
Advanced Control 

Anne Auger 

INRIA Saclay – Ile-de-France 

Dimo Brockhoff 

INRIA Lille – Nord Europe 

January 17, 2014 

École Centrale Paris, Châtenay-Malabry, France 



2 Advanced Control Lecture: FL and ANNs, ECP, Jan. 17, 2014 © Anne Auger and Dimo Brockhoff, INRIA 2 

Mastertitelformat bearbeiten 

Date Topic 

Fri, 10.1.2014 DB Introduction to Control, Examples of Advanced Control 

Fri, 17.1.2014  DB Introduction to Fuzzy Logic, Introduction to Artificial 

Neural Networks  

Fri, 24.1.2014 DB Bio-inspired Optimization, discrete search spaces 

Fri, 31.1.2014 AA Continuous Optimization I 

Fri, 7.2.2014 AA Continuous Optimization II 

break 

Fri, 28.2.2014 AA The Traveling Salesperson Problem 

Fr, 7.3.2014 DB Controlling a Pole Cart 

Fr, 14.3.2014 written exam (paper and computer) 

Course Overview 

all classes + exam at 8h00-11h15 (incl. a 15min break around 9h30) 

here in CTI-B3 
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Remark to last exercise 

All information also available at  

 
http://researchers.lille.inria.fr/~brockhof/advancedcontrol/ 

 

(exercise sheets, lecture slides, additional information, links, ...) 



4 Advanced Control Lecture: FL and ANNs, ECP, Jan. 17, 2014 © Anne Auger and Dimo Brockhoff, INRIA 4 

Mastertitelformat bearbeiten 

Introduction to Fuzzy Logic 
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 introduced by Lotfi A. Zadeh at the University of 

 California, Berkeley (fuzzy sets in 1965 and 

 fuzzy logic in 1973) 

 a mathematical tool to deal with uncertainties 

 often described as “computing with words”1 

 

 e.g. {low, medium, high} instead of {0,1} 

 or “short” instead of “< 1 meter” 

 

 

 

 

 
1 L. A. Zadeh: Fuzzy logic = computing with words. In IEEE Transactions on Fuzzy Systems, 4(2), p. 103-111. 1996 

Fuzzy Logic 

Wolfgang  

Hunscher 
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 standard sets: either a in A or a not in A 

 fuzzy sets: a in A with probability pa 
 

 

Example: fever 

Idea of Membership Function 

1 

41°C 

high fever 

Menchi 

37.2°C 

high fever 

38°C 

42°C 39.3°C 

38.7°C 

40.1°C 
41.4°C 

40°C 39°C 38°C 37°C 
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 standard sets: either a in A or a not in A 

 fuzzy sets: a in A with probability pa 
 

 

Example: fever 

Idea of Membership Function 

1 

41°C 

high fever 

Menchi 

37.2°C 

high fever 

38°C 

42°C 39.3°C 

38.7°C 

40.1°C 
41.4°C 

40°C 39°C 38°C 37°C 

normal mild fever 
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 200ml glass with 100ml water: full or empty? 

 standard logic: either full or empty 

 fuzzy logic: glass can be full and empty! 

 100ml: glass 50% full and 50% empty 

 40ml: glass 20% full and 80% empty 

 but also more complex membership 

functions possible! 

Idea of Membership Function 

Jaques 

1 

20

ml 

200 

ml 

100 

ml 

140 

ml 

160 

ml 

40 

ml 

60 

ml 

80 

ml 

120 

ml 

180 

ml 

full 

empty 
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 200ml glass with 100ml water: full or empty? 

 standard logic: either full or empty 

 fuzzy logic: glass can be full and empty! 

 100ml: glass 50% full and 50% empty 

 40ml: glass 20% full and 80% empty 

 but also more complex membership 

functions possible! 

Idea of Membership Function 

1 

20

ml 

200 

ml 

100 

ml 

140 

ml 

160 

ml 

40 

ml 

60 

ml 

80 

ml 

120 

ml 

180 

ml 

full empty 

Jaques 
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Fuzzification: 

= transferring a real-valued 

   variable into a fuzzy one 

 

 
 

Several membership functions          known to do that: 

 

 

 

 

 

 

In the end... 

...everything is based on intuition (there are no strict rules) 

Fuzzification 

1 

41°C 

high fever 

40°C 39°C 38°C 37°C 

normal mild fever 

80% mild and 10% high fever 

triangular 
Gaussian 

trapezoidal 

exponential 
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       is called normalized if its height is 1 

                        is called the support of      

                        is called the core of 

 An α-cut of      is the set 

 If      contains only one maximum, we call      unimodal and 

     convex 

 otherwise,       is called multimodal and      nonconvex 

 

Properties of Membership Functions 
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       is called normalized if its height is 1 

                        is called the support of      

                        is called the core of 

 An α-cut of      is the set 

 If      contains only one maximum, we call      unimodal and 

     convex 

 otherwise,       is called multimodal and      nonconvex 

 

Properties of Membership Functions 

1 2 3 4 5 6 7 8 9 

0.2 

1.0 

0.6 

normalized? 
support? 

yes 
core? [3,7]    {8} 

∩ 

0.5-cut? 

unimodal or 

multimodal? 
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Union, intersection, and complement: 

Operations on Fuzzy Sets 

A B A B B 

s
ta

n
d

a
rd

 

lo
g

ic
 

fu
z
z
y
 l
o

g
ic

 

A 

union = max intersection = min complement = 1-x 
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How do we get back “crisp” numbers (fuzzy set  real number)? 

 there are many ways of doing it! 

 

Maximum defuzzification: take       with  

 simple but not accurate if       multimodal 

 

Centroid defuzzification: 

 very accurate 

 might be complicated to compute 

 often used 

Defuzzifying 

1 

20

ml 

200 

ml 

100 

ml 

140 

ml 

160 

ml 

40 

ml 

60 

ml 

80 

ml 

120 

ml 

180 

ml 

full empty half empty 

almost empty almost full 
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Classical Logic:  

 IF p THEN q 

 equivalent to 

 

 

Fuzzy Logic: 

 not so easy with fuzzy sets 

 interpretation as            results in some undesired effects 

 hence, rather “inference” than implication (for math. reasons) 

 in general, implication is a function  

 > 40 different implication rules proposed 

 here, we consider only three (the easy and most used ones) 

Fuzzy Logic: Inferring Statements 

q = true q = false 

p = true true false 

p = false true true 
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The sharp implication: 

   
 

 intuition:  if    and    are crisp sets, then             iff    

 

 

 
Mamdani’s inference1: 

membership function of implication: 

 
 

only ¼ of corner values 

equal to 2-valued logic! 

     inference, no implication 
 

1 E. H. Mamdani. “Application of fuzzy logic to approximate reasoning using linguistic synthesis”. IEEE 

Transactions on Computers, C-26(12):1182–1191, December 1977. 

Fuzzy Logic: Inferring Statements 

q=0 q=0.5 q=1 

p=0 1 1 1 

p=0.5 0 1 1 

p=1 0 0 1 

q=0 q=0.5 q=1 

p=0 0 0 0 

p=0.5 0 0.5 0.5 

p=1 0 0.5 1 
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Larsen Product implication1: 

membership function of implication: 

 
 

again: only ¼ of corner 

values equal 2-valued logic! 

     inference, no implication 
 

 

 

 

 

 

 

 

 

 

 

 

 

1 P. M. Larsen, "Industrial Applications of Fuzzy Logic Control”, International Journal of Man-Machine 

Studies, Vol. 12, No. 1, 1980, pp. 3-10. 

Fuzzy Logic: Inferring Statements 

q=0 q=0.5 q=1 

p=0 0 0 0 

p=0.5 0 0.25 0.5 

p=1 0 0.5 1 
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IF service is excellent AND food is delicious THEN tip is generous 

 

What happens for different service and food qualities? 

 fuzzify inputs 

 compute value of left-hand side 

 then apply above rule (e.g. wrt. Mamdani’s rule) 

 use defuzzification rule (e.g. centroid) 

Example 

1 

100% 

good excellent 

80% 

1 

100% 

delicious outstanding 

80% 

food quality service quality 
1 

15% 

generous 

20% 

tip 
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IF service is excellent AND food is delicious THEN tip is generous 

 

What happens for different service and food qualities? 

 fuzzify: 

 60% excellent AND 20% delicious 

Example 

1 

100% 

good excellent 

80% 

1 

100% 

delicious outstanding 

80% 

food quality service quality 
1 

15% 

generous 

20% 

tip 

60% excellent 20% delicious 
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IF service is excellent AND food is delicious THEN tip is generous 

 

What happens for different service and food qualities? 

 fuzzify: 

 60% excellent AND 20% delicious 

 50% excellent AND 90% delicious 

 compute value of left-hand: here “AND = min.” 

 20% 

 50% 

Example 

1 

100% 

good excellent 

80% 

1 

100% 

delicious outstanding 

80% 

food quality service quality 
1 

15% 

generous 

20% 

tip 

50% excellent 90% delicious 
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IF service is excellent AND food is delicious THEN tip is generous 

 

What happens for different service and food qualities? 

 apply Mamdani’s rule:  

 

Example 

1 

100% 

good excellent 

80% 

1 

100% 

delicious outstanding 

80% 

food quality service quality 
1 

15% 

generous 

20% 

tip 

1 

15% 

generous 

20% 

tip 
1 

15% 

generous 

20% 

tip 

0.2 
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IF service is excellent AND food is delicious THEN tip is generous 

 

What happens for different service and food qualities? 

 use defuzzification rule (e.g. centroid) 

 here: same result, but also only 1 rule applied 

 

Example 

1 

100% 

good excellent 

80% 

1 

100% 

delicious outstanding 

80% 

food quality service quality 
1 

15% 

generous 

20% 

tip 

1 

15% 

generous 

20% 

1 

15% 

generous 

20% 

0.2 

20% 20% 
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IF service is excellent AND food is delicious THEN tip is generous 

 

Multiple rules 

 a) apply all inference rules 

 b) aggregate resulting membership functions (e.g. with max.) 

 

Example 

1 

100% 

good excellent 

80% 

1 

100% 

delicious outstanding 

80% 

food quality service quality 
1 

15% 

generous 

20% 

tip 

1 

15% 20% 

1 

15% 

normal 

20% 

0.4 

1 

15% 

generous 

20% 

0.6 

10% 10% 

aggregate  

IF service is normal AND food is normal THEN tip is normal 
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IF service is excellent AND food is delicious THEN tip is generous 

 

Multiple rules 

 a) apply all inference rules 

 b) aggregate resulting membership functions (e.g. with max.) 

 

Example 

1 

100% 

good excellent 

80% 

1 

100% 

delicious outstanding 

80% 

food quality service quality 
1 

15% 

generous 

20% 

tip 

1 

15% 20% 

1 

15% 

normal 

20% 

0.4 

18% 

1 

15% 

generous 

20% 

0.6 

10% 10% 

aggregate  

IF service is normal AND food is normal THEN tip is normal 
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“Classical” control: 

 mathematical (“crisp”) formulations 

 based on mathematical models, especially ODEs 

 e.g. "210°C < TEMP < 220°C" 

 

Fuzzy control: 

 design formalized by words 

 based on experience of the designer 

 e.g. "IF (process is too cool) AND (process is getting colder) 

THEN (add heat to the process)" or "IF (process is too hot) 

AND (process is heating rapidly) THEN (cool the process 

quickly)" 

Fuzzy Control 
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Back to the water tap problem from last week: 

 imagine measurements of temperature and 

 water flow (e.g. per second) and the 

 controllable inputs “hot water” and “cold water” 

 further assume the inputs are fuzzified as 

 {too cold, fine, too hot} (for the temperature) and 

 {not enough, fine, too much} (for the water flow) 
 00 

 

Then, a 3x3 rule matrix can show the responses: 

 

 

 

 

 

  

A Simple Rule Matrix 

Frank C. 

Müller 

 

 

too cold fine too hot 

not enough 

fine 

too much 
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Back to the water tap problem from last week: 

 imagine measurements of temperature and 

 water flow (e.g. per second) and the 

 controllable inputs “hot water” and “cold water” 

 further assume the inputs are fuzzified as 

 {too cold, fine, too hot} (for the temperature) and 

 {not enough, fine, too much} (for the water flow) 
 00 

 

Then, a 3x3 rule matrix can show the responses: 

 

 

 

 

 

 e.g. IF temperature is fine AND water flow is not enough THEN 

 increase both cold and hot water 

 

A Simple Rule Matrix 

Frank C. 

Müller 

 

 

too cold fine too hot 

not enough increase hot increase hot & cold increase cold 

fine decrease cold & 

increase hot 

do nothing increase cold & 

decrease hot 

too much decrease cold decrease hot & cold decrease hot 
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Example: electric heater 

 given: goal temperature Topt 

 measured: temperature T and 

 temperature change dT/dt 

 controlled inputs: heat (heating on) 

 and cool (fan on) 

 fuzzify: T-Topt and d(T-Topt)/dt in {negative, zero, positive} 

 

 

Another Rule Matrix 

temperature: T-Topt 

negative zero positive 

te
m

p
e

ra
tu

re
 

c
h

a
n

g
e

: 

d
 (

T
-T

o
p

t)
/d

t negative 

zero 

positive 
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Example: electric heater 

 given: goal temperature Topt 

 measured: temperature T and 

 temperature change dT/dt 

 controlled inputs: heat (heating on) 

 and cool (fan on) 

 fuzzify: T-Topt and d(T-Topt)/dt in {negative, zero, positive} 

 

 

Another Rule Matrix 

temperature: T-Topt 

negative zero positive 

te
m

p
e

ra
tu

re
 

c
h

a
n

g
e

: 

d
 (

T
-T

o
p

t)
/d

t negative heat heat cool 

zero heat do nothing cool 

positive heat cool cool 
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 nothing fancy, but assisting to not forget a rule 

 not much helpful if >2 input variables 

 not always necessary to define output for all input combinations  

 not usable if rules are not of the form “IF a AND b THEN c” 

 odd number of rows and columns often helpful (to have a “zero” 

state with no change) 

 

 

Again: What if a fuzzified “crisp” input value fire >1 rule? 

 then: aggregation (union, max) of output membership functions 

Remarks on Rule Matrices 
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1) Define control objectives and criteria 

 What am I trying to control? What do I have to do to control 

the system? What kind of response do I need? What are the 

possible (probable) system failure modes? 

2) Determine input/output relationships and choose the variables. 

3) Break the control problem down into a series of IF X AND Y 

THEN Z rules (or similar) that define the desired system output 

response for given system input conditions. 

! If possible, use at least one variable and its time derivative.  

4) Create Fuzzy Logic membership functions and decide on 

inference rules that define the meaning (values) of the 

Input/Output terms used in your rules. 

5) Implement the system in software (or hardware). 

6) Test, evaluate, and tune the rules and membership functions, 

until satisfactory results are obtained. 

according to the Fuzzy Logic Tutorial by Steven D. Kaehler 

http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html 

How to Design a Fuzzy Controller 
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Exercise: 

A Fuzzy Controller for the 

Pole Balancing Problem 
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Artificial Neural Networks 
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The Biological Neuron 

W.-C. A. Lee, H. Huang, G. Feng, J. R. Sanes, E. N. Brown, P. T. So, E. Nedivi 

1836: Discovery of the 

neural cell of the brain, 

the neuron 
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The Biological Neuron 

dendrite 

soma 

nucleus 

node of Ranvier 

myelin sheath 

axon terminal 

Schwann cell 

inputs output 

Quasar  

Jarosz  



36 Advanced Control Lecture: FL and ANNs, ECP, Jan. 17, 2014 © Anne Auger and Dimo Brockhoff, INRIA 36 

Mastertitelformat bearbeiten An Artificial Neuron 

weights 

inputs 

transfer function 

output 

1943: Warren McCulloch  

and Walter Pitts propose 

the Threshold Logic Unit 



37 Advanced Control Lecture: FL and ANNs, ECP, Jan. 17, 2014 © Anne Auger and Dimo Brockhoff, INRIA 37 

Mastertitelformat bearbeiten 

   linear 

 

 

 

   step 

 

 

 

   sigmoidal 

 

        advantage: differentiable 

Types of Transfer Functions 
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Artificial Neural Networks (ANNs) = a network of artificial neurons 

Combining Artificial Neurons 

layer of 

neurons 
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Artificial Neural Networks (ANNs) = a network of artificial neurons 

Combining Artificial Neurons 

input 

layer 
hidden 

layer(s) 

output 

layer 
Feed-forward network: 

no “backwards” flow of 

information 

Linear transfer functions: 

multi-layer networks can be 

simulated by a single-layer ANN 
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Supervised learning scenario: 

 neural network with     inputs and      outputs 

 given a set of training data 

 what are “optimal” weights such that 

                                  

 

 

 is minimal? 

 

 

Optimizing Weights in Order to Optimize Output 

n m
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training data set vs. testing data set 

 

training error vs. validation error 

 

 

 

 

 

 

 

 

Generalization vs. Overfitting 

 generalization behaviour desired 

 overfitting especially when not much training data available 

 

Testing and Training in Supervised Learning 

training error 

validation error 
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Optimization: 

 

 

Gradient Descent Algorithm 

 initialize  

 At each iteration   : 

 compute gradient  

   

 

 

 

 

 

Gradient Descent to Optimize 

learning rate 



43 Advanced Control Lecture: FL and ANNs, ECP, Jan. 17, 2014 © Anne Auger and Dimo Brockhoff, INRIA 43 

Mastertitelformat bearbeiten 

Optimization: 

 

 

Gradient Descent Algorithm 

 initialize  

 At each iteration   : 

 compute gradient  

   

 

 

 

! can be slow close to optimum 

   other algorithms might be favorable 

 

 

Gradient Descent to Optimize 

learning rate 
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Optimization: 

 

 

Gradient Descent Algorithm 

 initialize  

 At each iteration   : 

 compute gradient  

   

 

 

 

! can be slow close to optimum 

   other algorithms might be favorable 

   (keyword: natural gradient) 

 

 

Gradient Descent to Optimize 

learning rate 

P.A. Simionescu 

Example: 

Rosenbrock function 
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How to choose the weights in a multi-layered ANN? 

 Why not optimize weights directly? 

 

 

 

 

 
  

 since complicated*, better: 

 gradient descent after each training sample 

= stochastic gradient descent (SGD, online gradient descent) 

 

 
 

 descent steps can be performed multiple times over the 

training set (e.g. with random shuffling) 
* complicated: difficult analytically, numerically expensive 

 

Optimizing Weights in a Layered Network 
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The Backpropagation Algorithm 

 introduced around 1970, it gave rise to a renaissance of ANNs 

 “backwards propagation of errors” 

 mainly useful for feed-forward networks 

 all transfer functions must be differentiable 

 

Main Idea: 

 for each training sample: 

 compute output of ANN, given the current weights 

 compute gradient wrt. weight on each node from the output 

layer backwards to the input layer 

 update the weights according to gradient descent 

  

 an efficient stochastic gradient descent by updating all weights at 

once in a smart way 

 

Optimizing Weights in a Layered Network 
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Notes: 

 stochastic gradient descent converges to local minimum 

 random initial values, restarts 

 more about optimization algorithms within the next weeks 

 

 

Optimizing Weights in a Layered Network 
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Many application areas: e.g. 

 identification problems 

 face recognition 

 medical diagnoses 

 character recognition in mobile devices 

 predictions/forecasting 

 stock market 

 electronic nose 

 control 

 

Applications of Neural Networks 

At the end of the course: 

     exercise using ANNs for 

     the pole balancing problem 

Ralf Pfeifer 

1993 
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I hope it became clear... 

 

 ...how to build a fuzzy controller (at least in principle) 

 ...what artificial neural networks are 

  ...and that designing a good controller is not always easy 

 

 

In the next weeks... 

 ...we will see how to actually optimize with randomized search 

heuristics 

Conclusions 


