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Pure Random Search (PRS)

The first stochastic optimization algorithm, introduced before any genetic algorithm (GA) or evolution
strategy (ES), is the so-called pure random search, or PRS for short1. Assuming a bounded search
domain, the algorithm consists in sampling independently points uniformly distributed in the search
space.

We will implement the algorithm PRS in the context of the maximization of functions defined on the
space of bit strings of a certain length n, i.e. on the search space Ω = {0, 1}n.

Pure Random Search to maximize f : {0, 1}n → R

Initialize uniformly at random x ∈ Ω = {0, 1}n
while not terminate

Sample x′ uniformly at random in Ω
if f(x′) ≥ f(x)

x = x′

return x

Example 1 For x ∈ {0, 1}n, the function Onemax is defined as

fOnemax(x) =

n∑
i=1

xi

1. What is the maximum of the Onemax function? What is the value of fOnemax at the optimum?
The maximum of the Onemax function is the all-one string (1, . . . , 1) = 1n and its value is
fOnemax(1

n) = n.

1The historical papers proposing the use of the PRS are:

� S.H. Brooks: “Discussion of random methods for locating surface maxima”. Operations Research 6 (1958), pp.
244–251.

� L.A. Rastrigin: “The convergence of the random search method in the extremal control of a many-parameter system”.
Automation and Remote Control 24 (1963), pp. 1337–1342.



2. Write a Matlab function onemax.m that takes as argument a bitstring x of arbitrary length and
gives back the value fOnemax(x) (useful Matlab instruction: sum).
Though the function itself is very simple and writing it in a separate function file seems to be
superfluous, it is good practice in terms of object-oriented programming and in a later improved
implementation, the fitness function can be easily replaced by more complicated problems. The
MATLAB code can be found in the file prsAndOnePlusOne.zip with name onemax.m.

3. Write a Matlab function pureRS.m that takes as argument the search space size n and returns the
number of function evaluations needed to reach the optimum of the Onemax function, as well as a
vector fitness that contains the sequence of the best-ever objective function values found so far.
In other words, the ith coordinate of the vector fitness contains the best function value found
until iteration i. To sample, you might use the Matlab instructions rand and round.
This function can be found as well in the archive prsAndOnePlusOne.zip.

4. Plot the evolution of the function value (“fitness”) as a function of the number of function evalu-
ations for two independent runs of the algorithm. What do you observe? You might want to use
the instructions plot and hold on.
The script evolOfFitness.m in prsAndOnePlusOne.zip shows how to plot the fitness values over
time by running the above function for the PRS. We observe a high variance of the results among
independent runs of the algorithm. This is the reason why in the next step, we average over 11
runs of the algorithm and later on investigate the expected runtime.

5. Write a script RunningTime.m to plot for n = 1:2:14 the empirical expected value of the time needed
to reach the optimum of fOnemax with the PRS algorithm. Plot as well the standard deviation around
the expected value. We advise to compute the empirical expected value and the standard deviation
based on 11 independent runs of the algorithm.
This script can also be found in prsAndOnePlusOne.zip.

Note: the time to reach the optimum is measured by counting the number of function evaluations needed
to reach the optimum and not the real wall-clock time. Indeed, internal operations are generally negligible
compared to the cost of evaluating the objective function.

6. Compute theoretically the expected time to reach the optimum as a function of n. Compare the
theoretical and empirical results. Hint: show that the time to reach the optimum follows a geometric
distribution with a parameter to determine.
In order to compute theoretically the expected time to reach the optimum for the PRS, we introduce
the notation Topt for the number of times, a certain run of PRS queries the objective function
(keyword: “black box”) until reaching the search point 1n. Note that Topt is a random variable and
we are interested in computing its expectation E(Topt).
We observe that the probability that PRS is reaching the optimum in the next step is independent
of its current search point as well as independent from any other event in the past. This probability
to reach the optimum is always p = 1/2n due to the fact that only one out of the total 2n search
points is optimum and PRS is sampling a new search point uniformly at random in each iteration.
Because of the independency of each step, the search for the optimum is a Bernoulli experiment
and Topt geometrically distributed2. Hence, the expectation of Topt is E(Topt) = 1/p = 2n (and its
variance 1−p

p2 ).

(1+1)-EA

We will now implement a simple evolutionary algorithm, the so-called (1+1)-EA. Its population is reduced
to a single individual. The single parent (the first “1” in the notation (1+1)) mutates to give an offspring
(the second “1” in the notation (1+1)). The best among the offspring and the parent is kept for the next
iteration (symbolized by the “+” in the notation (1+1)).

2See for example http://en.wikipedia.org/wiki/Geometric_distribution for more details.
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The mutation used is the so-called bit-flip mutation where each bit of the parent is changed with proba-
bility 1/n (and thus stays unchanged with a probability 1− 1/n).

(1+1)-EA to maximize f : {0, 1}n → R

Initialize uniformly at random x ∈ Ω = {0, 1}n
while not terminate

Create x′ by flipping each bit of x with probability 1/n
if f(x′) ≥ f(x)

x = x′

return x

7. Follow again the questions 3, 4, and 5 for the (1+1)-EA. The corresponding code can be also found
in the provided prsAndOnePlusOne.zip file.

8. The theoretical complexity3 of the expected time to reach the optimum is Θ(n logn) for the (1+1)-
EA on Onemax. Compare the theoretical and empirical results. Give an idea for the theoreti-
cal proof of the upper bound of cn logn. The experimental comparison can be found in the file
RunningTime1p1EA.m while for the proof of the expected runtime, we refer to the provided slides.

9. Explain the differences obtained between the PRS and the (1+1)-EA. The differences between the
two algorithms are caused by the different ways to produce a new solution. While for PRS the
probability to reach each solution stays the same over time, these probabilities depend on what
happened in the past for the (1+1)-EA. More precisely, the current probability distribution on the
search space depends on the current search point x and puts more probability mass to points close
to the current search point than to other points further away. For the Onemax function, this is
a good strategy because the neighborhood of good points contain a larger amount of equally or
better search points than for points with smaller function value. This reduces the runtime from
exponential (for PRS) to polynomial (for the (1+1)-EA) in n and, consequently, from impractically
high to fast.

Another Function

We consider now the function Needle in the Haystack defined as follows.

Example 2 For x ∈ {0, 1}n, the function Needle is defined as

fNeedle(x) =

{
1 if x = (1, . . . , 1)
0 otherwise

10. What will be the performances of PRS and (1+1)-EA on the function fNeedle? Comment on the
differences w.r.t. the function fOnemax.

This part has not been part of the exercise this year.

3Reminder: f(n) ∈ Θ(g(n)) if ∃k1, k2, |g(n)| · k1 ≤ |f(n)| ≤ |g(n)| · k2.
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