# **Advanced Control**

#### January 24, 2014 École Centrale Paris, Châtenay-Malabry, France

Anne Auger INRIA Saclay – Ile-de-France

Íngi

Dimo Brockhoff INRIA Lille – Nord Europe

# **Course Overview**

| Date           |    | Торіс                                                                                            |
|----------------|----|--------------------------------------------------------------------------------------------------|
| Fri, 10.1.2014 | DB | Introduction to Control, Examples of Advanced Control                                            |
| Fri, 17.1.2014 | DB | Introduction to Fuzzy Logic                                                                      |
| Fri, 24.1.2014 | DB | Introduction to Artificial Neural Networks, Bio-inspired<br>Optimization, discrete search spaces |
| Fri, 31.1.2014 | AA | Continuous Optimization I                                                                        |
| Fri, 7.2.2014  | AA | Continuous Optimization II                                                                       |
| break          |    |                                                                                                  |
| Fri, 28.2.2014 | AA | The Traveling Salesperson Problem                                                                |
| Fr, 7.3.2014   | DB | Controlling a Pole Cart                                                                          |
| Fr, 14.3.2014  |    | written exam (paper and computer)                                                                |

#### all classes + exam at 8h00-11h15 (incl. a 15min break around 9h30) here in CTI-B3

# **Remark to last lecture**

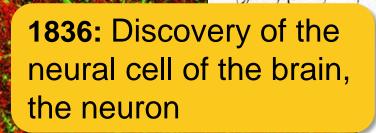
All information also available at

http://researchers.lille.inria.fr/~brockhof/advancedcontrol/

(exercise sheets, lecture slides, additional information, links, ...)

# **Artificial Neural Networks**

# **The Biological Neuron**





5

W.-C. A. Lee, H. Huang, G. Feng, J. R. Sanes, E. N. Brown, P. T. So, E. Nedivi

© Anne Auger and Dimo Brockhoff, INRIA

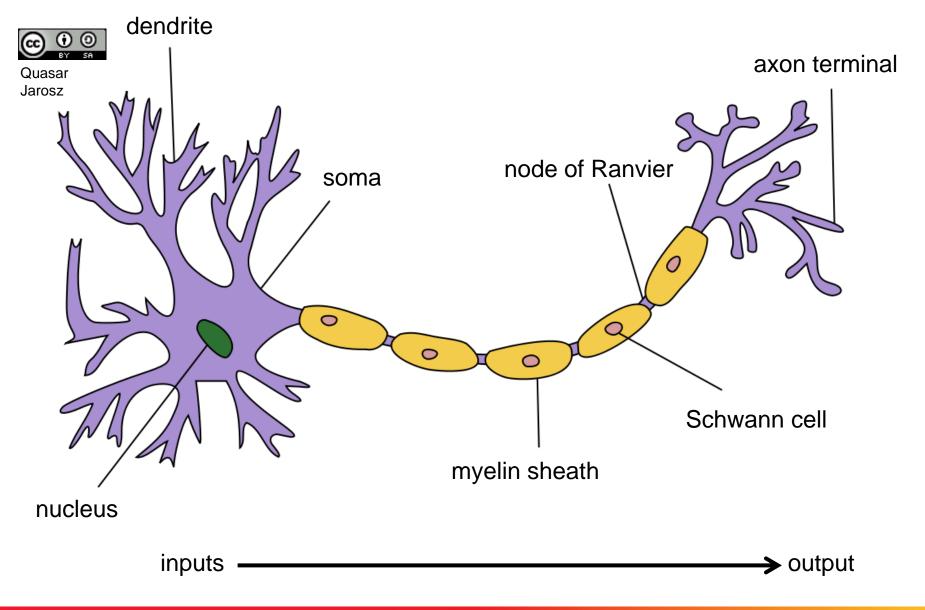
Ο

Advanced Control Lecture: Optimization, ECP, Jan. 24, 2014

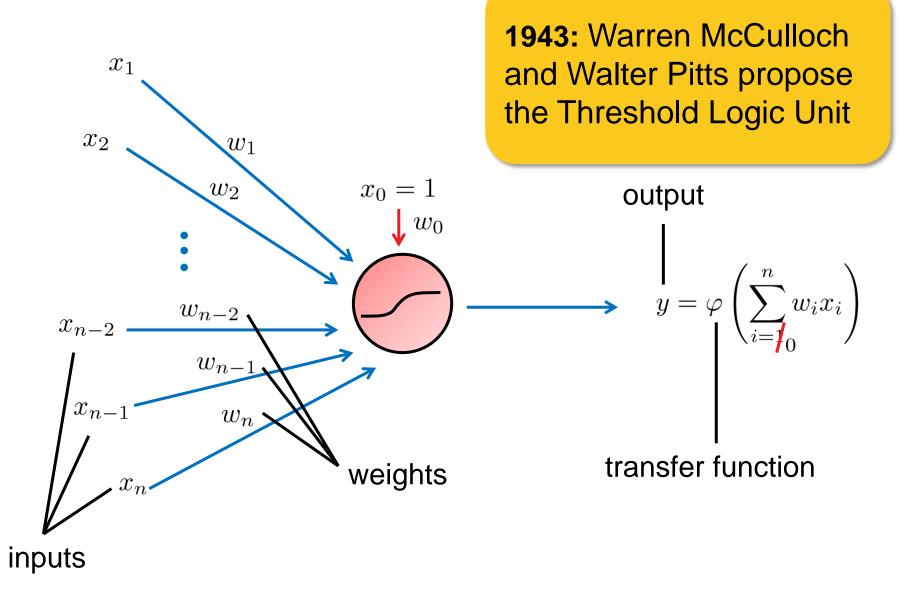
122206

a

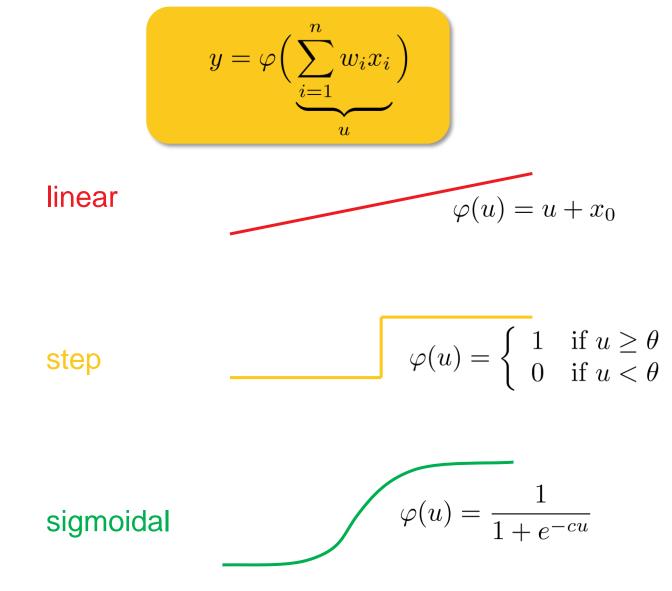
# **The Biological Neuron**



## **An Artificial Neuron**



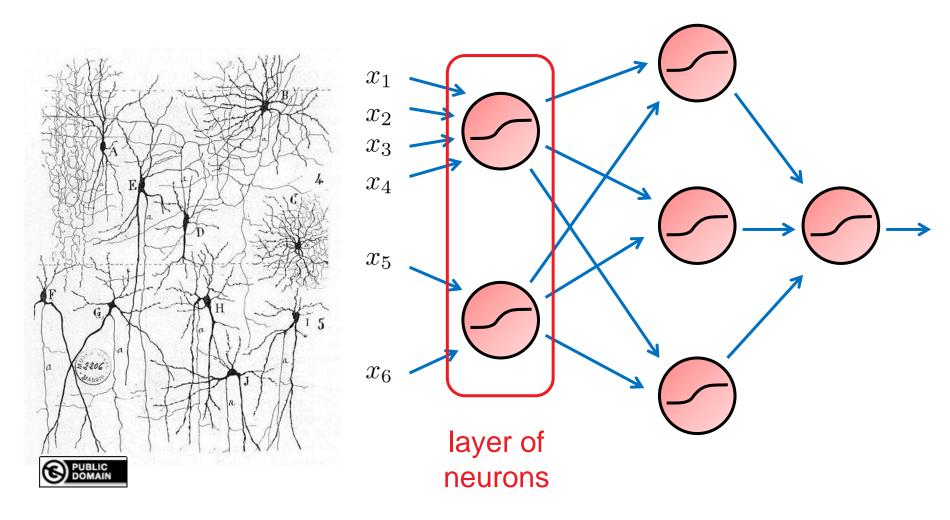
## **Types of Transfer Functions**



advantage: differentiable

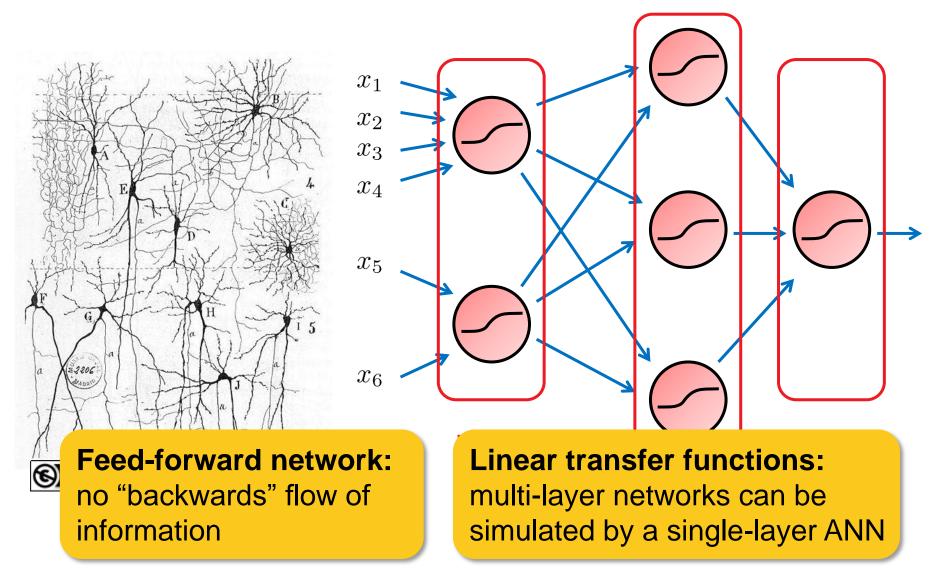
# **Combining Artificial Neurons**

#### Artificial Neural Networks (ANNs) = a network of artificial neurons



# **Combining Artificial Neurons**

Artificial Neural Networks (ANNs) = a network of artificial neurons



© Anne Auger and Dimo Brockhoff, INRIA

Advanced Control Lecture: Optimization, ECP, Jan. 24, 2014

# **Optimizing Weights in Order to Optimize Output**

#### **Supervised learning scenario:**

- neural network with n inputs and m outputs
- given a set of training data  $(\vec{x}_1, \vec{d}_1), \dots, (\vec{x}_p, \vec{d}_p)$
- what are "optimal" weights such that

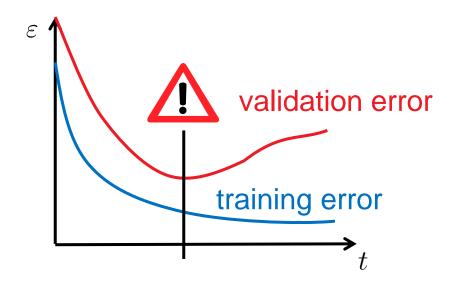
$$E(\vec{w}) = \sum_{j=1}^{p} \sum_{k=1}^{m} ||y_{j,k} - d_{j,k}||^2 = \sum_{j=1}^{p} \sum_{k=1}^{m} ||\varphi_k(\vec{x}_j, \vec{w}) - d_{j,k}||^2$$

is minimal?

# **Testing and Training in Supervised Learning**

training data set vs. testing data set

training error vs. validation error



#### **Generalization vs. Overfitting**

- generalization behaviour desired
- overfitting especially when not much training data available

# **Gradient Descent to Optimize**

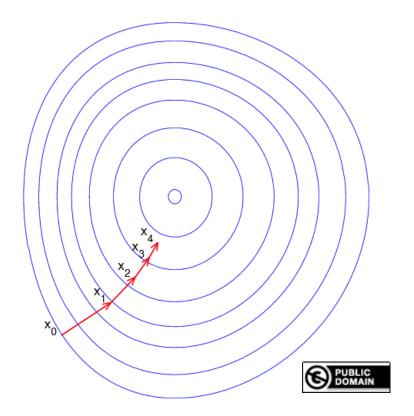
#### **Optimization:**

$$\min_{x \in \mathbb{R}^n} f(x)$$

#### **Gradient Descent Algorithm**

initialize  $x_0 \in \mathbb{R}^n$ At each iteration t :

- compute gradient  $\nabla f$
- $x_{t+1} = x_t \gamma \nabla f(x_t)$ • **Iearning rate**



# **Gradient Descent to Optimize**

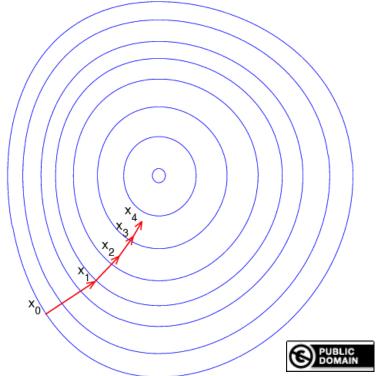
#### **Optimization:**

$$\min_{x \in \mathbb{R}^n} f(x)$$

#### **Gradient Descent Algorithm**

initialize  $x_0 \in \mathbb{R}^n$ At each iteration t :

- compute gradient  $\nabla f$
- $x_{t+1} = x_t \gamma \nabla f(x_t)$ learning rate



# ! can be slow close to optimum other algorithms might be favorable

# **Gradient Descent to Optimize**

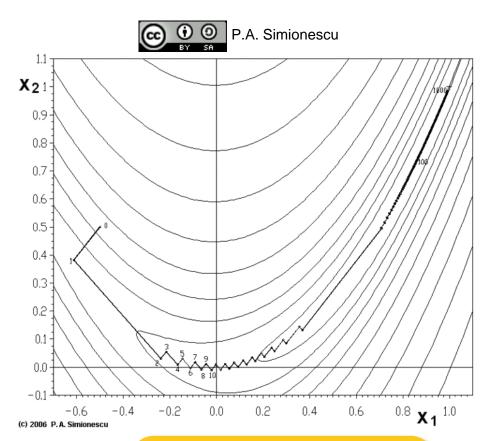
#### **Optimization:**



#### **Gradient Descent Algorithm**

initialize  $x_0 \in \mathbb{R}^n$ At each iteration t :

- compute gradient  $\nabla f$
- $x_{t+1} = x_t \gamma \nabla f(x_t)$ | learning rate



# ! can be slow close to optimum other algorithms might be favorable (keyword: natural gradient)

#### **Example:** Rosenbrock function

# **Optimizing Weights in a Layered Network**

#### How to choose the weights in a multi-layered ANN?

Why not optimize weights directly?

$$E(\vec{w}) = \sum_{j=1}^{p} \sum_{k=1}^{m} ||y_{j,k} - d_{j,k}||^2 = \sum_{j=1}^{p} \sum_{k=1}^{m} ||\varphi(\vec{x}_j, \vec{w}) - d_{j,k}||^2$$
$$\vec{w} = \vec{w} - \nabla \left( \sum_{j=1}^{p} \sum_{k=1}^{m} ||\varphi(\vec{x}_p, \vec{w}) - d_{j,k}||^2 \right)$$

since complicated\*, better:

gradient descent after each training sample

= stochastic gradient descent (SGD, online gradient descent)

$$w = w - \nabla \left( \sum_{k=1}^{m} ||\varphi(\vec{x}_j, \vec{w}) - d_{j,k}||^2 \right)$$

 descent steps can be performed multiple times over the training set (e.g. with random shuffling)

> \* complicated: difficult analytically, numerically expensive Advanced Control Lecture: Optimization, ECP, Jan. 24, 2014

# **Optimizing Weights in a Layered Network**

#### The Backpropagation Algorithm

- introduced around 1970, it gave rise to a renaissance of ANNs
- "backwards propagation of errors"
- mainly useful for feed-forward networks
- all transfer functions must be differentiable

#### Main Idea:

for each training sample:

- compute output of ANN, given the current weights
- compute gradient wrt. weight on each node from the output layer backwards to the input layer
- update the weights according to gradient descent
- → an efficient stochastic gradient descent by updating all weights at once in a smart way

# **Optimizing Weights in a Layered Network**

#### Notes:

- stochastic gradient descent converges to local minimum
- random initial values, restarts
- more about optimization algorithms within the next weeks

# **Applications of Neural Networks**

#### Many application areas: e.g.

- identification problems
  - face recognition
  - medical diagnoses
  - character recognition in mobile devices
- predictions/forecasting
  - stock market
  - electronic nose
- control



#### At the end of the course: exercise using ANNs for the pole balancing problem

# Introduction to Bio-inspired Optimization and Genetic Algorithms in particular

# **General Context Optimization**

**Given:** 

set of possible solutions

Search space

quality criterion

**Objective / Fitness function** 

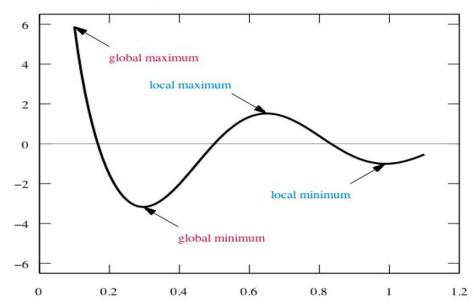
#### **Objective:**

Find the best possible solution for the given criterion

#### **Formally:**

Maximize or minimize

$$\mathcal{F}: \Omega \mapsto \mathbb{R},$$
$$x \mapsto \mathcal{F}(x)$$





#### Why are we interested in a black box scenario?

objective function F often noisy, non-differentiable, or sometimes not even understood or available

# **Objective:** find x with small F(x) with as few function evaluations as possible

assumption: internal calculations of algo irrelevant

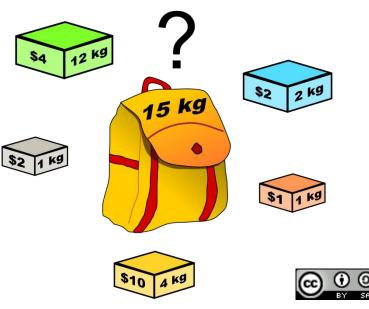
# **Example 1: Combinatorial Optimization**

#### **Knapsack Problem**

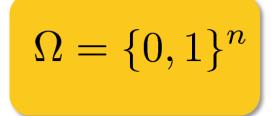
- Given a set of objects with a given weight and value (profit)
- Find a subset of objects whose overall mass is below a certain limit and maximizing the total value of the objects

[Problem of ressource allocation with financial constraints]

max. 
$$\sum_{j=1}^{n} p_j x_j \text{ with } x_j \in \{0, 1\}$$
  
s.t. 
$$\sum_{j=1}^{n} w_j x_j \le W$$



Dake



# **Example 2: Combinatorial Optimization**

#### **Travelling Salesperson Problem (TSP)**

- Given a set of cities and their distances
- Find the shortest path going through all cities

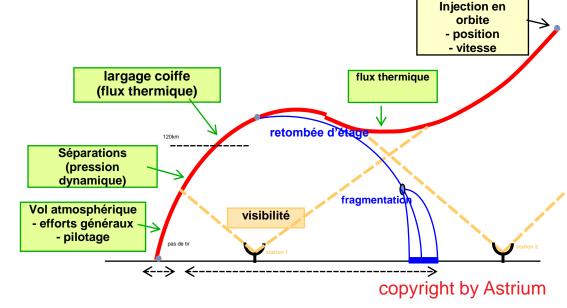


# $\Omega = S_n$ (set of all permutations)

# **Example 3: Continuous Optimization**

# **Design of a Launcher**





- Scenario: multi-stage launcher brings a satellite into orbit
- Minimize the overall cost of a launch
- Parameters: propellant mass of each stage / diameter of each stage / flux of each engine / parameters of the command law

23 continuous parameters to optimize

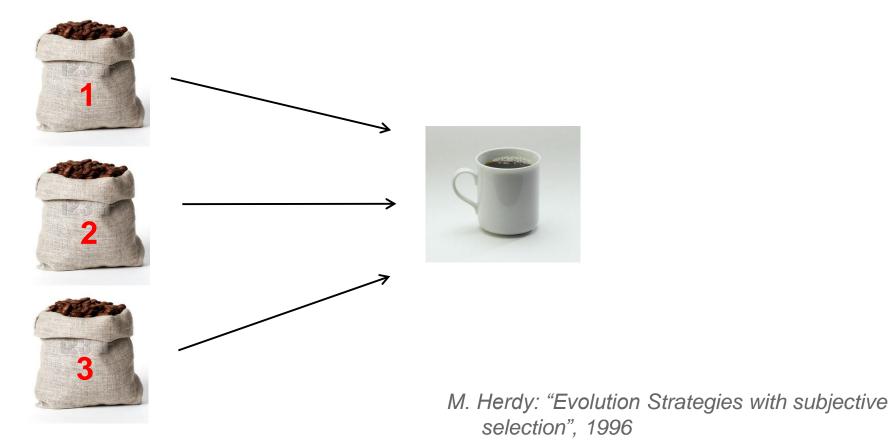
+ constraints

 $\Omega = \mathbb{R}^{23}$ 

# **Example 4: Interactive Optimization**

#### **Coffee Tasting Problem**

- Find a mixture of coffee in order to keep the coffee taste from one year to another
- Objective function = opinion of one expert



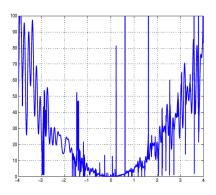
# What makes an optimization problem difficult?

#### Why using (bio-inspired) search heuristics?

Search space too large

exhaustive search impossible

- Non conventional objective function or search space mixed space, function that cannot be computed
- Complex objective function



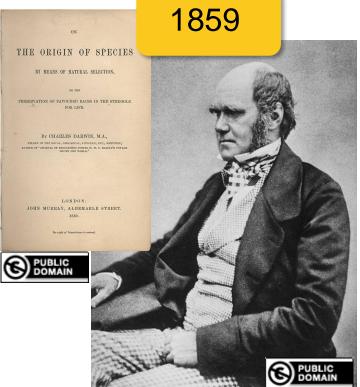
non-smooth, non differentiable, Noisy, ...

# **Basic Algorithms**

# **Bio-inspired Stochastic Optimization Algorithms**

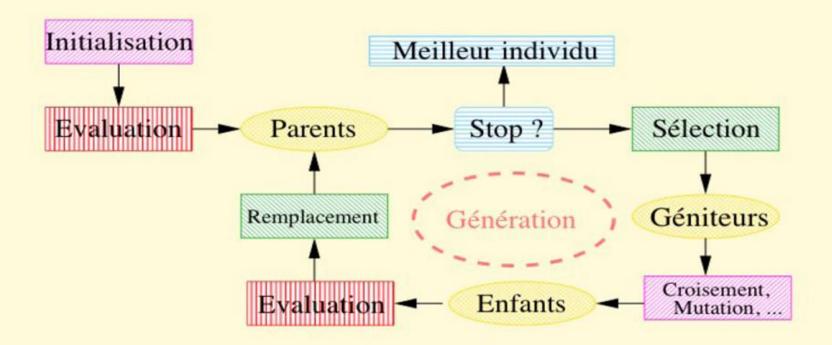
#### One class of bio-inspired stochastic optimization algorithms: Evolutionary Algorithms (EAs)

- Class of optimization algorithms inspired by the idea of biological evolution
- selection, mutation, recombination



| <b>Classical Optimization</b>                                                                  | <b>Evolutionary Computation</b> |
|------------------------------------------------------------------------------------------------|---------------------------------|
| candidate solution<br>vector of decision variables /<br>design variables / object<br>variables | individual, offspring, parent   |
| set of candidate solutions                                                                     | population                      |
| objective function<br>loss function<br>cost function<br>error function                         | fitness function                |
| iteration                                                                                      | generation                      |

## **Generic Framework of an EA**





Opérateurs stochastiques: Dépendent de la représentation "Darwinisme" (stochastique ou déterministe) Coût calcul

Critère d'arrêt, statistiques, ...

#### **Important:** representation (search space)

# **The Historic Roots of EAs**

#### **Genetic Algorithms (GA)**

J. Holland 1975 and D. Goldberg (USA)  $\Omega = \{0,1\}^n$ 

### **Evolution Strategies (ES)**

I. Rechenberg and H.P. Schwefel, 1965 (Berlin)  $\Omega = \mathbb{R}^n$ 

#### **Evolutionary Programming (EP)**

L.J. Fogel 1966 (USA)

## **Genetic Programming (GP)**

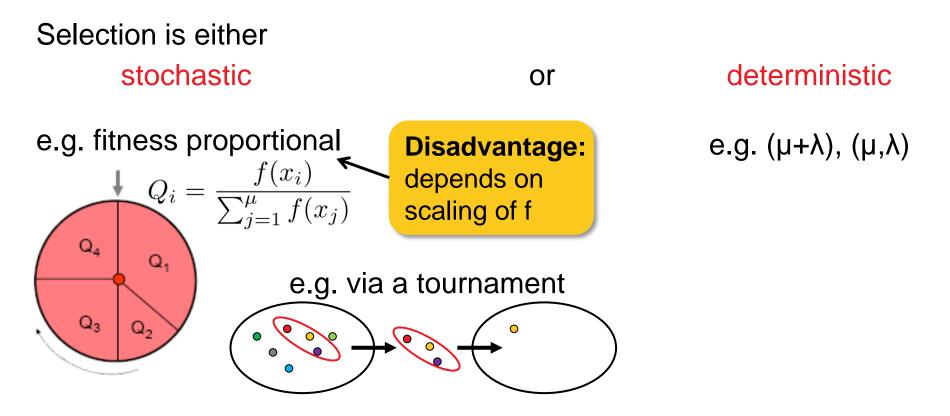
J. Koza 1990 (USA) $\Omega = \text{space of all programs}$ 

nowadays one umbrella term: evolutionary algorithms

# **Examples for some EA parts**

# **Selection**

Selection is the major determinant for specifying the trade-off between exploitation and exploration



Mating selection (selection for variation): usually stochastic Environmental selection (selection for survival): often deterministic

## **Variation Operators**

Variation aims at generating new individuals on the basis of those individuals selected for mating

Variation = Mutation and Recombination/Crossover

mutation: mut:  $\Omega \to \Omega$ recombination: recomb:  $\Omega^r \to \Omega^s$  where  $r \ge 2$  and  $s \ge 1$ 

- choice always depends on the problem and the chosen representation
- however, there are some operators that are applicable to a wide range of problems and tailored to standard representations such as vectors, permutations, trees, etc.

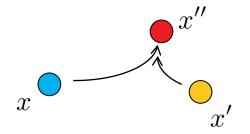
## **Variation Operators: Guidelines**

Two desirable properties for mutation operators:

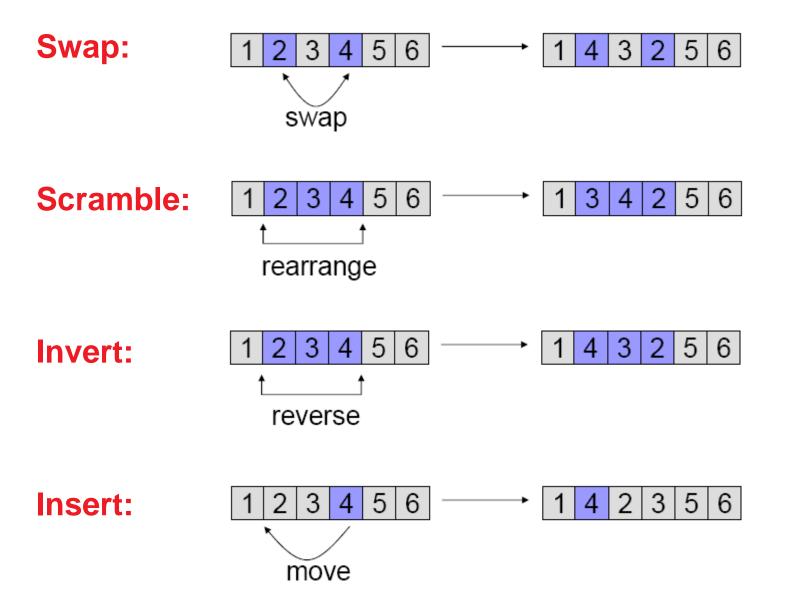
- every solution can be generated from every other with a probability greater than 0 ("exhaustiveness")
- d(x, x') < d(x, x'') => Prob(mut(x) = x') > Prob(mut(x) = x'')("locality")

#### Desirable property of recombination operators ("in-between-ness"):

$$x'' = \operatorname{recomb}(x, x') \Rightarrow d(x'', x) \le d(x, x') \land d(x'', x') \le d(x, x')$$

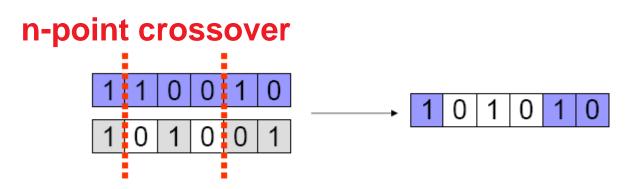


# **Examples of Mutation Operators on Permutations**



# Examples of Recombination Operators: {0,1}<sup>n</sup>

# 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 1



#### uniform crossover



choose each bit independently from one parent or another

- binary search space, maximization
- uniform initialization
- generational cycle: of the population
  - evaluation of solutions
  - mating selection (e.g. roulette wheel)
  - crossover (e.g. 1-point)
  - environmental selection (e.g. plus-selection)

# **First Conclusions of Introductory Part**

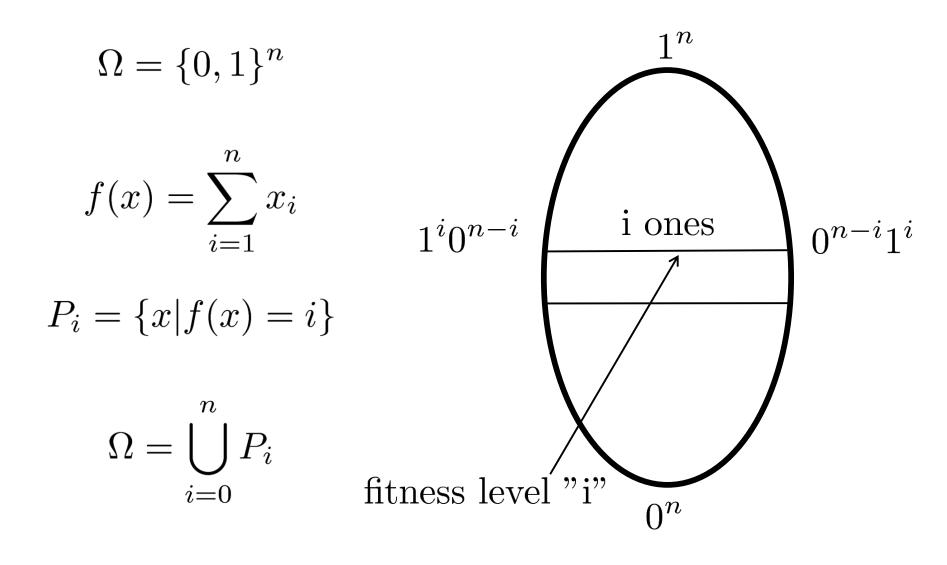
- EAs are generic algorithms (randomized search heuristics, meta-heuristics, ...) for black box optimization
   no or almost no assumptions on the objective function
- They are typically less efficient than problem-specific (exact) algorithms (in terms of #funevals)
   *not the case in the continuous case (we will see later)*
- Allow for an easy and rapid implementation and therefore to find good solutions fast

easy to incorporate (and recommended!) to incorporate problem-specific knowledge to improve the algorithm

# Exercise: Pure Random Search and the (1+1)EA

http://researchers.lille.inria.fr/~brockhof/advancedcontrol/

#### **Proof Technique Fitness-based Partitions**



**Upper Runtime Bound for (1+1)EA on ONEMAX** 

$$T = \inf\{t \in \mathbb{N}, X_t = (1, \dots, 1)\}$$

 $X_t$  estimate of solution at iteration t $T_i$  time to leave fitness level "i"

$$E(T) \le \sum_{i=0}^{n-1} E(T_i)$$

Prob(leave $P_i$ )  $\geq \frac{1}{n}(1-\frac{1}{n})^{n-1} \times (n-i)$  (proba to flip one and only one of the (n-i) remaining 0)

$$(1-\frac{1}{n})^{n-1} \ge \frac{1}{e}$$

$$\operatorname{Prob}(\operatorname{leave} P_i) \ge \frac{n-i}{en}$$

# **Upper Runtime Bound for (1+1)EA on ONEMAX**

$$E(T_i) \le \frac{en}{n-i}$$

$$E(T) \le \sum_{i=0}^{n-1} \frac{en}{n-i} \le e \ n(\log n + 1)$$