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Abstract

We already looked at the problem of balancing a single pole on a
moving cart with the help of a linear controller in a previous exercise.
However, we always simulated the pole for a single (fixed) starting
condition for which it was easy to find a parameter setting (by ran-
dom search) that resulted in a stable pole. In this exercise, we look
more carefully at the problem of finding robust solutions for the pole
balancing problem such that the controller works for arbitrary start-
ing conditions. To this end, we will use an artificial neural network
(ANN) as controller and CMA-ES to optimize its weights.

If you want, you can re-use your code from the previous exercise or
start from the provided solutions that can be found on the web page
of the lecture at http://researchers.lille.inria.fr/~brockhof/
advancedcontrol/exercises.php .

1 Part I: Is the linear controller robust?

Rewrite your code for simulating the cart pole with the linear controller such
that the return value of the simulation is the sum of all stable simulation
steps within 10 independently restarted simulations for which the starting
conditions are chosen uniformly at random (−0.1 ≤ x0 ≤ 0.1 and −π

4
≤ θ0 ≤

π
4
).
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Questions

Is it still easy to find good parameter values for k1, . . . , k4? To answer this
question, write a script that runs the simulation 100 times with randomly
chosen values for k1, . . . , k4 as in the previous exercise and report how often
you find an optimal solution. What exactly is the optimal value of the
simulation output? Are the solutions you find also robust? To this end,
re-evaluate (some of) the solutions that you found.

2 Part II: Implementing an Artificial Neural

Network

Instead of the linear controller, in the following, we will use an artificial
neural network as a controller. The ANN should take the four measured
values xt, ẋt, θt and θ̇t at each time step t as inputs and present the force
applied to the cart as output. In addition to the single output neuron, two
hidden neurons should be considered here as well as so-called “shortcut”
connections that connect the inputs directly to the output neuron. Since the
pole balancing problem is symmetric, we do not use any bias input to the
neurons. Figure ?? shows the structure of the ANN. Other variables and
parameters can be found in Table ??.

Now, we can start implementing the ANN.

Recommended Procedure:

a) Write a function (in MATLAB/Scilab/Octave) that implements the
transfer function t(x) = x

|x|+1
of the neurons.

b) Then implement the above artificial neural network itself as a function
that takes the input values and the weights of the network’s connections
as input and outputs the final output of the output neuron. You do
not need to keep your implementation general (i.e. for an arbitrary
number of inputs or any general structure).
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Table 1: System parameters and variable names for the pole balancing prob-
lem.

Symbol Name Description

θ Pole Angle measured (in radians) relatively to the
upright position, random initial value in
[−π

4
,+π

4
]

θ̇ Pole Velocity angular velocity of the pole in rad/s, initially
0

θ̈ Pole Accela-
ration

acceleration of the pole in rad/s2, initially 0

x Card Position measured relatively to the middle of the track
(in m), random initial value in [−0.1,+0.1]

ẋ Card Velocity velocity of the cart (in m/s), initially 0
ẍ Card Acceler-

ation
acceleration of the cart (in m/s), initially 0

g Gravitational
Acceleration

acceleration due to gravity (g =9.81 m/s2)

mc Cart Mass 1.0 kg
mp Pole Mass 0.1 kg
l Pole Length distance from pivot to the pole’s center of

mass (l=1.0m ! note that this parameter
changed from last exercise )

t Time measured in s
Ft Force force applied to the cart at time t (in N, al-

ways Ft 6= 0 for a bang-bang controller)
h Track Limit ±2.4m from track center
r Pole Failure

Angle
±π

2
from vertical (value in rad ! note that

also this parameter changed from last exer-
cise )

τ Time Step discrete integration time step for the simula-
tion (τ = 0.02s)

Tsim Number of
Simulation
Steps

number of simulation steps within which the
pole should be stable (Tsim = 103, corre-
sponds to a simulation time of T · τ = 20s)

Fm Controller
Constant

“normalization” constant of controller (set to
Fm = 100N)

k1, k2, k3, k4 Controller
Constants

internal constants of linear controller (in
[0, 1])
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Figure 1: Layout of the artificial neural network used in this exercise. White
circles: inputs; gray circles: hidden neurons; black circle: output neuron;
dashed lines: shortcut connections.

3 Part III: Using CMA-ES

Last, we want to really optimize the problem of Part I with 10 independently
(at random) chosen starting conditions to find a robust ANN controller.

Recommended Procedure:

a) First of all, rewrite the function of Part I to simulate the pole cart where
you replace the linear controller by the ANN you implemented above.
Since we want to use CMA-ES to optimize the network’s weights, write
your code such that your function is to be minimized. Call the function
myfitness and make sure that it has all required parameters for the
simulation but only takes the weights of the ANN as input. Be careful
to check that all parameters are like in Table ??.

b) This function myfitness can then be directly plugged into CMA-ES.
If not already done so, download the latest code from the web page of
Nikolaus Hansen1. Do not forget to also get the file plotcmaesdat.m

to look at the data. Using fitness as function name produces some
errors because it is already defined in MATLAB.

1version > 3.6 can be found on https://www.lri.fr/~hansen/cmaes_inmatlab.html
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c) To make your life easier, write a script that starts the CMA-ES al-
gorithm with myfitness as the function to be optimized. Decide on
adequate starting conditions for the algorithm (initialization + step
size) and set the following options in your script:
opts = cmaes();

opts.Noise.on = 1;

opts.LBounds = 0;

opts.UBounds = 1;

cmaes outputs a warning if the step size is not set appropriately
if initialization is at boundary, CMA-ES is also not working well

d) Start the algorithm, play with the options and starting conditions
and observe the data (either with the option opts.LogPlot=1; or via
plotcmaesdat.m).

Questions

a) How can we see that the optimization was successful?

b) Are the solutions, we found, robust? What is the difference with this
respect between xmin and xmean?

c) What can we learn from the found weights? Are the solutions found in
different runs of CMA-ES similar? In which sense?

Non-Mandatory Questions

a) In which way does the problem change if we delete connections in the
ANN, e.g., the ones for which CMA-ES predicted a very low weight?

b) What happens if we turn off the noisy option of CMA-ES (opts.Noise.on = 0;)?

c) Are the results of the optimization different when we don’t use random
starting conditions but deterministic ones?

5


