
Exercise Solution: Pole Balancing

Advanced Control lecture
at Ecole Centrale Paris

Anne Auger and Dimo Brockhoff
firstname.lastname@inria.fr

Jan 10, 2014

Abstract

Balancing a pole on a moving cart is a standard benchmark prob-
lem of control engineering. A related control problem has to be solved
within the Segway personal transporter. In this exercise, we imple-
ment the most basic pole balancing problem (one single pole mounted
on a cart that is only able to move in one dimension where we abstract
from friction).

Solutions are written in blue.

1 Simulating the Pole Balancing Problem

Choose your favorite language (recommended: MATLAB/SciLab1) and im-
plement the pole balancing problem from the lecture. To this end, use the
simple Euler method to approximate the ODEs for angle and position accel-

1Useful commands to look at: sign, fprintf, disp

1



erations, given by

θ̈t =
g sin θt + cos θt

[
−Ft−mplθ̇2t sin θt

mc+mp

]
l
[
4
3
− mp cos2 θt

mc+mp

]
ẍt =

Ft +mpl
[
θ̇2t sin θt − θ̈t cos θt

]
mc +mp

,

the linear controller mentioned in the lecture, and the variables and param-
eters as described in Table 1.

Recommended Procedure:

a) Start with functions/methods for computing θ̈ and ẍ.
The MATLAB code can be found in polebalancing/getAngleAccelaration.

m and polebalancing/getPosAccelaration.m.

b) Continue with a function for the linear controller.
The response Ft of the controller is based on the four constants k1, k2,
k3, and k4 (choose them from [0, 1]) as well as on Fm = 100N :

Ft = Fmsgn(k1xt + k2ẋt + k3θt + k4θ̇t).

The function sgn(x) is the signum function, giving 1 if x > 1, 0 if x = 0,
and −1 otherwise.
The MATLAB code can be found in polebalancing/linearController.

m

c) Combine all parts to a single script/function that simulates the system
for 120s and a fixed parameter setting using the Euler method:

xt+1 = xt + τ ẋt

ẋt+1 = xt + τ ẍt

θt+1 = θt + τ θ̇t

θ̇t+1 = θ̇t + τ θ̈t

The MATLAB code can be found in polebalancing/simulation.m.

2



Table 1: System parameters and variable names for the pole balancing prob-
lem.

Symbol Name Description

θ Pole Angle measured (in radians) relatively to the up-
right position, initial value in [−0.1,+0.1]

θ̇ Pole Velocity angular velocity of the pole in rad/s

θ̈ Pole Accelara-
tion

acceleration of the pole in rad/s2

x Card Position measured relatively to the middle of the
track (in m), initial value in [−1,+1]

ẋ Card Velocity velocity of the cart (in m/s)
ẍ Card Accelera-

tion
acceleration of the cart (in m/s)

g Gravitational
Acceleration

acceleration due to gravity (g =9.81 m/s2)

mc Cart Mass 1.0 kg
mp Pole Mass 0.1 kg
l Pole Length distance from pivot to the pole’s center of

mass (l=0.5m)
t Time measured in s
Ft Force force applied to the cart at time t (in N,

always Ft 6= 0 for a bang-bang controller)
h Track Limit ±2.4m from track center
r Pole Failure An-

gle
±12◦ from vertical (12◦ ≈ 0.209rad)

τ Time Step discrete integration time step for the sim-
ulation (τ = 0.02s)

Fm Controller Con-
stant

constant of linear controller (set to Fm =
100N)

k1, k2, k3, k4 Controller Con-
stants

further constants of controller (in [0, 1], to
be optimized)

3



d) Output the number of iterations until your simulation results in an
unstable pole (θ not in [−12◦,+12◦]) to see whether a given parameter
setting is producing a good controller. The MATLAB code can be
found in polebalancingRandom/. The script to start the simulations
is polebalancingRandom/simulate_random.m which calls the function
polebalancingRandom/simulate.m. This function itself contains the
previous script polebalancing/simulation.m written as a function.

e) Test your controller by choosing 1000 different (randomly chosen2) set-
tings for k1, k2, k3, and k4.

2 Questions

a) Is it easy to find parameter values that produce a stable controller?
In a sense, yes, it is easy to find stable controllers, because already a
random search finds in about 10% of the cases a stable controller. This
is typically not the case for more complicated optimization problems
as we will see later on in the class.

b) Are different starting conditions x and θ of the system simulation
equally difficult for the linear controller?
No, the starting conditions have a large impact on whether it is easy
to find good parameter values for the linear controller randomly. The
closer the angle θ and the position x are to zero, the easier it is to find
parameter settings that result in a stable linear controller.

c) What is the influence of the simulation frequency τ?
The simulation accuracy is a crucial parameter. The larger τ is cho-
sen, the less probable it is to find good parameter values for the linear
controller. The smaller τ , the better. It is recommended to choose the
simulation frequency τ as low as possible (i.e. with the simulation accu-
racy 1/τ as high as possible) such that you can still run the simulations
in reasonable time (matter of seconds here).

2Look out for the command rand(n,1).

4



3 Non-Mandatory Questions

If you have more time, are you able to answer the following two questions?
With the provided MATLAB code, the answers are easily obtainable from
additional simulations with different parameter settings.

a) Are the found good controllers also robust to changes in the cart and
the pole mass?
As long as cart and pole mass are not drastically changed, the simula-
tion results in terms of the stability of the linear controller stay nearly
the same.

b) How would you find robust parameter values of a controller for (more
or less) arbitrary starting conditions and masses?
One possibility would be to do the simulation for each parameter setting
of the linear controller several times with different (random) starting
conditions. The average/median/sum/minimum number of stable iter-
ations over all simulations could be used as a quality of each parameter
setting. What would be a better choice for this quality criterion, the
sum or the minimum?

c) Is it easier to build a bang-bang controller or one that allows arbitrary
(continuous) forces to be applied in each step?
The provided MATLAB code also allows to easily change the bang-bang
controller (with a force of either −Fm or +Fm) into a controller where
the force can be any continuous number. In principle, this change re-
duces the probability that a randomly chosen parameter setting results
in a stable linear controller.

d) Is this also true if the starting position of the pole is exactly in the
middle?
Interestingly, this behavior of the continuous force controller changes
when the angle and position are chosen optimally in the beginning (i.e.
θ0 = 0 and x0 = 0). But the explanation is trivial: the continuous force
controller chooses a force of Ft = 0 for all time steps and the pole stays
in its initial (but instable) position for all parameter settings while the
bang-bang controller is forced to give a non-zero force all the time.

5


