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Algorithms widespread in almost every aspect of the “real-world”

 (automatic) problem solving

 sorting

 accessing data in data structures

 …

Why Algorithms & Complexity?

[…] an algorithm is a set of instructions, typically to 

solve a class of problems or perform a computation.

[from wikipedia]
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Aim: Sort a set of cards/words/data

Re-formulation: minimize the “unsortedness”

E F C A D B

B A C F D E

A B C D E F

Example: Sorting

sortedness increases
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Classical Questions:

 What is the underlying algorithm?

(How do I solve a problem?)

 How long does it run to solve the problem?

(How long does it take? Which guarantees can I give? 

What is its convergence rate?)

 Is there a better algorithm or did I find the optimal one?

Example: Sorting
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Caution:

 This is not an “algorithms for data scientists” lecture

 we do not cover algorithms for regression, regularization, 

dimensionality reduction, clustering, deep learning, …

 …but cover much more basic things:

 data structures

 data sorting

 fundamental algorithm design ideas

 how to analyze an algorithm

 how to prove lower runtime bounds for hard problems

 …

Be Aware
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Learning Goals:

 know basic design principles behind good algorithms

(“building blocks to help solving “your own” problems”)

 be able to analyze theoretically some algorithms

 give strong bounds on their “effectiveness”

 understand the ideas of (worst case) algo complexity

("Am I too dumb to find a quick algorithm or can nobody 

do better?")

 be able to use and understand existing algorithms

(“practice, practice, practice!”)

What we plan to do in the A&C lecture
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How are we going to do that?

 look at a lot of examples of algorithms

 mixture of lectures and small exercises

 practice and theory

 additionally 1 home exercise per week

What we plan to do in the A&C lecture

Please ask questions

if things are unclear throughout the course!
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Thu Topic

Thu, 12.09.2019 PM Introduction, Combinatorics, O-notation, data structures

Tue, 24.09.2019 PM Sorting algorithms I

Tue, 1.10.2019 PM Sorting algorithms II, recursive algorithms

Tue, 8.10.2019 PM Greedy algorithms

Tue, 15.10.2019 PM Dynamic programming

Thu, 31.10.2019 AM Randomized Algorithms and Blackbox Optimization

Tue, 5.11.2019 PM Complexity theory I

Tue, 26.11.2019 PM Complexity theory II

Tue, 17.12.2019 AM Exam (written)

Course Overview

exceptions)
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 included within the lecture (typically 1/3 of it)

 expected to be done on paper or in python

 hence, please make sure you have python installed on your 

laptop until the second lecture

 Anaconda is the recommended way to get there:

https://www.anaconda.com/distribution/

 (basic) example solutions will be made available afterwards

 not graded but please see it as training for the exam

Remarks on Exercises I
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In addition:

 7 home exercises with 20 points each

 Counts 1/3 to overall grade (exam is the other 2/3)

Remarks on Exercises II
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In addition:

 7 home exercises with 10 points each

 Counts 1/3 to overall grade (exam is the other 2/3)

 Graded as:

Remarks on Exercises II
Achieved points grade Difference

136 ≤ 𝑝 ≤ 140 20 4

132 ≤ 𝑝 < 136 19 4

128 ≤ 𝑝 < 132 18 4

124 ≤ 𝑝 < 128 17 4

118 ≤ 𝑝 < 124 16 6

112 ≤ 𝑝 < 118 15 6

106 ≤ 𝑝 < 112 14 8

98 ≤ 𝑝 < 106 13 8

90 ≤ 𝑝 < 98 12 8

80 ≤ 𝑝 < 90 11 10

70 ≤ 𝑝 < 80 10 10

60 ≤ 𝑝 < 70 9 10

50 ≤ 𝑝 < 60 8 10

40 ≤ 𝑝 < 50 7 10

34 ≤ 𝑝 ≤ 40 6 6

… 1..5 6, 6, 6, 6, 6

0 ≤ 𝑝 <4 0 4
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In addition:

 7 home exercises with 20 points each

 Counts 1/3 to overall grade (exam is the other 2/3)

 Graded as explained before

 Group submissions of 2 students allowed (and even encouraged!)

 But: maximally 4 submissions with the same student pair

Remarks on Exercises II
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 Tuesday, 17th December 2019 in the morning (3 hours)

 open book: take as much material as you want

 but: no electronic devices allowed that connect to the internet

 (most likely) multiple-choice with 20-30 questions

The Exam

All information also available at 

http://www.cmap.polytechnique.fr/~dimo.brockhoff/

algorithmsandcomplexity/2019/

(exercise sheets, lecture slides, additional information, links, ...)

http://www.cmap.polytechnique.fr/~dimo.brockhoff/algorithmsandcomplexity/2019/
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any questions?
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Basics 

 Fundamental combinatorics

 notations such as the O-notation

 algorithms on basic data structures

 arrays

 lists

 trees

 …

Overview of Today’s Lecture
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Basics I: Combinatorics

For this and the next parts, a nice-to-read reference is

https://www.math.upenn.edu/~wilf/AlgoComp.pdf

https://www.math.upenn.edu/~wilf/AlgoComp.pdf
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counting combinations and counting permutations

Why combinatorics?

 In order to compute probabilities

𝑃 𝑒𝑣𝑒𝑛𝑡 =
#favorable outcomes

#possible outcomes

 Related to graph theory (later)

 Related to combinatorial optimization (later)

Combinatorics = Counting
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Permutation: a sequence/order of members of a set

How many different orders exist on [𝑛] ∶= 1,… , 𝑛?

 First integer: choice among n

 Second integer: choice among n-1

 Last integer: no choice among 1

 In total: 𝑛 ⋅ 𝑛 − 1 ⋅ … ⋅ 1 =: 𝑛!

Number of Permutations

Watchduck (a.k.a. Tilman Piesk)
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Idea: generate a random vector, sort it and use the generated 

sorting order as the permutation

import numpy as np

n = 4

random_array = np.random.rand(n)

random_perm = np.argsort(random_array)

More elegant way:

random_perm = np.random.permutation(n) 

How to Generate a Random Permutation?
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How many combinations of set members of a given size exist?

Example: number of different poker hands

 52*51*50*49*48 = 311,875,200 ways

to hand 5 cards out of 52

 but: order does not matter here!

 There are 5! = 120 orders of 5 cards

 Hence, there are

311,875,200/120 = 2,598,960 distinct pokers hands in total

In general, the number of k-combinations of n items (without 

replacements) is
𝑛
𝑘

≔
𝑛!

𝑘! (𝑛 − 𝑘)!

Combinations Without Replacement (k-combination)
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What if we want to allow duplicates?

 combinations with replacement 

 also known as k-combination with repetitions or k-multicombination

Example: 

Combinations with replacement
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What if we want to allow duplicates?

 combinations with replacement 

 also known as k-combination with repetitions or k-multicombination

Example: 

Combinations with replacement

WestportWiki
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What if we want to allow duplicates?

 combinations with replacement 

 also known as k-combination with repetitions or k-multicombination

Example: 

eat 3 donuts from a choice of 4 different ones

Combinations with replacement

WestportWiki
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What if we want to allow duplicates?

 combinations with replacement 

 also known as k-combination with repetitions or k-multicombination

Example: 

eat 3 donuts from a choice of 4 different ones

Number of k-combinations with replacement:

𝑛 + 𝑘 − 1

𝑘
=

𝑛 + 𝑘 − 1

𝑛 − 1

Here with 𝑛 = 4, 𝑘 = 3: 4+3−1
3

= 6
3

= 20 combinations

Combinations with replacement

WestportWiki
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Stars and Bars: A useful counting method popularized by W. Feller*

How many combinations to put k objects into n bins?

 objects: stars

 bins: separated by bars

 Example of n=5 bins and k=7 objects:   |||    | 

 Donut example: n=4 bins/donut types, k=3 objects

Number of combinations to put k objects into n bins

= number of combinations to place k objects on n+k-1 places  𝑛+𝑘−1
𝑘

= number of combinations to place n-1 bars on n+k-1 places   𝑛+𝑘−1
𝑛−1

Why That? The Stars and Bars Method
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Naïve way:

from itertools import combinations 

import numpy as np

n = 4

k = 2

# all k-combinations of [0, 1, …, n-1]:

comb = list(combinations(np.arange(n), k))

# pick one at random

random_k_combination =

comb[np.random.randint(len(comb))]

Works only for small enough n and k:

len(comb)is 15,890,700 for n=50 and k=6 

and 99,884,400 for n=50 and k=7

How to Generate a Random k-Combination?
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More efficient way:

 iterate across each element of {1,…,n}

 pick each element with a dynamically changing probability of 

𝑘 − #𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐ℎ𝑜𝑠𝑒𝑛

𝑛 − #𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑣𝑖𝑠𝑖𝑡𝑒𝑑

until k elements are picked.

How to Generate a Random k-Combination?
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a) In how many different ways can the 15 balls 

of a pool billiard be placed (on a line)?

b) How many different combinations of five

coins (Euros) can you have in your pocket?

c) How likely is it to get your bike stolen with

the lock on the right?

Exercise

Jeanot
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a) 15! (we look for the number of permutations of 15 distinct balls)

b) (8+5-1) choose 5 = 792 (8 different coins, choose 5 with 

repetition)

c) it’s pretty safe: the probability to find the right number is 
1

105
= 10−5, assuming that a random number out of all 10 ⋅ 10 ⋅ 10 ⋅

10 ⋅ 10 = 105 lock numbers is tried. It takes >10min to try out 1% 

of all 105 numbers if you try 2 lock combinations per second.

Solutions
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Basics II: The O-Notation
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Motivation:

 we often want to characterize how quickly a function 𝑓(𝑥) grows 

asymptotically

 e.g. we might want to say that an algorithm takes quadratically 

many steps (in 𝑛) to find the optimum of a problem with 𝑛
(binary) variables, it is never exactly 𝑛2, but maybe 𝑛2 + 1 or

𝑛 + 1 2

Big-O Notation

should be known, here mainly restating the definition:

Definition 1 We write 𝑓(𝑥) = 𝑂(𝑔(𝑥)) iff there exists a constant 
𝑐 > 0 and an 𝑥0 >0 such that 𝑓 𝑥 ≤ 𝑐|𝑔(𝑥)| holds for all 𝑥 > 𝑥0

we also view O(g(x)) as the set of all functions growing at most 

as quickly as g(x) and write f(x)O(g(x))

Excursion: The O-Notation
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 f(x) + c = O(f(x))    [as long as f(x) does not converge to zero]

 c·f(x) = O(f(x))

 f(x) · g(x) = O(f(x) · g(x)) 

 3n4 + n2 – 7 = O(n4)

Intuition of the Big-O:

 if f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically) 

for f

 constants don't play a role

 with Big-O, you should have ‘≤’ in mind

Big-O: Examples



34Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 12, 2019© Dimo Brockhoff, Inria 2019 34

Mastertitelformat bearbeiten

Further definitions to generalize from ‘≤’ to  ‘≥‘ and ‘=‘:

 f(x) = Ω(g(x)) if g(x) = O(f(x))

 f(x) = Θ(g(x)) if f(x) = O(g(x)) and g(x) = O(f(x))

Note: Definitions equivalent to ‘<‘ and ‘>’ exist as well, but are not 

needed in this course

Excursion: The O-Notation
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Please order the following functions in terms of their asymptotic 

behavior (from smallest to largest):

 exp(n2)

 log n

 ln n / ln ln n

 n

 n log n

 exp(n)

 ln( n! )

Give for two of the relations a formal proof.

Exercise O-Notation
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Correct ordering:

= O(log n)           log n = O(n)            n = O(n log n)

n log n = Θ(ln(n!))          ln(n!)= O(en)            en = O(en^2)

but for example en^2 ≠ O(en)

One exemplary proof:

= O(log n):

Exercise O-Notation (Solution)

))ln(ln(

n)ln(

n

))ln(ln(

n)ln(

n

|)log(|3
))ln(ln(

)log(3

))ln(ln()log(

 )log(

))ln(ln(

)ln(
n

n

n

ne

n

n

n


for 𝑛 > 15for 𝑛 > 1
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One more proof: ln n! = O(n log n)

 Stirling’s approximation:                                         or even

 ln 𝑛! ≤ ln(𝑒𝑛𝑛+
1

2𝑒−𝑛) = 1 + 𝑛 +
1

2
ln 𝑛 − 𝑛

≤ 𝑛 +
1

2
ln 𝑛 ≤ 2𝑛 ln 𝑛 = 2𝑛

log 𝑛

log 𝑒
= 𝑐 ∙ 𝑛 log 𝑛

okay for 𝑐 = 2/ log 𝑒 and all 𝑛 ∈ ℕ

 n ln n = O(ln n!) proven in a similar vein

Exercise O-Notation (Solution)
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basic data structures
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A data structure is a data organization, management, and storage 

format that enables efficient access and modification.

More precisely, a data structure is a collection of data values, the 

relationships among them, and the functions or operations that can 

be applied to the data.

from wikipedia

Why important to know?

 Only with knowledge of data structures can you program well

 Knowledge of them is important to design efficient algorithms

Why Data Structures? What are those?
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Depending on how data is stored, it is more or less efficient to

 Add data

 Remove data

 Search for data

Common Complexities

see also: https://introprogramming.info/english-intro-csharp-book/read-online/chapter-19-data-structures-and-algorithm-complexity

Data Structures and Algorithm Complexity

Complexity Running Time

constant 𝑂(1) independent of data size

logarithmic 𝑂(log(𝑛)) often base 2, grows relatively slowly with data

size

linear 𝑂(𝑛) nearly same amount of steps than data points

𝑂(𝑛 log 𝑛 ) Common, still efficient in practice if 𝑛 not huge

quadratic 𝑂(𝑛2) Often not any more efficient with large data sets

…

exponential 𝑂 2𝑛 , 𝑂 𝑛! , … Should be avoided 

https://introprogramming.info/english-intro-csharp-book/read-online/chapter-19-data-structures-and-algorithm-complexity
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Algorithm complexity can be given as best, worst or average cases:

Worst case:

 Assumes the worst possible scenario

 Algorithm can never perform worse

 Corresponds to an upper bound (on runtime, space requirements, 

…)

 Most common

Best case:

 Best possible scenario

 Algorithm is never quicker/better/more efficient/…

Average case:

 Complexity averaged over all possible scenarios

 Often difficult to analyze

Best, Worst and Average Cases
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Array: a fixed chunk of memory of constant size that can contain a 

given number of 𝑛 elements of a given type

 think of a vector or a table

 in python:

 import numpy as np

 a = np.array([1, 2, 3])

 a[1] returns 2 [python counts from 0!]

Common operations and their complexity:

 Get(i) and Update(i) in constant time

 but Remove(i), Move j in between positions i and i+1, … 

are not possible in constant time, because necessary 

memory alterations not local

 To know whether a given item is in the array: linear time

Arrays
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 Assume a sorted array 𝑎[1] < 𝑎[2] < … < 𝑎[𝑛].

 How long will it take to find the smallest element ≥ 𝑘?

(Best case, worse case, average case)

Searching in Sorted Arrays
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 Assume a sorted array 𝑎[1] < 𝑎[2] < … < 𝑎[𝑛].

 How long will it take to find the smallest element ≥ 𝑘?

Or to decide whether a value 𝑎 is in the array?

(best case, worse case, average case)

Linear search

 go through array from 𝑎[1] to 𝑎[𝑛] until entry found

 still Θ(𝑛) in the worst case

 average case the same (if we assume that each item is queried 

with equal probability)

Searching in Sorted Arrays
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Binary search

 Look at position 𝑛/2 first

 Is it the sought after entry? If yes, stop

 If not: search recursively in left or right interval, depending on 

whether the middle entry is larger or smaller than the sought 

after entry

Runtimes

 Best case:

 Worst case:

 sought after entry not in array

 simple case: 𝑛 = 2𝑘 − 1 array elements

 array-part where entry could be located is of length 2𝑘−1 − 1

 by induction: maximally 𝑘 comparisons needed

 𝑘 = Θ(log 𝑛 )

Searching in Sorted Arrays

1
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 Matrices can be stored in arrays, too

 Row first or column first?

 Storing sparse matrices efficiently:

not covered here

Remarks: Arrays and Matrices

Cmglee
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 Dynamic data structure of varying length

 Allows to add and remove entries (remember: arrays don’t)

 However, also not stored in contiguous memory anymore

Idea of a Linear List

Lists

data pointer
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 Dynamic data structure of varying length

 Allows to add and remove entries (remember: arrays don’t)

 However, also not stored in contiguous memory anymore

Idea of a Linear List

Lists

a list

of words
nil /

null /

None
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 Dynamic data structure of varying length

 Allows to add and remove entries (remember: arrays don’t)

 However, also not stored in contiguous memory anymore

Idea of a Linear List

Lists

memory 

address
… 87 88 89 90 91 92 93 …

memory 

content
… 4 90 … 7 92 1 104 …

[4, 7, 1, …] in memory could be for example:
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 Dynamic data structure of varying length

 Allows to add and remove entries (remember: arrays don’t)

 However, also not stored in contiguous memory anymore

Idea of a Linear List

Lists

memory 

address
… 87 88 89 90 91 92 93 …

memory 

content
… 4 90 … 7 92 1 104 …

?
[4, 7, 1, …] in memory could be for example:
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 Dynamic data structure of varying length

 Allows to add and remove entries (remember: arrays don’t)

 However, also not stored in contiguous memory anymore

Idea of a Linear List

 go through list until 7 is found

 always keep track of last pointer (the one finally to 7)

 move this pointer to the former pointer of entry 7

Lists

memory 

address
… 87 88 89 90 91 92 93 …

memory 

content
… 4 90 … 7 92 1 104 …

[4, 7, 1, …] in memory could be for example:

92
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 removal of element in constant time 𝑂(1)

 very similar for adding: 𝑂(1)

 adding into a sorted list: 𝑂(𝑛)

 but now searching is more difficult, even if sorted

 reason: we don’t have access to the “middle” element

 search for element 𝑖: Θ(𝑖) if list is sorted

we need a different data structure if we want to search, insert, and 

delete efficiently

Lists
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Brian Green 
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root

parent

children

data

pointer(s)
not necessarily ≤ 2

leaves
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For a more formal definition, we need to introduce the concept of 

graphs…

Trees are Special Graphs
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Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]
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 vertices = nodes

 edges = lines

 Note: edges cover two unordered vertices (undirected graph)

 if they are ordered, we call G a directed graph

Graphs
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 G is called empty if E empty

 u and v are end vertices of an edge {u,v}

 Edges are adjacent if they share an end vertex

 Vertices u and v are adjacent if {u,v} is in E

 The degree of a vertex is the number of times it is an end vertex

 A complete graph contains all possible edges (once):

Graphs: Basic Definitions

a loop

K1 K2 K3 K4
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A walk is

 closed if first and last node coincide

 a trail if each edge traversed at most once

 a path if each vertex is visited at most once

 a closed path is a circuit or cycle

 a closed path involving all vertices of G is a Hamiltonian cycle

Walks, Paths, and Circuits
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 Two vertices are called connected if there is a walk between 

them in G

 If all vertex pairs in G are connected, G is called connected

 The connected components of G are the (maximal) subgraphs 

which are connected.

Graphs: Connectedness
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 A forest is a cycle-free graph

 A tree is a connected forest

A spanning tree of a connected graph G is a tree in G which 

contains all vertices of G

Trees and Forests

root parentchildren
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Sometimes, we need to traverse a graph, e.g. to find certain vertices

Depth-first search and breadth-first search are two algorithms to do so

Depth-first Search (for undirected/acyclic and connected graphs)

 start at any node x; set i=0

 as long as there are unvisited edges {x,y}:

 choose the next unvisited edge {x,y} to a vertex y and mark x 

as the parent of y

 if y has not been visited so far: i=i+1, give y the number i, and 

continue the search at x=y in step 2

 else continue with next unvisited edge of x

 if all edges {x,y} are visited, we continue with x=parent(x) at step 2 

or stop if x==v0

Depth-First Search (DFS)
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Exercise the DFS algorithm on the following graph!

DFS: Stage Exercise

E

B

G

L

F H

C

K

D

I MJ

A
e1 e2

e3

e4

e5

e6 e7
e8

e9

e10

e11

e12 e13

e14 e15

e16

e17

e18

e19

e20 e21 e22
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Breadth-first Search (for undirected/acyclic and connected graphs)

 start at any node x, set i=0, and label x with value i

 as long as there are unvisited edges {x,y} which are adjacent to a 

vertex x that is labeled with value i:

 label all vertices y with value i+1

 set i=i+1 and go to step 2

Breadth-First Search (BFS)

0

1

1

1

1

2

2

2

2

3
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Binary Search Tree

 a tree with degree ≤ 2

 children sorted such that the left subtree always contains values 

smaller than the corresponding root and the right subtree only 

values larger

Back to Trees as Data Structure
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Round 1:

give an integer to be filled into our tree

Round 2: 

tell where the next integer inserts
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Search

 similar to binary search in array (go left or right until found)

 𝑂(log (𝑛)) if tree is well balanced

 Θ(𝑛) in worst case (linear list)

Insertion

 first like search to determine the parent of the new node

 then add in 𝑂(1) [we are always at a leaf]

Remove (more tricky)

 if node has no child, remove it

 if node has a single child, replace node by its child

 if node has two children: find left-most tree entry L larger than 

the to-be-removed node, copy its value to the to-be-removed 

node, and remove L according to the two above rules

 cost: 𝑂(tree depth), in worst case: Θ(n)

Binary Search Tree: Complexities
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Binary Search Tree

average case (random inserts)                       worst case

average case (random inserts) worst case

Binary Trees: Can We Do Better?

search insert delete search insert delete

𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛))

search insert delete search insert delete

𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) Θ(𝑛) Θ(𝑛) Θ(𝑛)

Guarantee a balanced tree:
• AVL trees

• B trees

• Red-Black trees

• …
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Balanced Trees

average case (random inserts)                       worst case

average case (random inserts)     worst case

Can We Do Even Better on Average?

search insert delete search insert delete

𝚯(𝟏) 𝚯(𝟏) 𝚯(𝟏) Θ(𝑛) Θ(𝑛) Θ(𝑛)

search insert delete search insert delete

𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛))

?
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In python:

my_dict = {‘Joe': 113, ‘Pete': 7, ‘Alan': ‘110'}

print(“my_dict[‘Joe']: “ + my_dict[‘Joe'])

gives  my_dict[‘Joe’]: 113 as output

 the immutables ‘Joe’, ‘Pete’, and ‘Alan’ are the keys

 113, 7, and 110 are the values (or the stored data)

Next: Why dictionaries and how are they implemented?

Dictionaries
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 In python:

Dictionaries

Where is Alan?
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 Go through all offices one by one?

like in list and array

 No, you would ask the receptionist for the office number

Where is Alan?

Evan Bench
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Names

Alan

Joe

Pete

…

Dictionaries Implemented as Hashtables

Offices

7

…

110

111

112

113

Evan Bench
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Keys

Alan

Joe

Pete

…

Dictionaries Implemented as Hashtables

Memory Address

7

…

110

111

112

113

Hash 

function

Possible hash function: h = z mod n
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…should be 

 deterministic: find data again

 uniform: use allocated memory space well

[more tricky with variable length keys such as strings]

Problems to address in practice:

 how to deal with collisions (e.g. via multiple hash functions)

 deleting needs to insert dummy keys when a collision appeared

 what if the hash table is full?  resizing

All this gives a constant average performance in practice

Not more details here, but if you are interested:

For more details on python’s dictionary: 

https://www.youtube.com/watch?v=C4Kc8xzcA68

Hash Functions



77Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 12, 2019© Dimo Brockhoff, Inria 2019 77

Mastertitelformat bearbeiten

 Combinatorics: basic ways of counting things

 O-notation: how to formalize classes of asymptotic function growth

 Basic data structures and their operations

 arrays

 lists

 (binary search) trees

 dictionaries / hash tables

see also https://www.bigocheatsheet.com/

 And along the way: graph theory, DFS, and BFS

What Have We Learned Today?


