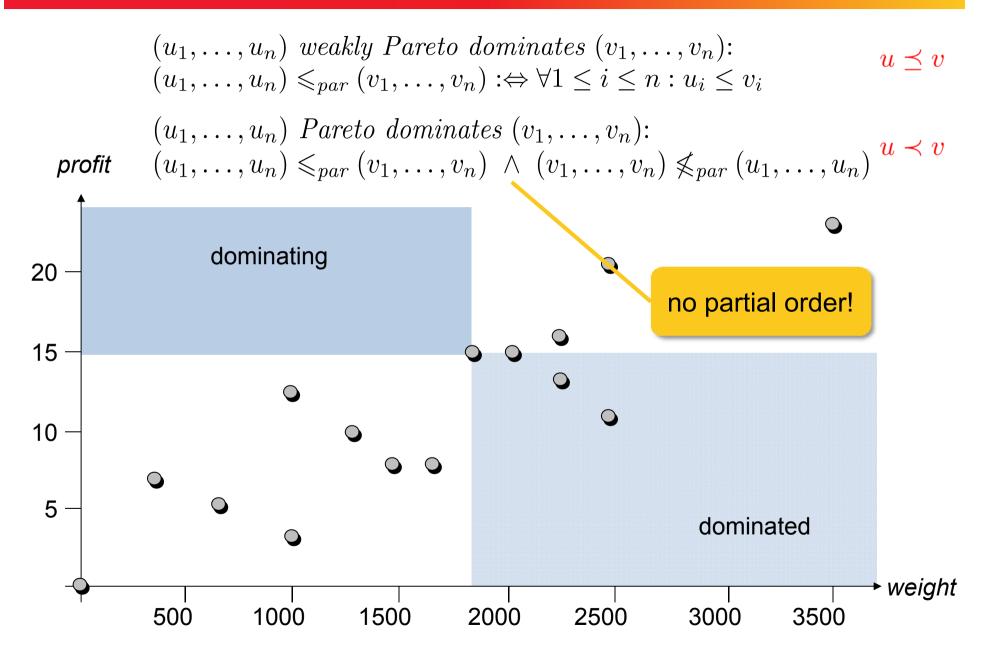
Preference Relations

decision space objective space objective functions partial order $(X, Z, f: X \rightarrow Z, rel \subseteq Z \times Z)$ preorder where a prefrel b : \Leftrightarrow f(a) rel f(b) (X, prefrel) preorder on search space

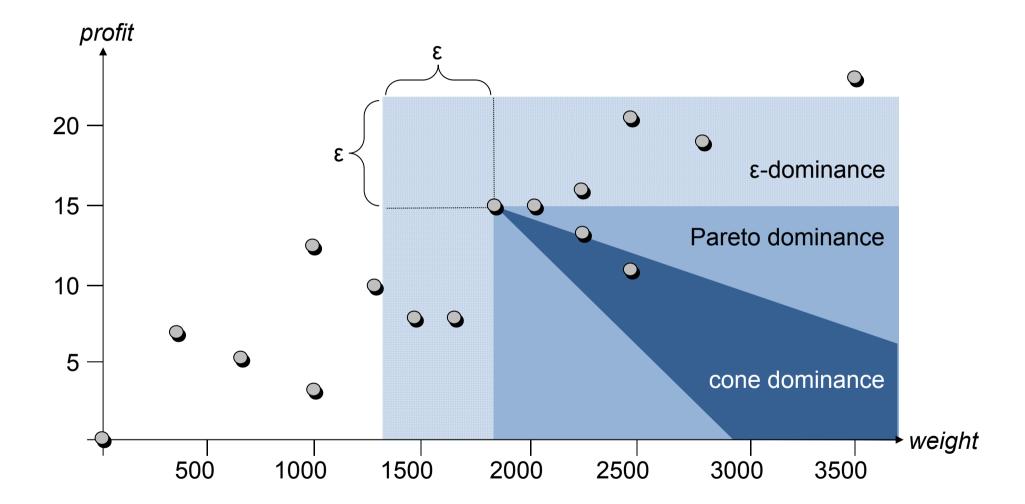
induced by partial order

on objective space

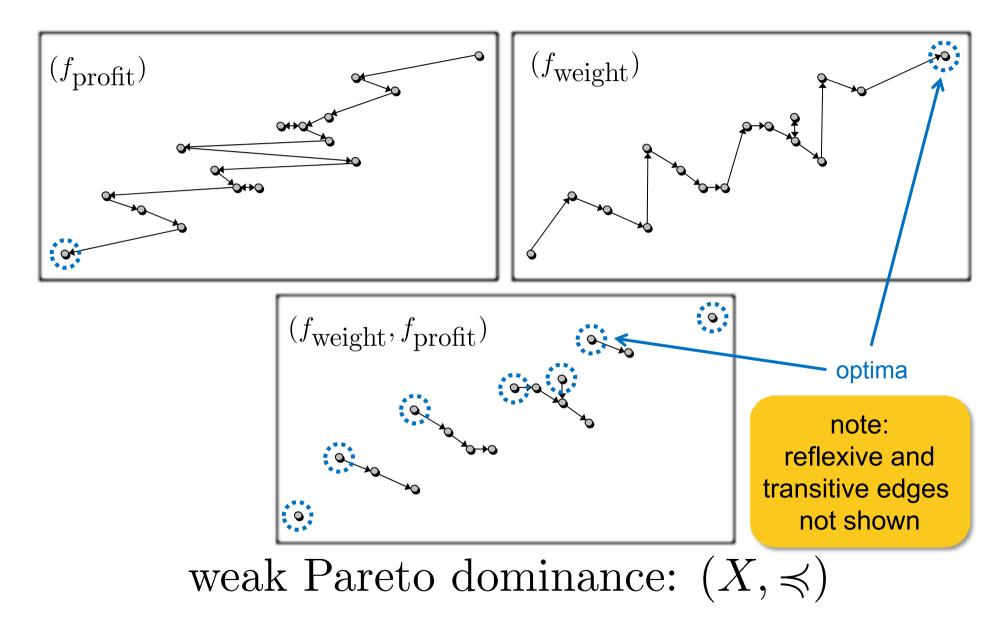
Pareto Dominance



Different Notions of Dominance

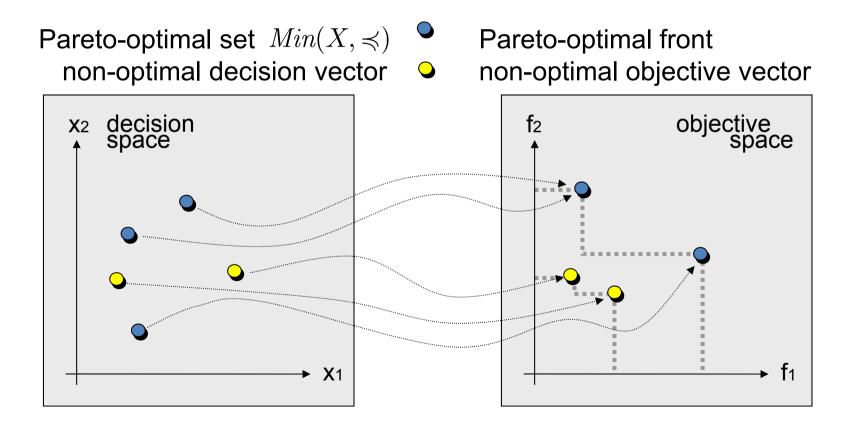


Visualizing Preference Relations



The Pareto-optimal Set

The minimal set of a preordered set (Y, \leq) is defined as $Min(Y, \leq) := \{a \in Y \mid \forall b \in Y : b \leq a \Rightarrow a \leq b\}$

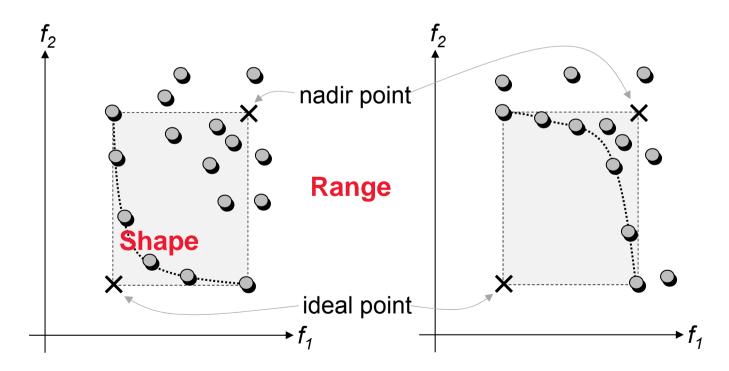


Remark: Properties of the Pareto Set

Computational complexity:

multiobjective variants can become NP- and #P-complete

Size: Pareto set can be exponential in the input length (e.g. shortest path [Serafini 1986], MSP [Camerini et al. 1984])



Approaches To Multiobjective Optimization

A multiobjective problem is as such underspecified ...because not any Pareto-optimum is equally suited!

Additional preferences are needed to tackle the problem:

Solution-Oriented Problem Transformation:

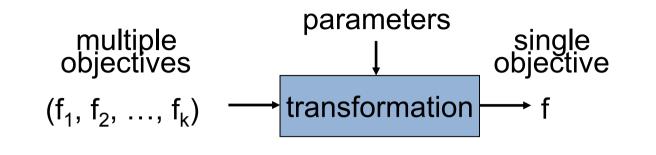
Induce a total order on the decision space, e.g., by aggregation.

Set-Oriented Problem Transformation:

First transform problem into a set problem and then define an objective function on sets.

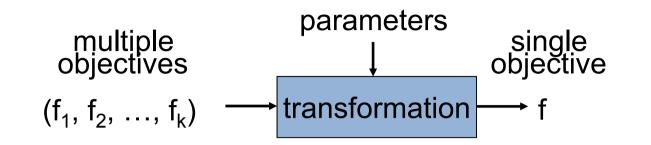
Preferences are needed in any case, but the latter are weaker!

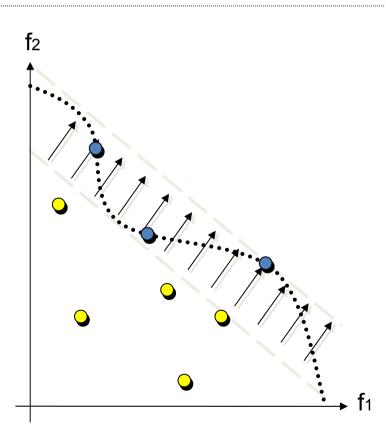
Solution-Oriented Problem Transformations



A *scalarizing function s* is a function $s : Z \mapsto \mathbb{R}$ that maps each objective vector $(u_1, \ldots, u_n) \in Z$ to a real value $s(u_1, \ldots, u_n) \in \mathbb{R}$.

Aggregation-Based Approaches





Example: weighting approach

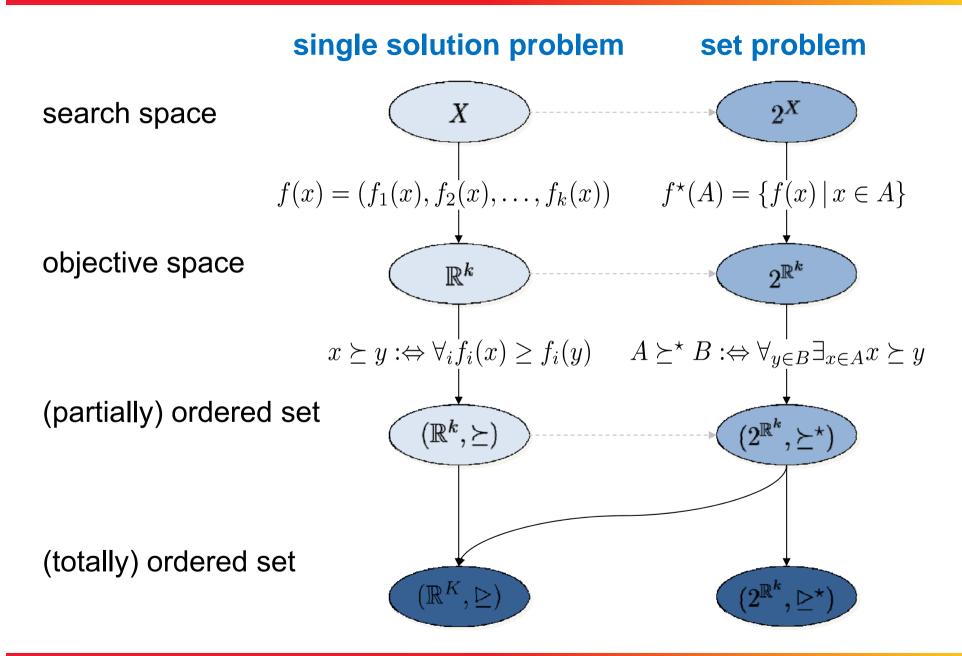
$$(w_1, w_2, \dots, w_k)$$

$$\downarrow$$

$$y = w_1y_1 + \dots + w_ky_k$$

Other example: Tchebycheff y= max $w_i(u_i - z_i)$

Problem Transformations and Set Problems



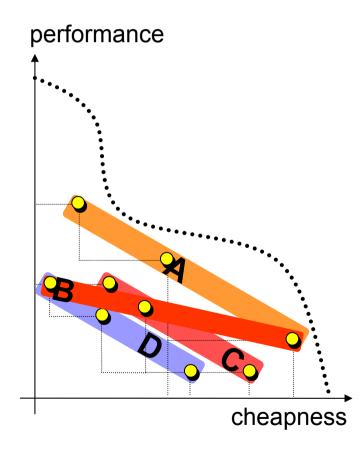
Set-Oriented Problem Transformations

For a multiobjective optimization problem $(X, Z, \mathbf{f}, \mathbf{g}, \leq)$, the associated *set problem* is given by $(\Psi, \Omega, F, \mathbf{G}, \leq)$ where

- $\Psi = 2^X$ is the space of decision vector sets, i.e., the powerset of X,
- Ω = 2^Z is the space of objective vector sets,
 i.e., the powerset of Z,
- F is the extension of \mathbf{f} to sets, i.e., $F(A) := {\mathbf{f}(\mathbf{a}) : \mathbf{a} \in A}$ for $A \in \Psi$,
- $\mathbf{G} = (G_1, \dots, G_m)$ is the extension of \mathbf{g} to sets, i.e., $G_i(A) := \max \{g_i(\mathbf{a}) : \mathbf{a} \in A\}$ for $1 \le i \le m$ and $A \in \Psi$,
- \leq extends \leq to sets where $A \leq B : \Leftrightarrow \forall \mathbf{b} \in B \exists \mathbf{a} \in A : \mathbf{a} \leq \mathbf{b}.$

Pareto Set Approximations

Pareto set approximation (algorithm outcome) =
 set of (usually incomparable) solutions



A weakly dominates B

= not worse in all objectives and sets not equal

C dominates D

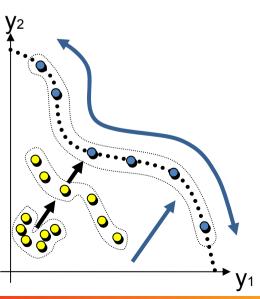
= better in at least one objective

A strictly dominates C

- = better in all objectives
- B is incomparable to C = neither set weakly better

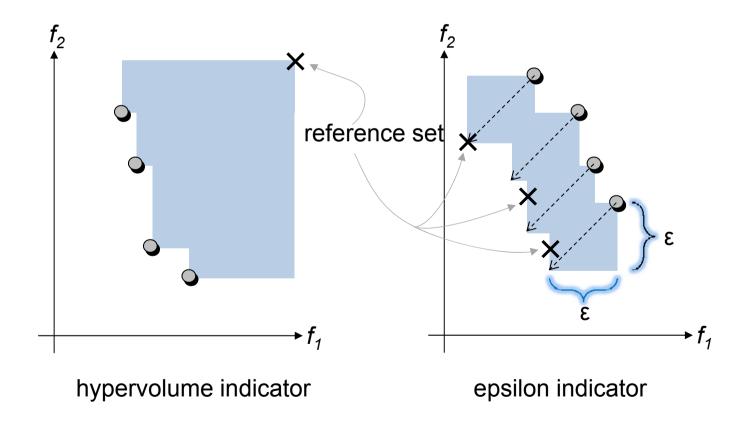
What Is the Optimization Goal (Total Order)?

- Find all Pareto-optimal solutions?
 - Impossible in continuous search spaces
 - How should the decision maker handle 10000 solutions?
- Find a representative subset of the Pareto set?
 - Many problems are NP-hard
 - What does representative actually mean?
- Find a good approximation of the Pareto set?
 - What is a good approximation?
 - How to formalize intuitive understanding:
 - close to the Pareto front
 - **2** well distributed



Quality of Pareto Set Approximations

A (unary) *quality indicator I* is a function $I : \Psi \mapsto \mathbb{R}$ that assigns a Pareto set approximation a real value.



General Remarks on Problem Transformations

Idea:

Transform a preorder into a total preorder

Methods:

- Define single-objective function based on the multiple criteria (shown on the previous slides)
- Define any total preorder using a relation (not discussed before)

Question:

Is any total preorder ok resp. are there any requirements concerning the resulting preference relation?

 \Rightarrow Underlying dominance relation *rel* should be reflected

Refinements and Weak Refinements

 ref

 $\bullet \preccurlyeq$ refines a preference relation \preccurlyeq iff

$$A \preccurlyeq B \land B \preccurlyeq A \Rightarrow A \preccurlyeq B \land B \preccurlyeq A \qquad (better \Rightarrow better)$$

 \Rightarrow fulfills requirement

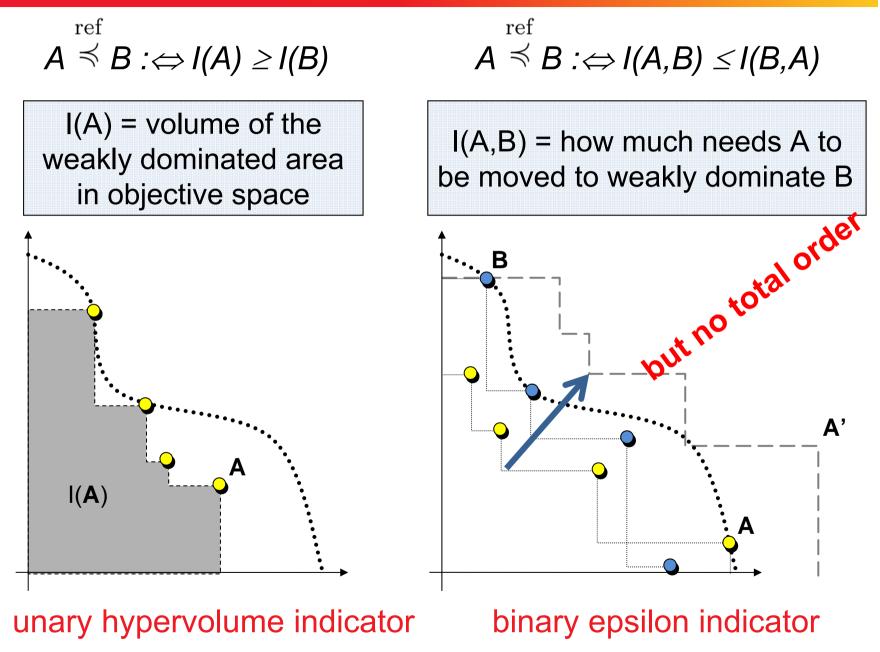
2 $\stackrel{\rm ref}{\prec}$ weakly refines a preference relation \prec iff

$$A \preccurlyeq B \land B \preccurlyeq A \Rightarrow A \stackrel{\text{ref}}{\preccurlyeq} B$$
 (better \Rightarrow weakly better)

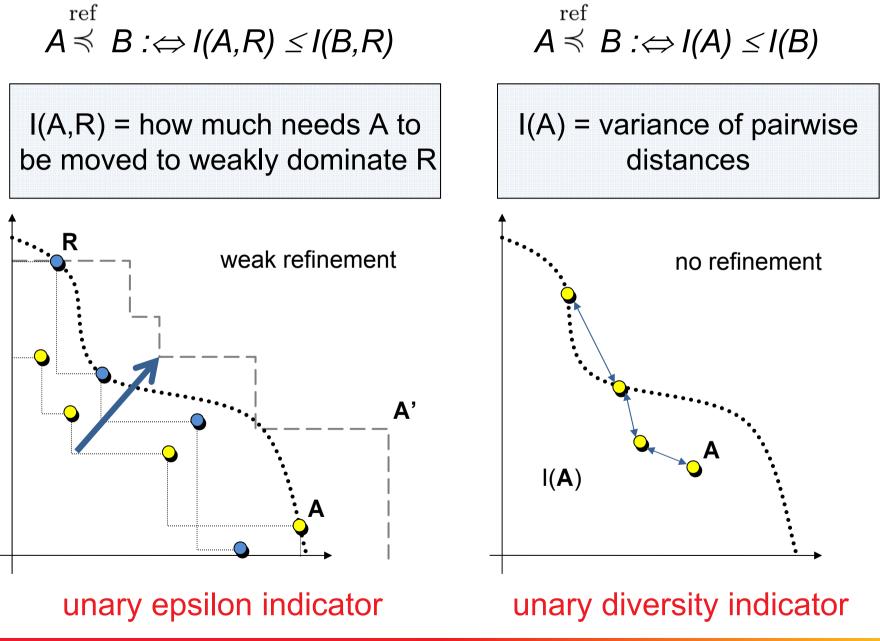
 \Rightarrow does not fulfill requirement, but $\stackrel{\rm ref}{\preccurlyeq}$ does not contradict \preccurlyeq

...sought are total refinements...

Example: Refinements Using Indicators



Example: Weak Refinement / No Refinement



The Big Picture

Basic Principles of Multiobjective Optimization

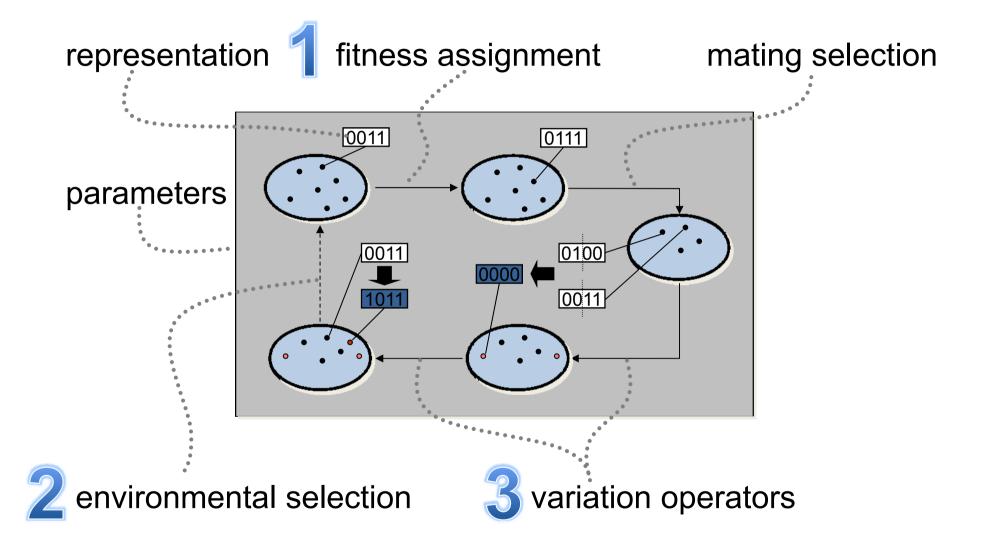
- algorithm design principles and concepts
- performance assessment

Selected Advanced Concepts

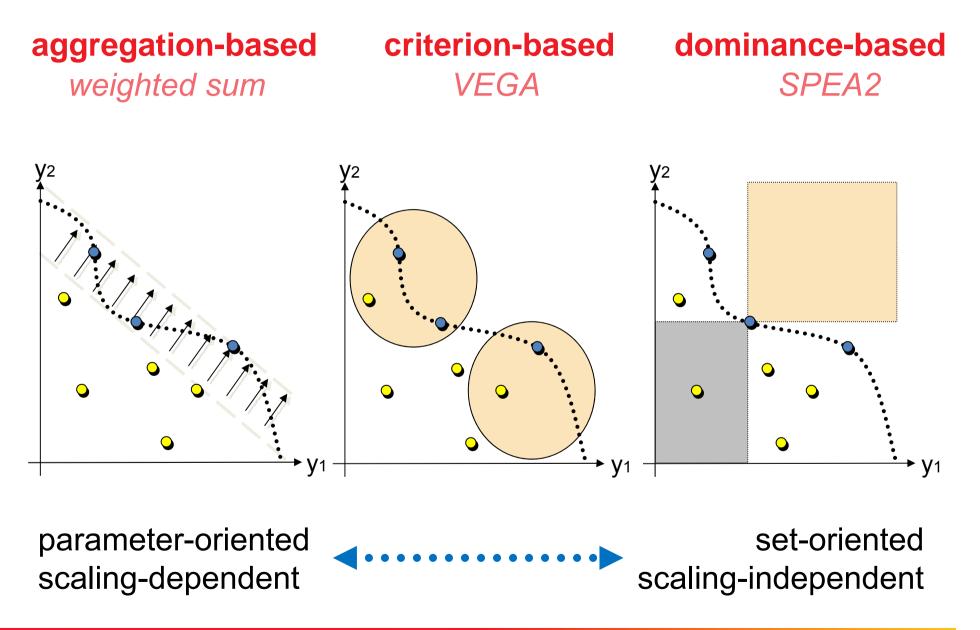
- indicator-based EMO
- preference articulation

A Few Examples From Practice

Algorithm Design: Particular Aspects



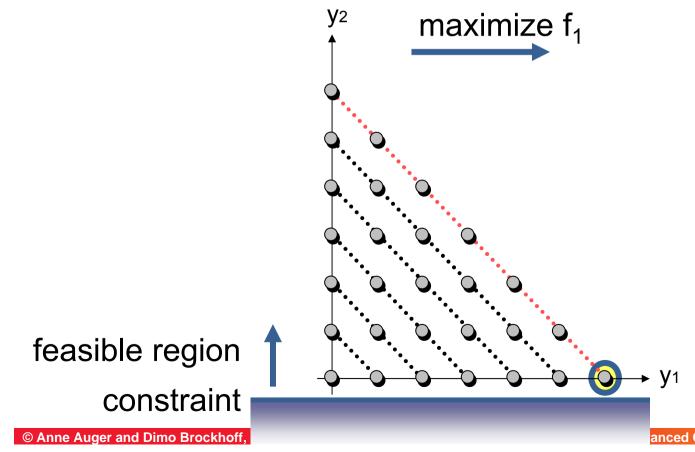
Fitness Assignment: Principal Approaches



Aggregation-Based: Multistart Constraint Method

Underlying concept:

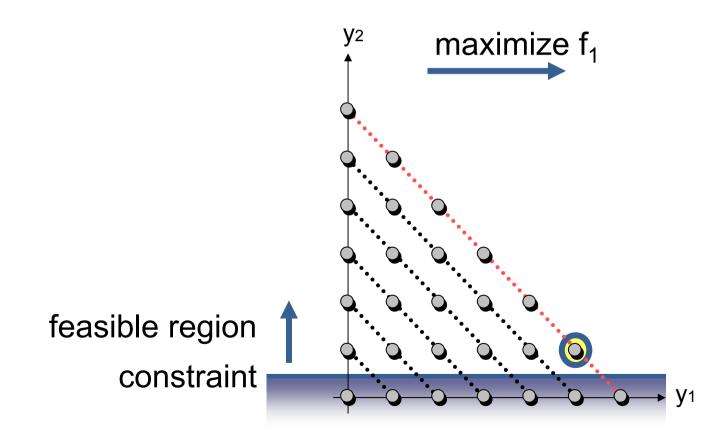
- Convert all objectives except of one into constraints
- Adaptively vary constraints



Aggregation-Based: Multistart Constraint Method

Underlying concept:

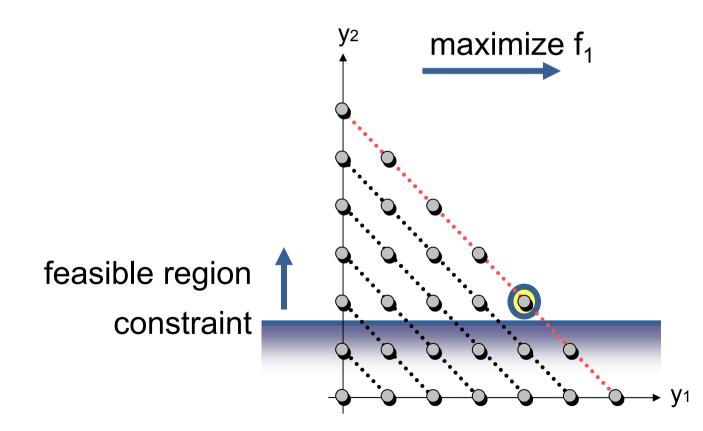
- Convert all objectives except of one into constraints
- Adaptively vary constraints



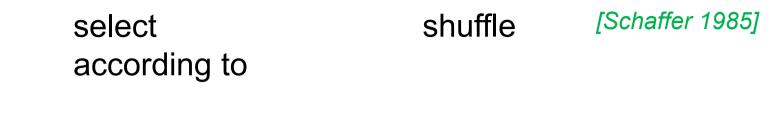
Aggregation-Based: Multistart Constraint Method

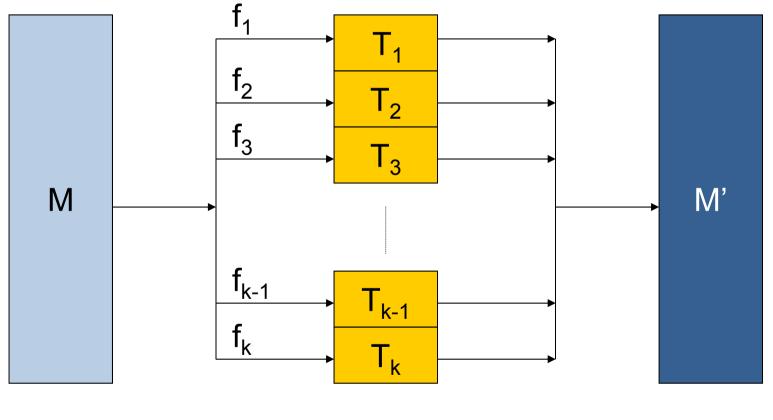
Underlying concept:

- Convert all objectives except of one into constraints
- Adaptively vary constraints



Criterion-Based Selection: VEGA



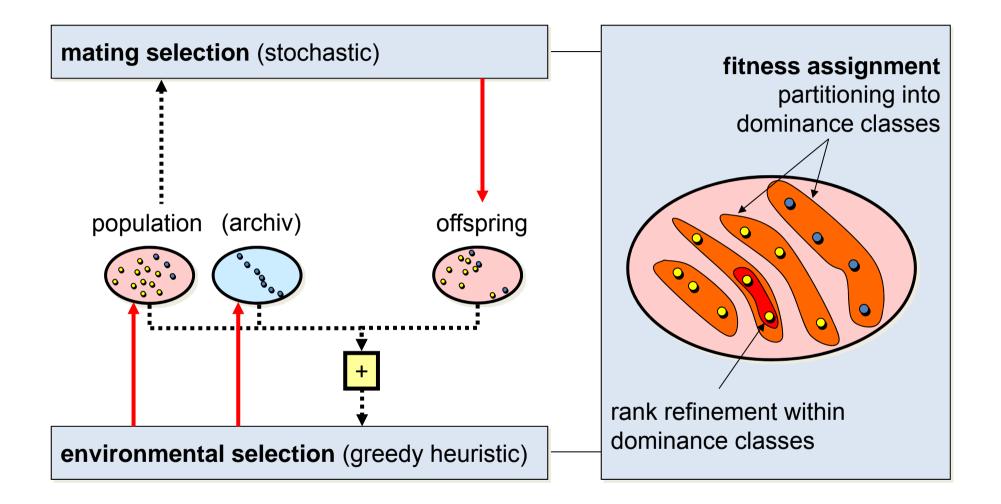


population

k separate selections

mating pool

General Scheme of Dominance-Based EMO



Note: good in terms of set quality = good in terms of search?

Ranking of the Population Using Dominance

... goes back to a proposal by David Goldberg in 1989.

- ... is based on pairwise comparisons of the individuals only.
- dominance rank: by how many individuals is an individual dominated? MOGA, NPGA
- dominance count: how many individuals does an individual dominate?
 SPEA, SPEA2
- dominance depth: at which front is an individual located? NSGA, NSGA-//

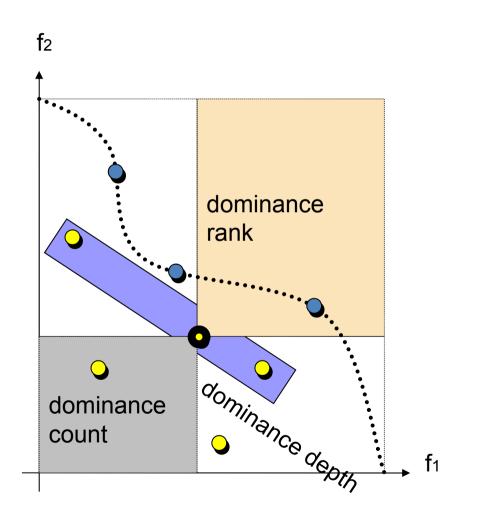
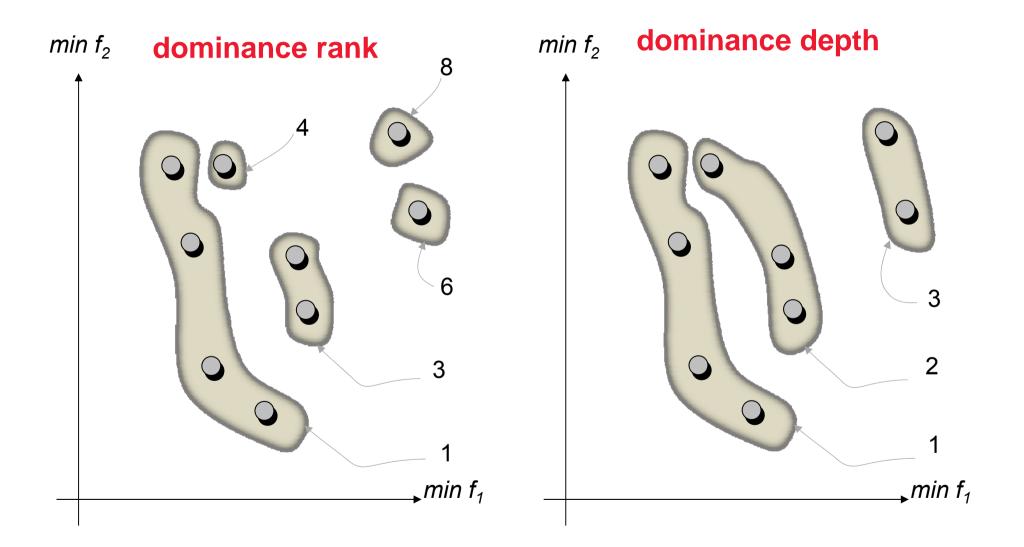


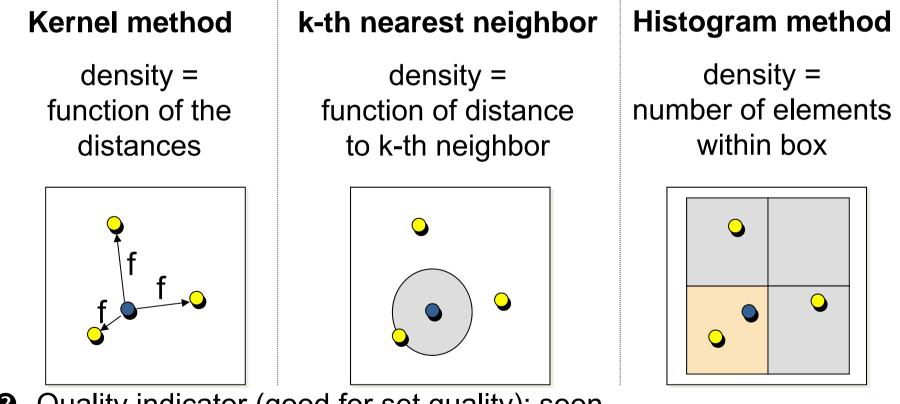
Illustration of Dominance-based Partitioning



Refinement of Dominance Rankings

Goal: rank incomparable solutions within a dominance class

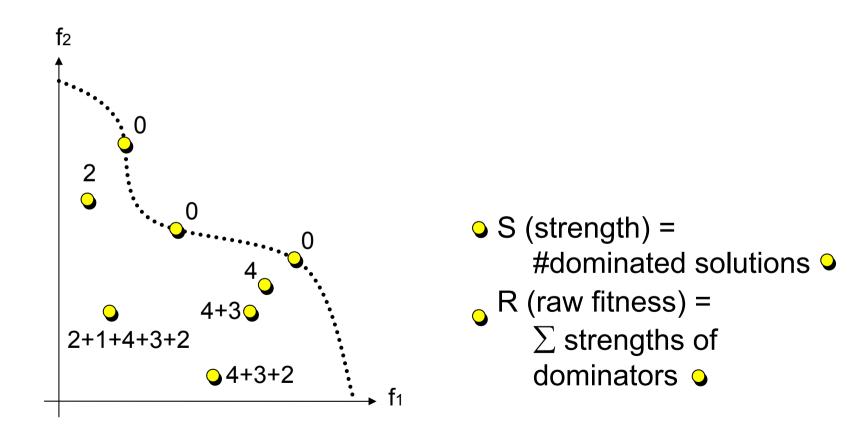
• Density information (good for search, but usually no refinements)



Quality indicator (good for set quality): soon...

Example: SPEA2 Dominance Ranking

Basic idea:the less dominated, the fitter...Principle:first assign each solution a weight (strength),
then add up weights of dominating solutions

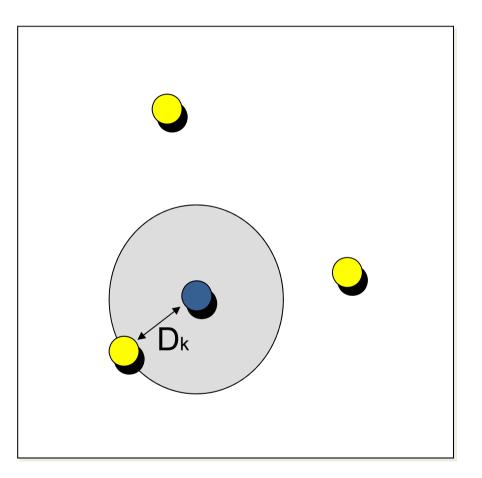


Example: SPEA2 Diversity Preservation

Density Estimation

k-th nearest neighbor method:

- Fitness = $R + \frac{1}{(2 + D_k)}$
- D_k = distance to the k-th nearest individual
- Usually used: k = 2



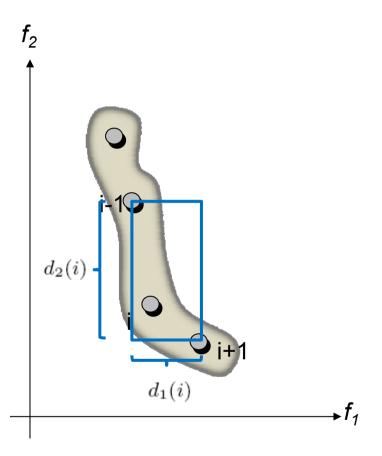
Example: NSGA-II Diversity Preservation

Density Estimation

crowding distance:

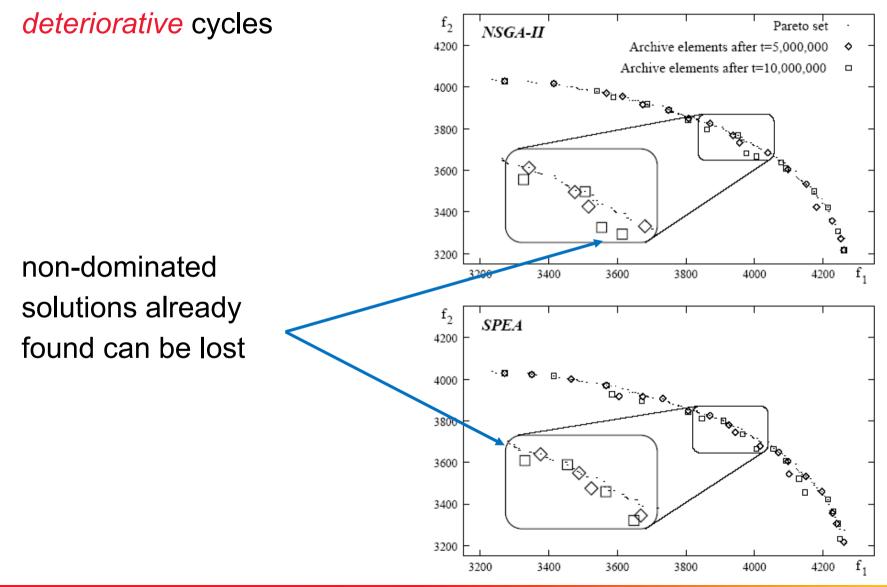
- sort solutions wrt. each objective
- crowding distance to neighbors:

$$d(i) - \sum_{\text{obj. }m} |f_m(i-1) - f_m(i+1)|$$



SPEA2 and NSGA-II: Cycles in Optimization

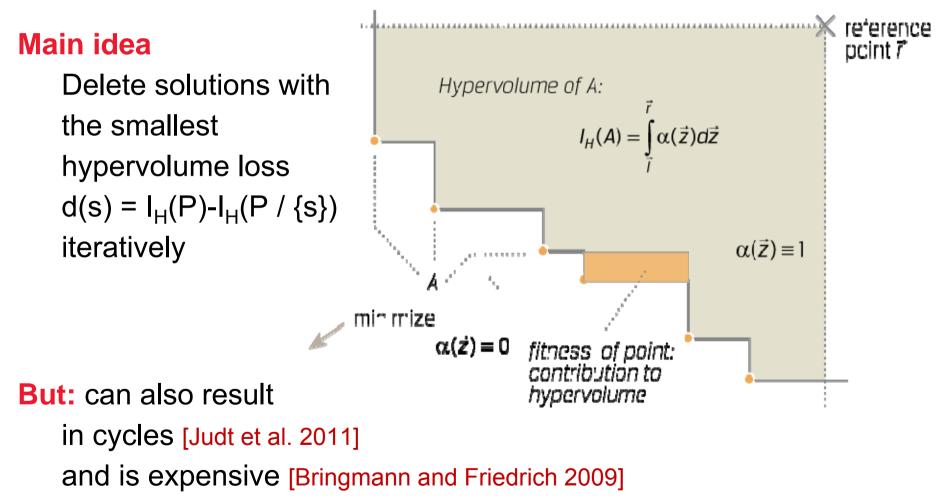
Selection in SPEA2 and NSGA-II can result in



Hypervolume-Based Selection

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, ...)

use (hypervolume) indicator to guide the search: refinement!

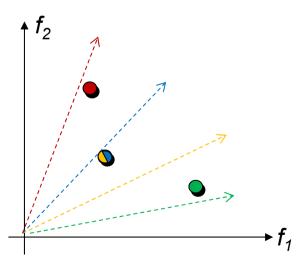


Decomposition-Based Selection: MOEA/D

MOEA/D: Multiobjective Evolutionary Algorithm Based on Decomposition [Zhang and Li 2007]

Ideas:

- Optimize N scalarizing functions in parallel
- Use only best solutions of "neighbored scalarizing function" for mating
- keep the best solutions for each scalarizing function
- use external archive for nondominated solutions



The Big Picture

Basic Principles of Multiobjective Optimization

- algorithm design principles and concepts
- performance assessment

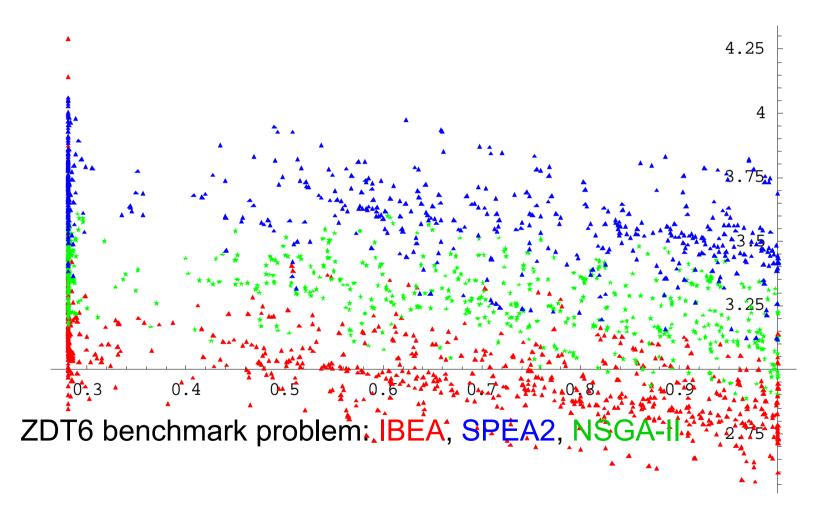
Selected Advanced Concepts

- indicator-based EMO
- preference articulation

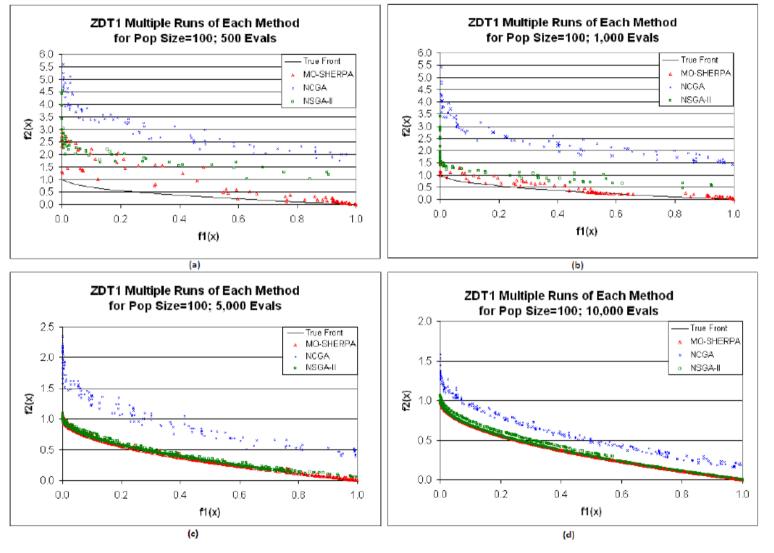
A Few Examples From Practice

Once Upon a Time...

... multiobjective EAs were mainly compared visually:



...And Even Today!



[found in a paper from 2009]

Two Approaches for Empirical Studies

Attainment function approach:

- Applies statistical tests directly to the samples of approximation sets
- Gives detailed information about how and where performance differences occur

Quality indicator approach:

- First, reduces each approximation set to a single value of quality
- Applies statistical tests to the samples of quality values

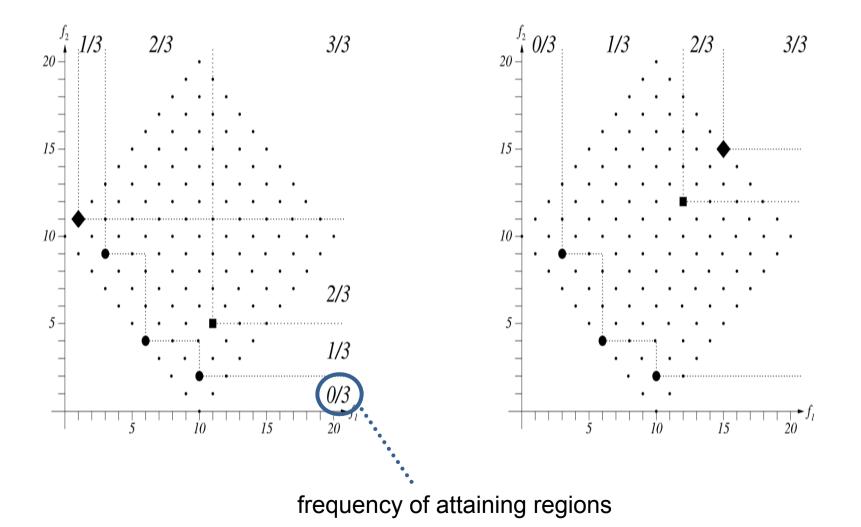


Indicator	Α	В
Hypervolume indicator	6.3431	7.1924
ϵ -indicator	1.2090	0.12722
R_2 indicator	0.2434	0.1643
R_3 indicator	0.6454	0.3475

see e.g. [Zitzler et al. 2003]

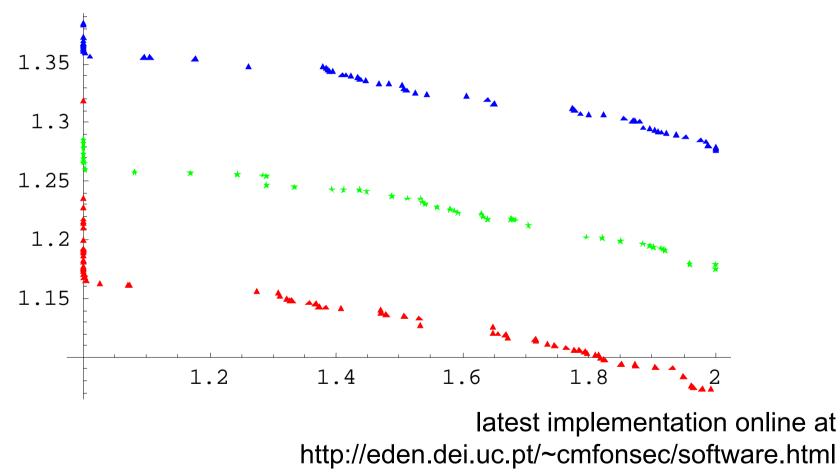
Empirical Attainment Functions

three runs of two multiobjective optimizers



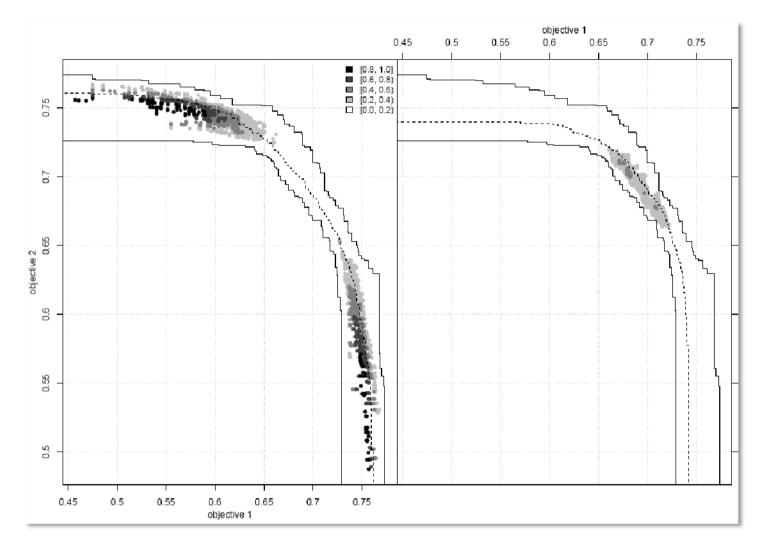
Attainment Plots

50% attainment surface for IBEA, SPEA2, NSGA2 (ZDT6)



see [Fonseca et al. 2011]

Attainment Plots



latest implementation online at http://eden.dei.uc.pt/~cmfonsec/software.html see [Fonseca et al. 2011]

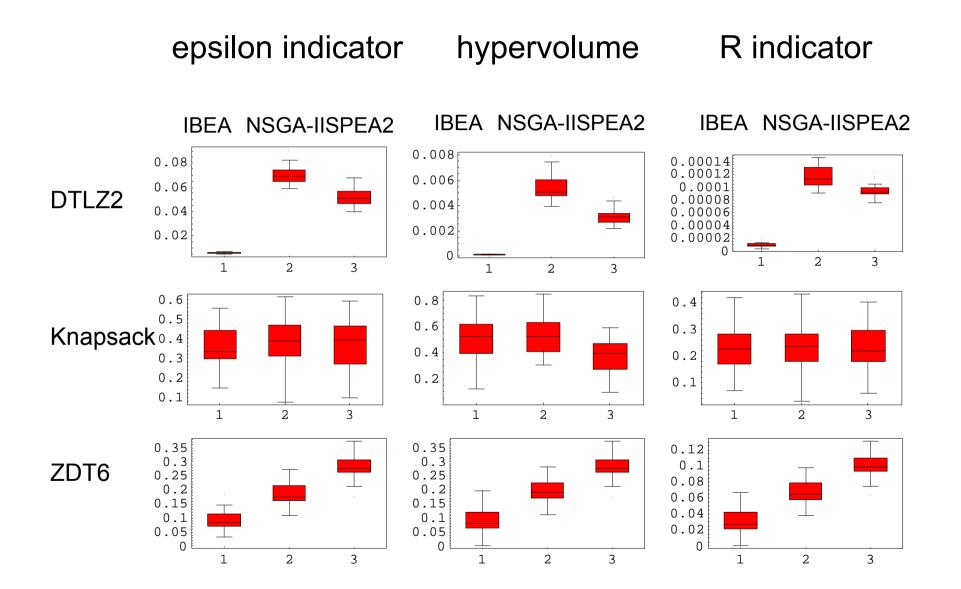
Quality Indicator Approach

Goal: compare two Pareto set approximations A and B

↑•• .		Α	В	
	hypervolume	432.34	420.13	
	distance	0.3308	0.4532	→ "A better"
	diversity	0.3637	0.3463	
	spread	0.3622	0.3601	
	cardinality	6	5	
→		•		

Comparison method C = quality measure(s) + Boolean function A, B $\xrightarrow{\text{quality}}_{\text{measure}}$ \mathbb{R}^{n} $\xrightarrow{\text{Boolean}}_{\text{function}}$ statement

Example: Box Plots

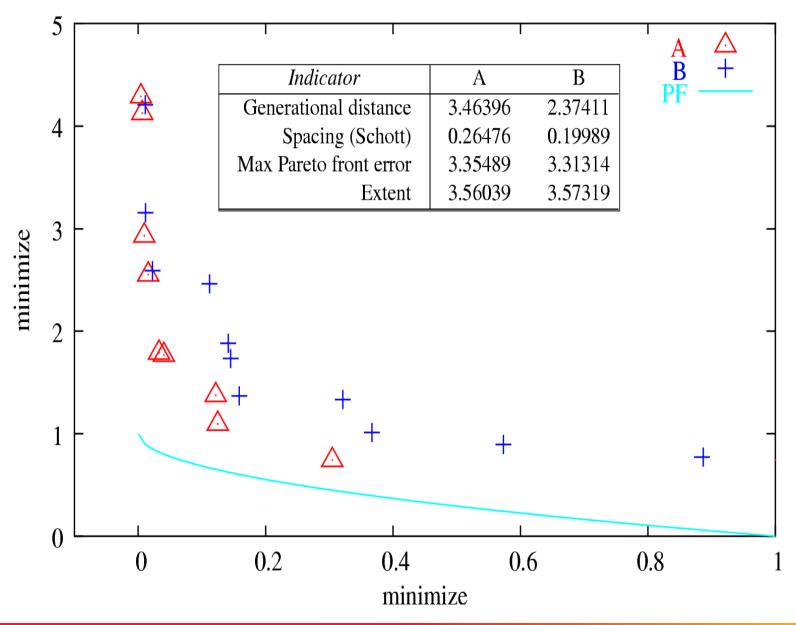


Statistical Assessment (Kruskal Test)

ZDT6 Epsilon				DTLZ2 R					
is better than	IBEA	NSGA2	SPEA2	is better than	IBEA	NSG	GA2	SPEA2	
IBEA		~0 🕐	~0 🕐	IBEA		~0		~0 🕐	
NSGA2	1		~0 🙂	NSGA2	1			1	-
SPEA2	1	1		SPEA2	1	~0			-
Overall p-value = 6.22079e-17. Null hypothesis rejected (alpha 0.05)			Overall p-value = 7.86834e-17. Null hypothesis rejected (alpha 0.05)						

Knapsack/Hypervolume: H_0 = No significance of any differences

Problems With Non-Compliant Indicators



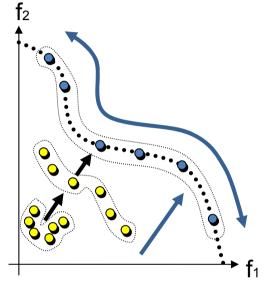
What Are Good Set Quality Measures?

There are three aspects [Zitzler et al. 2000]

of performance. In the case of multiobjective optimization, the definition of quality is substantially more complex than for single-objective optimization problems, because the optimization goal itself consists of multiple objectives:

- The distance of the resulting nondominated set to the Pareto-optimal front should be minimized.
- A good (in most cases uniform) distribution of the solutions found is desirable. The assessment of this criterion might be based on a certain distance metric.
- The extent of the obtained nondominated front should be maximized, i.e., for each objective, a wide range of values should be covered by the nondominated solutions.

In the literature, some attempts can be found to formalize the above definition (or parts



Wrong! [Zitzler et al. 2003]

An infinite number of unary set measures is needed to detect in general whether A is better than B

The Big Picture

Basic Principles of Multiobjective Optimization

- algorithm design principles and concepts
- performance assessment

Selected Advanced Concepts

- indicator-based EMO
- preference articulation

A Few Examples From Practice

Indicator-Based EMO: Optimization Goal

When the goal is to maximize a unary indicator...

- we have a single-objective set problem to solve
- but what is the optimum?
- important: population size µ plays a role!

Optimal µ**-Distribution**:

A set of μ solutions that maximizes a certain unary indicator I among all sets of μ solutions is called optimal μ -distribution for I. [Auger et al. 2009a]

Optimal µ-Distributions for the Hypervolume

Hypervolume indicator refines dominance relation

 \implies most results on optimal μ -distributions for hypervolume

Optimal µ**-Distributions (example results)**

[Auger et al. 2009a]:

- contain equally spaced points iff front is linear
- density of points $\propto \sqrt{-f'(x)}$ with f' the slope of the front

[Friedrich et al. 2011]:

optimal μ-distributions for the hypervolume correspond to ε-approximations of the front

OPT
$$1 + \frac{\log(\min\{A/a, B/b\})}{n}$$

HYP $1 + \frac{\sqrt{A/a} + \sqrt{B/b}}{n-4}$
logHYP $1 + \frac{\sqrt{\log(A/a)\log(B/b)}}{n-2}$

(probably) does not hold for > 2 objectives

The Big Picture

Basic Principles of Multiobjective Optimization

- algorithm design principles and concepts
- performance assessment

Selected Advanced Concepts

- indicator-based EMO
- preference articulation

A Few Examples From Practice

Articulating User Preferences During Search

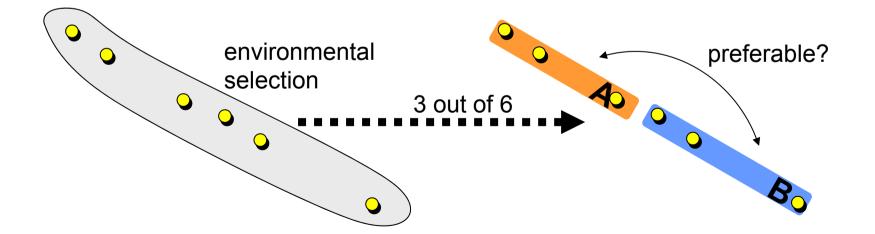
What we thought: EMO is preference-less

given by the Divi.

Search before decision making: Optimization is performed without any preference information given. The result of the search process is a set of (ideally Pareto-optimal) candidate solutions from which the final choice is made by the DM.

Decision making during search. The DM can articulate preferences during

What we learnt: EMO just uses weaker preference information



[Zitzler 1999]

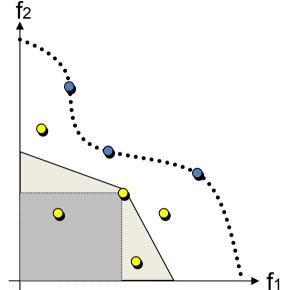
Incorporation of Preferences *During* Search

Nevertheless...

- the more (known) preferences incorporated the better
- in particular if search space is too large
 [Branke 2008], [Rachmawati and Srinivasan 2006], [Coello Coello 2000]

• Refine/modify dominance relation, e.g.:

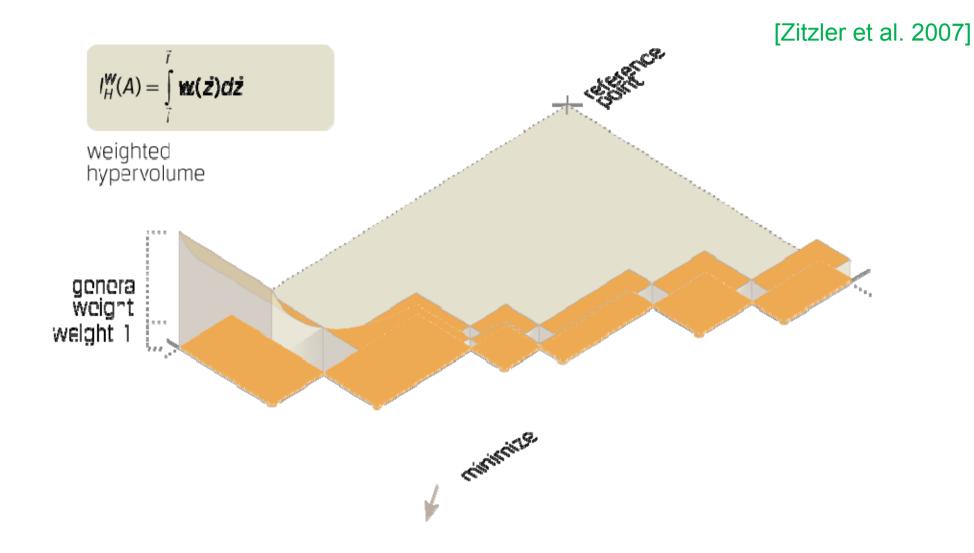
- using goals, priorities, constraints [Fonseca and Fleming 1998a,b]
- using different types of cones [Branke and Deb 2004]



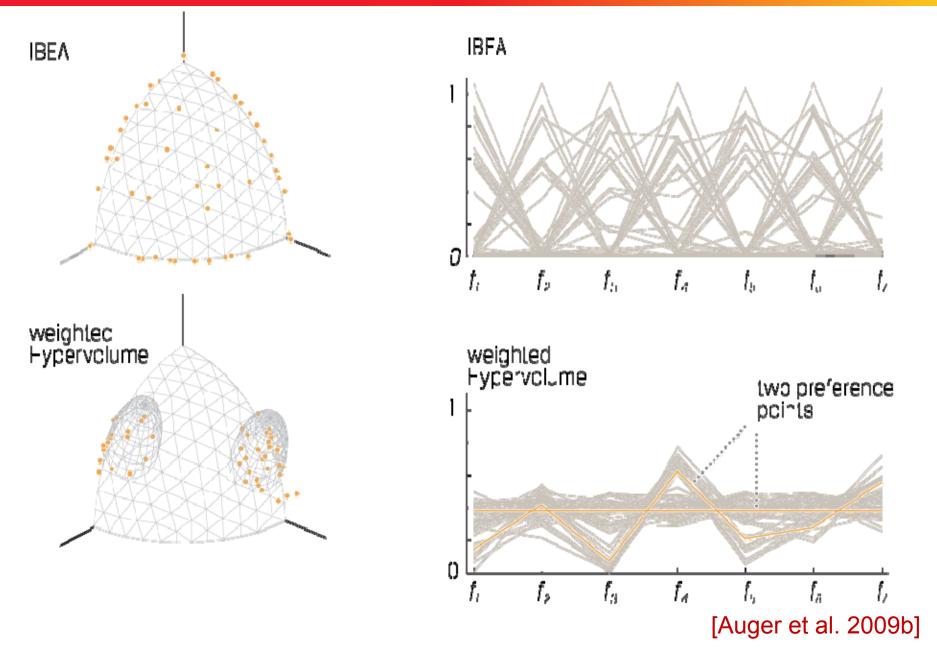
2 Use quality indicators, e.g.:

- based on reference points and directions [Deb and Sundar 2006, Deb and Kumar 2007]
- based on binary quality indicators [Zitzler and Künzli 2004]
- based on the hypervolume indicator (now) [Zitzler et al. 2007]

Example: Weighted Hypervolume Indicator



Weighted Hypervolume in Practice



The Big Picture

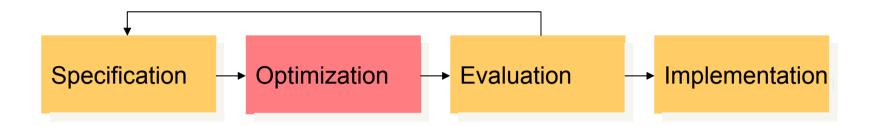
Basic Principles of Multiobjective Optimization

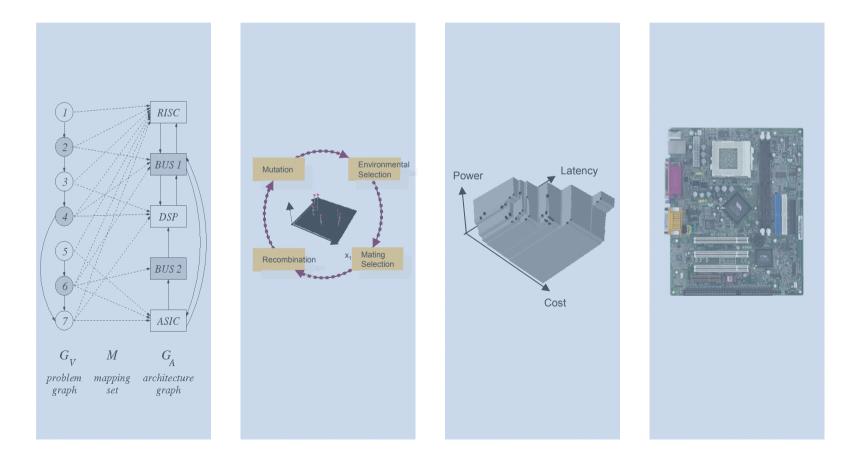
- algorithm design principles and concepts
- performance assessment

Selected Advanced Concepts

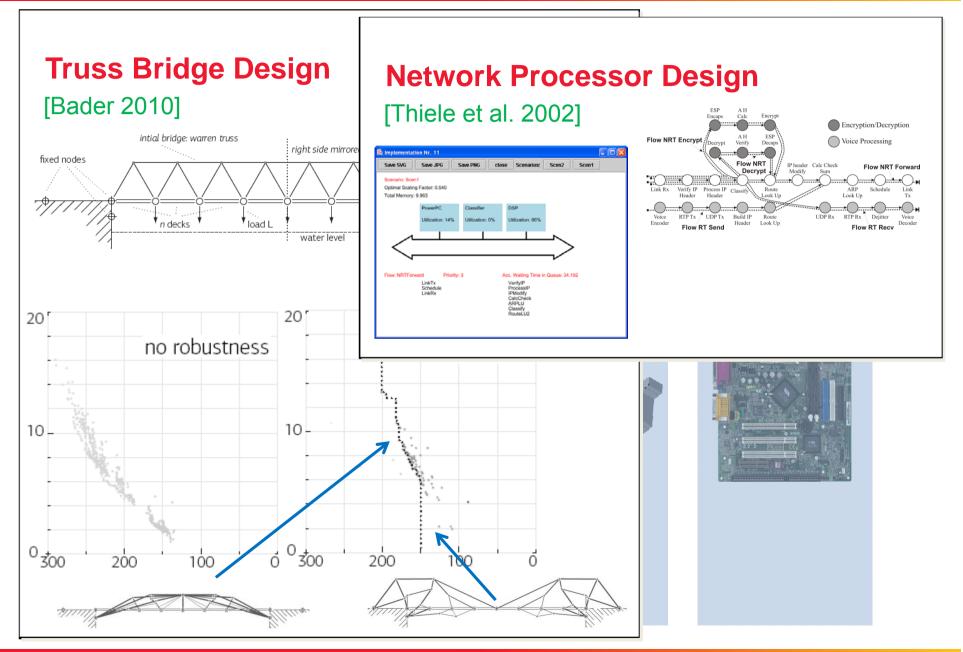
- indicator-based EMO
- preference articulation

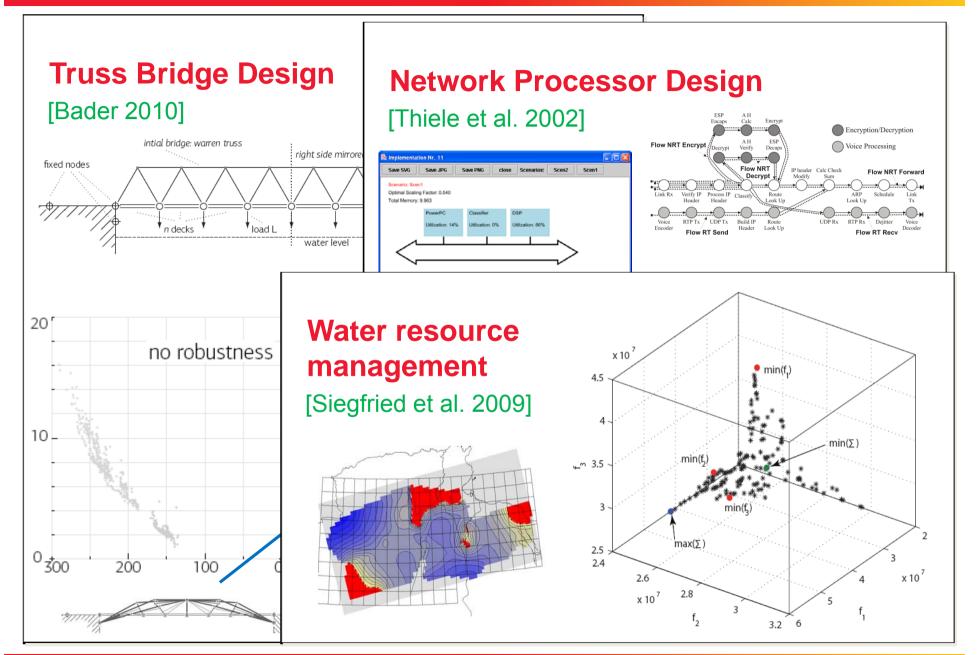
A Few Examples From Practice





Truss Bridge Design [Bader 2010] Implementation ► intial bridge: warren truss right side mirrored fixed nodes n decks load L water level 201 201 no robustness НурЕ....а 10-10 0 300 0 300 ð 200 200 100 0



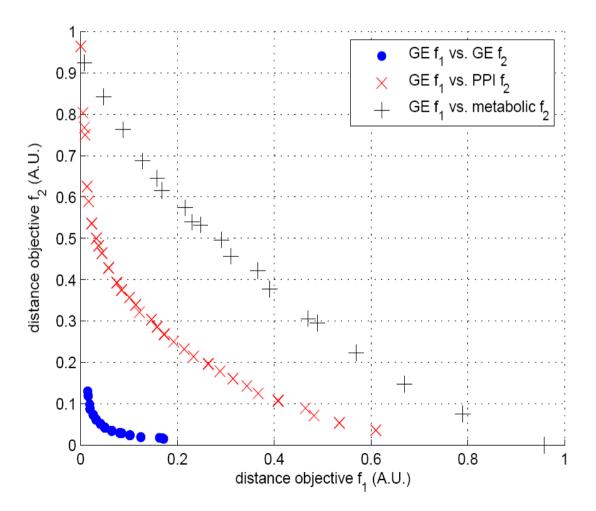


Application: Trade-Off Analysis

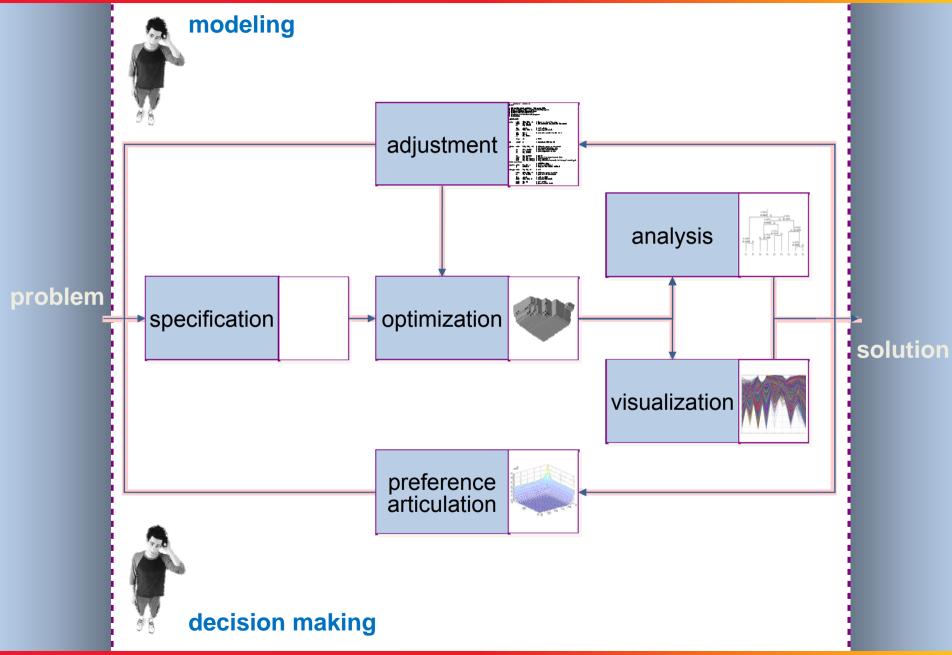
Module identification from biological data [Calonder et al. 2006]

Find group of genes wrt different data types:

- similarity of gene expression profiles
- overlap of protein interaction partners
- metabolic pathway map distances

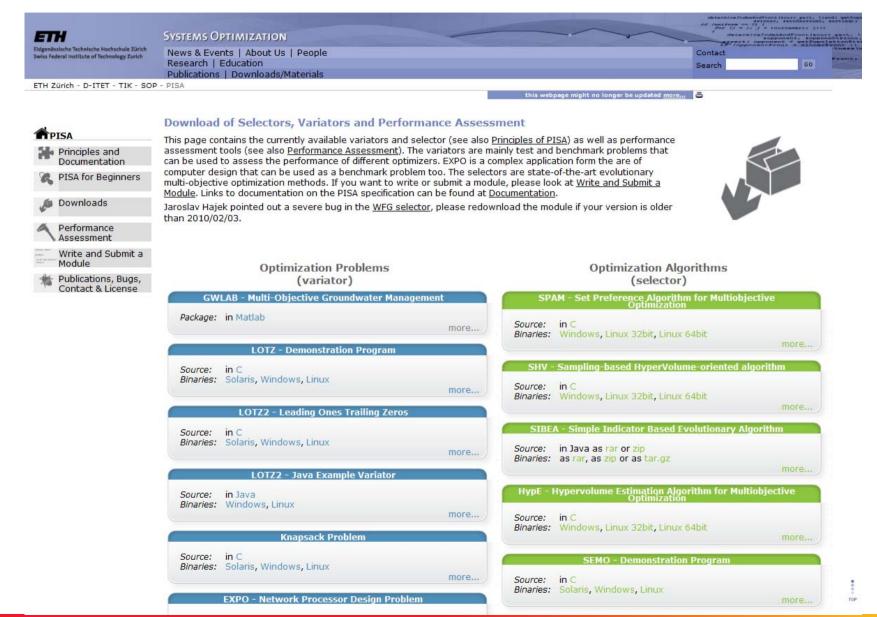


Conclusions: EMO as Interactive Decision Support



© Anne Auger and Dimo Brockhoff, INRIA

PISA: http://www.tik.ee.ethz.ch/pisa/



Exercise: Runtime Analysis of a Simple EMO Algorithm

Constrained Optimization

Constrained Optimization

- up-to-now only unconstrained problems considered
- but constraints are frequent in practice
 - most combinatorial optimization problems have constraints (think about knapsack, scheduling, ...)
 - also continuous problems might have constraints (remember the initial Ariane launcher problem?)

```
egin{aligned} \min f(x) \ &	ext{ s.t. } \ &	ext{ } g_i(x) \leq 0 	ext{ for all } 1 \leq i \leq m \ &	ext{ } h_j(x) = 0 	ext{ for all } 1 \leq j \leq p \end{aligned}
```

Main approaches:

- straightforward rejection sampling
- penalty functions
- special representations and operators
- multiobjective formulation

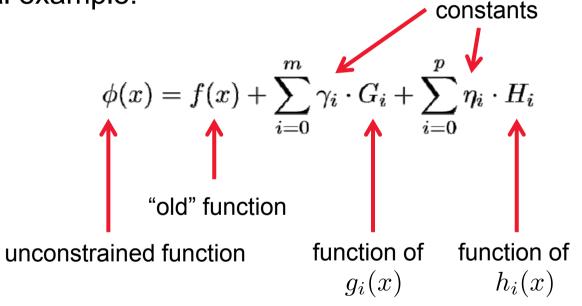
The Simplest Approach: Rejection Sampling

until candidate solution is feasible: resample the search space according to current probability distribution

- no information about infeasible region is used
- not applicable if feasible region is (too) small
- other approaches used (much) more frequently

Penalty Functions

- transform constrained problem into unconstrained one: incorporate (the amount of) constraint violations into the objective function
- already proposed in the 1940s by Richard Courant
- general example:



Remarks:

- death penalty = rejection sampling
- difficult to find appropriate constants and G_i and H_i functions

Special Representations And Operators

we have seen already examples:

- TSP: permutations
- single-objective knapsack problem: no details

- either operators directly produce a feasible solution (like for TSP)
- or after the operator is used, a repair strategy transforms any infeasible solution into a feasible one
 - e.g. in knapsack problem: greedily reduce the number of chosen items according to profit_i/weight_i until constraint fulfilled

Constraints and Multiobjective Optimization

Idea 1:

use a multiobjective algorithms to solve a problem where all constraints are objective functions

Idea 2:

solve a bi-objective problem where the second objective is the sum of all constraint violations

Possible problem:

the algorithm might only search in the infeasible domain

Box Constraints With CMA-ES

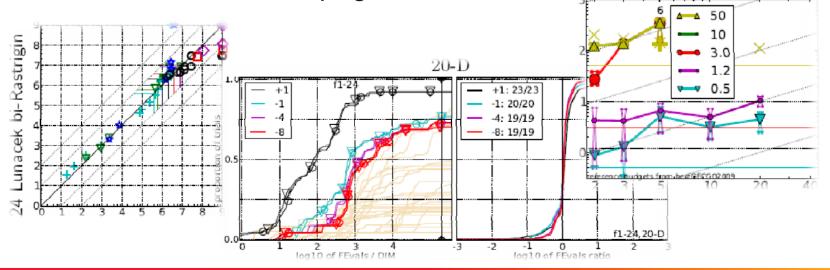
Main idea of standard implementation:

- using standard covariance matrix update with unchanged differences as if the new points are feasible
- projection of infeasible points onto boundary variable-byvariable to compute a feasible function value
- no penalty

Possible Thesis Projects

INRIA Saclay – Ile-de-France with Anne

- more related to continuous single-objective optimization
- both theoretical and practical projects
- several possible options with respect to benchmarking
 - constrained optimization
 - large-scale optimization
 - expensive optimization
 - more concrete: visualizing algorithm comparison results on an interactive web page



INRIA Lille – Nord Europe with Dimo

More related to multiobjective optimization (but probably also possible in Saclay)

- scalarization/aggregation-based EMO (also parallelization possible)
- variation operators for set-based EMO
- stopping criteria and restarts for EMO
- optimal µ-distributions (both theoretical and numerical)

for questions, just ask us: firstname.lastname@inria.fr



Good luck for the exam!