
Exercise: A Fuzzy Controller for the Pole
Balancing Problem

Advanced Control lecture
at Ecole Centrale Paris

Anne Auger and Dimo Brockhoff
firstname.lastname@inria.fr

Jan 17, 2014

Abstract

After implementing the pole balancing problem and getting an in-
tuition about how difficult it is to design the linear controller for it,
we will now apply fuzzy logic to create a controller that does not use
all possible input measurements of the cart.

Again, please keep your code for the next exercises!

1 Getting familiar with fuzzy implications

Let the temperature T be a fuzzy variable that can belong to the fuzzy set
“hot” and to the fuzzy set “moderately hot” the membership functions of
which are defined as follows:

Hot(T ) =


0 if T < 25◦

T−25
10

if 25◦ ≤ T ≤ 35◦

1 if T > 35◦

ModeratelyHot(T ) =


T−20

5
if 20◦ ≤ T ≤ 25◦

−
(
T−30

5

)
if 25◦ ≤ T ≤ 30◦

0 else

1



Further, let us define the fuzzy set “Crowdedness” of an ice-cream shop as

Crowdedness(C) =


0 if C < 25

C−25
25

if 25 ≤ C ≤ 50
1 if x > 50

where C is the number of customers in the shop.

a) Draw/Plot the membership functions of the three above fuzzy sets.
Interesting MATLAB functions to look at: trimf, trapmf, plot, hold
on/off

b) Find the implication of the rule

IF the temperature is hot OR the temperature is

moderately hot THEN the ice-cream shop is crowded.

with respect to Mamdani’s rule and Larsen’s product rule if the tem-
perature is 28◦. In other words, how crowded is the ice-cream shop at
a temperature of T = 28◦ according to the above rule? To this end

I) plot first the membership function of the left-hand side of the
implication (see max and min),

II) then write a function for each of the implication rules (Mam-
dani/Larsen), and third

III) evaluate the left-hand side membership function at the right tem-
perature (see e.g. evalmf) and apply the two implication rules to
find out how crowded the ice-cream shop is (plot the resulting
membership functions).

IV) Finally, use the centroid defuzzification1 to get a “crisp” answer
whether the ice-cream shop is crowded or not. In which way does
it matter which implication function you use?

1It might be helpful to look at the defuzz function from the Fuzzy Logic Toolbox in
MATLAB.

2



2 A fuzzy controller for the pole balancing

problem

Review the pole balancing problem from the previous exercise. All parame-
ters and variables are essentially the same as before except that, for simplic-
ity, we loose the constraints of the track length to h = ±100m and of the
pole failure angle to r = ±π/2 (90◦). In this exercise, the controller does
not have access to the direct measurements of all four input values (value
and derivative of the position x of the cart and of the angle θ of the pole).
Instead, we allow only for the two inputs θ and θ̇ for the moment.

a) Think about how to fuzzify the inputs and outputs of a fuzzy controller
for this restricted pole balancing problem. As a recommendation, use
three linguistic variables or membership functions per input and five or
seven for the output.

b) Define the membership functions according to your fuzzification. For
simplicity (and for the debugging), the sole use of triangular and trape-
zoidal membership functions is highly recommended.

c) Define the rule matrix for your fuzzy controller.

d) Implement the fuzzy controller with the help of MATLAB’s Fuzzy Con-
trol Toolkit. Use Mamdani’s rule for the implications and the centroid
defuzzification.

I) Start the Fuzzy Control Toolkit by typing fuzzy in MATLAB.
In the upper half of the new window, you see an abstract view
of your system with the inputs on the left, the implication rules
in the middle, and the outputs on the right. Add a second input
variable with choosing Edit-->Add Variable...-->Input from
the menu. Advice: Save your fuzzy system regularly by choosing
File-->Export-->To File... from the menu.

II) By double-clicking on the input or output variables, a new window
opens where you can name and enter your membership functions.
The menu allows to add or delete functions. Change the mem-
bership functions’ shape according to you above design choices by
editing the values in the Params field or using the mouse.

3



III) In the initial FIS editor window, double-click on the white middle
block with “mamdani” written in the brackets to enter your rules
of the rule matrix.

IV) If you have not done yet, save your fuzzy controller as a .fis file
that you can later on use within your script from last week to get
the response for a certain input.

e) Test your controller on the pole balancing benchmark from the previous
exercise. To this end, use the functions readfis and evalfis to load
your controller and evaluate it, e.g. like this:

myController = readfis(’NAMEOFYOURCONTROLLER’);

F = evalfis([angle_theta angle_velo], myController);

Does your fuzzy controller allow to stabilize the pole?

f) What is not possible with the current problem formulation and why?

3 A better fuzzy controller

In the following, we would like to also stabilize the cart position around a
value of x = 0. To this end, update your controller from above by adding
the position of the cart x as an input and designing new rules controlling the
output.

4 Non-Mandatory Questions

If you have more time, you can further play around with the system.

a) Is the centroidal defuzzification giving better results than other meth-
ods?

b) What about the influence of other parameters of the sytem such as the
implication rule, the simulation accuracy, or the initial cart and pole
positions?

c) Can you come up with a nice illustration of the system behavior in
which you can follow the trajectory of the pole and the cart during the
simulation in one single plot?

4


