Home Exercise 7: Turing Machines

Algorithms and Complexity lecture at CentraleSupelec/ESSEC
Dimo Brockhoff
firstname.lastname@inria.fr

due: Friday, November 15, 2019 at 11:59:59pm Paris time

Abstract

Please send your solutions by email to Dimo Brockhoff (preferably in PDF format) with a clear indication of your full name until the submission deadline on November 15, 2019 (a Friday). Groups of up to 4 students are explicitly allowed and even encouraged. In the case of group submissions, please make sure that you submit maximally four times with the same partner!

1 What is it doing? (10 points)

Consider the following Turing machine \mathcal{M}. The states are $Q=\left\{q_{0}, \ldots, q_{4}\right\}$ without an explicit accepting state $(F=\emptyset)$ and where q_{0} is the initial state. The input alphabet is $\Sigma=\{0,1\}$ and the band alphabet is $\Gamma=\{0,1, B\}$ with B the blank character. The transition function δ is given by the following table.

	0	1	B
q_{0}	$\left(q_{0}, 0, R\right)$	$\left(q_{0}, 1, R\right)$	$\left(q_{1}, B, L\right)$
q_{1}	$\left(q_{2}, B, R\right)$	$\left(q_{3}, B, R\right)$	\bullet
q_{2}	$\left(q_{4}, 0, L\right)$	$\left(q_{4}, 0, L\right)$	$\left(q_{4}, 0, L\right)$
q_{3}	$\left(q_{4}, 1, L\right)$	$\left(q_{4}, 1, L\right)$	$\left(q_{4}, 1, L\right)$
q_{4}	$\left(q_{4}, 1, R\right)$	$\left(q_{4}, 0, R\right)$	$\left(q_{1}, B, L\right)$

The stop sign (©) indicates that the Turing machine stops.
Assume that the band of \mathcal{M} initially contains a bitstring $w \in \Sigma^{n}$ of length n starting at position 1 , the initial position of the reading/writing head. How did the content of the band change after \mathcal{M} stopped?

2 Writing Ones Game (10 points)

Let us consider Turing machines that always start on an empty band and that are allowed to only write 1 s, i.e., the band alphabet is $\Gamma=\{1, B\}$. We play the following "game": design a Turing machine with k states q_{0}, \ldots, q_{k-1} that, when run on the empty band, halts after a finite number of steps and, during its operation, writes the largest possible block of contiguous 1s to the band.

Give the transition function δ of a Turing machine with $k=2$ states for the above "writing ones game" with the maximal number of 1s written (hint: the best possible Turing machine with $k=2$ states writes a block of four 1 s . To this end, fill out the following transition table:

	1	B
q_{0}		
q_{1}		

