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! The definition of the O-notation had a mistake related to where the 

absolute value was !

 it reads correctly 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛) instead of 𝑓 𝑛 ≤ 𝑐 ⋅ |𝑔(𝑛)|
in the definition [corrected in old slides on the web]

 it definitely makes more sense like that:

 – 𝑛 = 𝑂(𝑛) i.e. – 𝑛 increases at most as quickly as 𝑛

Correction from Last Lecture
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Thu Topic

Thu, 12.09.2019 PM Introduction, Combinatorics, O-notation, data structures

Tue, 24.09.2019 PM Sorting algorithms I

Tue, 1.10.2019 PM Sorting algorithms II, recursive algorithms

Tue, 8.10.2019 PM Greedy algorithms

Tue, 15.10.2019 PM Dynamic programming

Thu, 31.10.2019 AM Randomized Algorithms and Blackbox Optimization

Tue, 5.11.2019 PM Complexity theory I

Tue, 26.11.2019 PM Complexity theory II

Tue, 17.12.2019 AM Exam (written)

Course Overview

exceptions)


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 Basics of combinatorics and the O-notation

 Data structures

 Arrays: fast access, slow search, no insert

 Lists: slow access, slow search, but insert/remove in constant 

time

 Hence python lists are implemented as dynamic arrays 

(once array is full, a larger chunk of memory gets allocated)

http://www.laurentluce.com/posts/python-list-

implementation/

 Trees: log(n) access, log(n) add/remove [today]

 Dictionaries: we will see 

Quick Recap

http://www.laurentluce.com/posts/python-list-implementation/
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Brian Green 
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root

parent

children

data

pointer(s)
not necessarily ≤ 2

leaves
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For a more formal definition, we need to introduce the concept of 

graphs…

Trees are Special Graphs
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Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

http://math.tut.fi/~ruohonen/GT_English.pdf
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 vertices = nodes

 edges = lines

 Note: edges cover two unordered vertices (undirected graph)

 if they are ordered, we call G a directed graph with edges 

𝑒 = (𝑢, 𝑣)

Graphs
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 G is called empty if E empty

 u and v are end vertices of an edge {u,v}

 Edges are adjacent if they share an end vertex

 Vertices u and v are adjacent if {u,v} is in E

 The degree of a vertex is the number of times it is an end vertex

 A complete graph contains all possible edges (once):

Graphs: Basic Definitions

a loop

K1 K2 K3 K4
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A walk is

 closed if first and last node coincide

 a trail if each edge traversed at most once

 a path if each vertex is visited at most once

 a closed path is a circuit or cycle

 a closed path involving all vertices of G is a Hamiltonian cycle

Walks, Paths, and Circuits
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 Two vertices are called connected if there is a walk between 

them in G

 If all vertex pairs in G are connected, G is called connected

 The connected components of G are the (maximal) subgraphs 

which are connected.

Graphs: Connectedness
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 A forest is a cycle-free graph

 A tree is a connected forest

A spanning tree of a connected graph G is a tree in G which 

contains all vertices of G

Trees and Forests

root parentchildren
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Sometimes, we need to traverse a graph, e.g. to find certain vertices

Depth-first search and breadth-first search are two algorithms to do so

Depth-first Search (for undirected/acyclic and connected graphs)

 start at any node x; set i=0

 as long as there are unvisited edges {x,y}:

 choose the next unvisited edge {x,y} to a vertex y and mark x 

as the parent of y

 if y has not been visited so far: i=i+1, label y as the node 

visited at iteration i, and continue the search at x=y in step 2

 else continue with next unvisited edge of x

 if all edges {x,y} are visited, we continue with x=parent(x) at step 2 

or stop if x equals the starting node v0

Depth-First Search (DFS)
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Exercise the DFS algorithm on the following graph!

DFS: Stage Exercise

E

B

G

L

F H

C

K

D

I MJ

A
e1 e2

e3

e4

e5

e6 e7
e8

e9

e10

e11

e12 e13

e14 e15

e16

e17

e18

e19

e20 e21 e22
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Breadth-first Search (for undirected/acyclic and connected graphs)

 start at any node x, set i=0, and label x with value i

 as long as there are unvisited edges {x,y} which are adjacent to a 

vertex x that is labeled with value i:

 label all vertices y with value i+1

 set i=i+1 and go to step 2

Breadth-First Search (BFS)

0

1

1

1

1

2

2

2

2

3
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Binary Search Tree

 a tree with degree ≤ 2

 children sorted such that the left subtree always contains values 

smaller than the corresponding root and the right subtree only 

values larger

Back to Trees as Data Structure
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Round 1:

give an integer to be filled into our tree

Round 2: 

tell where the next integer inserts
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Search

 similar to binary search in array (go left or right until found)

 𝑂(log (𝑛)) if tree is well balanced

 Θ(𝑛) in worst case (linear list)

Insertion

 first like search to determine the parent of the new node

 then add in 𝑂(1) [we are always at a leaf or have an “empty child”]

Remove (more tricky)

 if node has no child, remove it

 if node has a single child, replace node by its child

 if node has two children: find left-most tree entry L larger than the 

to-be-removed node, copy its value to the to-be-removed node, 

and remove L according to the two above rules

 cost: 𝑂(tree depth), in worst case: Θ(n)

Binary Search Tree: Complexities
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Binary Search Tree

average case (random inserts)                       worst case

average case (random inserts) worst case

Binary Trees: Can We Do Better?

search insert delete search insert delete

𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛))

search insert delete search insert delete

𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) Θ(𝑛) Θ(𝑛) Θ(𝑛)

Guarantee a balanced tree:
• AVL trees

• B trees

• Red-Black trees

• …
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Balanced Trees

average case (random inserts)                       worst case

average case (random inserts)     worst case

Can We Do Even Better on Average?

search insert delete search insert delete

𝚯(𝟏) 𝚯(𝟏) 𝚯(𝟏) Θ(𝑛) Θ(𝑛) Θ(𝑛)

search insert delete search insert delete

𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛))

?
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In python:

my_dict = {‘Joe': 113, ‘Pete': 7, ‘Alan': ‘110'}

print(“my_dict[‘Joe']: “ + my_dict[‘Joe'])

gives  my_dict[‘Joe’]: 113 as output

 the immutables ‘Joe’, ‘Pete’, and ‘Alan’ are the keys

 113, 7, and 110 are the values (or the stored data)

Next: Why dictionaries and how are they implemented?

Dictionaries
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 In python:

Dictionaries

Where is Alan?
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 Go through all offices one by one?

like in list and array

 No, you would ask the receptionist for the office number

Where is Alan?

Evan Bench
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Names

Alan

Joe

Pete

…

Dictionaries Implemented as Hashtables

Offices

7

…

110

111

112

113

Evan Bench
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Keys

Alan

Joe

Pete

…

Dictionaries Implemented as Hashtables

Memory Address

7

…

110

111

112

113

Hash 

function

Possible hash function: h = z mod n
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…should be 

 deterministic: find data again

 uniform: use allocated memory space well

[more tricky with variable length keys such as strings]

Problems to address in practice:

 how to deal with collisions (e.g. via multiple hash functions)

 deleting needs to insert dummy keys when a collision appeared

 what if the hash table is full?  resizing

All this gives a constant average performance in practice

and a worst case of Θ(𝑛) for insert/remove/search

Not more details here, but if you are interested:

For more details on python’s dictionary: 

https://www.youtube.com/watch?v=C4Kc8xzcA68

Hash Functions
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 Combinatorics: basic ways of counting things

 O-notation: how to formalize classes of asymptotic function growth

 Basic data structures and their operations

 arrays

 lists

 (binary search) trees

 dictionaries / hash tables

see also https://www.bigocheatsheet.com/

 And along the way: graph theory, DFS, and BFS

What Have We Learned?



discussion home exercises
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Exercise 1: Matrix Multiplication

 𝑐𝑖𝑗 = σ𝑘=1
𝑛 𝑎𝑖,𝑘𝑏𝑘,𝑗

 naïve implementation:

𝐟𝐨𝐫 𝑖 = 1 𝐭𝐨 𝑚 𝐝𝐨:
𝐟𝐨𝐫 𝑗 = 1 𝐭𝐨 𝑙 𝐝𝐨:

𝑐𝑖𝑗 = 0

𝐟𝐨𝐫 𝑘 = 1 𝐭𝐨 𝑛 𝐝𝐨:
𝑐𝑖𝑗 = 𝑐𝑖𝑗 + 𝑎𝑖𝑘 ⋅ 𝑏𝑘𝑗

 computation per cell: 𝑛 additions and 𝑛 multiplications

 has to be done for all 𝑚 × 𝑙 cells

 in total: 𝑚 ⋅ 𝑙 ⋅ 𝑛 additions and 𝑚 ⋅ 𝑙 ⋅ 𝑛 multiplications

 Θ(𝑛3) if 𝑘 = 𝑙 = 𝑛

 interesting: we can do better: 

𝑂 𝑛log 7 = 𝑂(𝑛2.807…) by Strassen (1968)

even 𝑂(𝑛2.3728639) by Le Gall (2014)

Discussion Home Exercise

OgreBot

𝑚 × 𝑛

𝑛 × 𝑙
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Exercise 2: Tennis Event

 2 players: trivial

 4 players: 

 first round: 2 games

 final (winners from first

games) gives best player

 another game needed (!):

winner of the two losers against best is 2nd best

 4 games in total

 with 𝑛 = 2𝑘 players: k rounds kicks out half of the players with 
𝑛

2
+

𝑛

4
+

𝑛

8
+⋯+ 4 + 2 + 1 = 𝑛 − 1 games to find out best

 Then 𝑘 − 2 = 𝑂(log(𝑛)) more games needed to find second best 

as best among the losers against overall best

Discussion Home Exercise

Mad melone
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Exercise 3: Tennis Event II

No change in asymptotic number of Θ(𝑛) games, because already 

finding out about the best player needs Θ(𝑛) games

Discussion Home Exercise
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Exercise 4: 𝑶-Notation

𝑂(𝑓1) + 𝑂(𝑓2) = 𝑂(𝑓1 + 𝑓2)

Proof:

 choose 𝑔1 ∈ 𝑂(𝑓1) and 𝑔2 ∈ 𝑂(𝑓2) arbitrarily

 i.e. we have constants 𝑛1, 𝑛2, 𝑐1, 𝑐2 > 0 such that

𝑔1 𝑛 ≤ 𝑐1 ⋅ 𝑓1(𝑛) for all 𝑛 > 𝑛1 and 

𝑔2 𝑛 ≤ 𝑐2 ⋅ 𝑓2(𝑛) for all 𝑛 > 𝑛2
 but with 𝑐+ = max{𝑐1, 𝑐2} then also

𝑔1 𝑛 + 𝑔2 𝑛 ≤ 𝑔1 𝑛 + 𝑔2 𝑛

≤ 𝑐1 ⋅ 𝑓1(𝑛) + 𝑐2 ⋅ 𝑓2(𝑛) ≤ 𝑐+ ⋅ (𝑓1(𝑛) + 𝑓2(𝑛))

Discussion Home Exercise
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Exercise 4: 𝑶-Notation

𝑂 𝑓1 − 𝑂 𝑓2 ≠ 𝑂(𝑓1 − 𝑓2)

Proof by counter example:

 use 𝑓1(𝑛) = 𝑓2(𝑛) = 𝑛

 let 𝑔1 𝑛 = 𝑛 and 𝑔2 𝑛 = 0

 now we have that 𝑔1 ∈ 𝑂(𝑓1) and 𝑔2 ∈ 𝑂 𝑓2
 but 𝑔1 + 𝑔2 = 𝑛 + 0 ∈ 𝑂 𝑓1 + 𝑓2 = 𝑂(0)

Discussion Home Exercise
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jwhittenburg

now: sorting…
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Aim: Sort a set of numbers

Questions:

 What is the underlying algorithm you used?

 How long did it take to sort?

 What is a good measure?

 Is there a better algorithm or did you find the optimal one?

Exercise: Sorting
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Sorting

 Insertion sort

 Insertion sort with binary search

 Mergesort

 Timsort idea

 Quicksort idea

Exercise

 Comparison of sorting algorithms

Overview of Today’s Lecture
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In sorting, we distinguish

 comparison- and non-comparison-based sorting

 in the former, we distinguish further:

 comparisons as essential operations

 they are comparable over computer architectures, 

operating systems, implementations, (historic) time

 they can take more time than other operations, e.g. when 

we compare trees w.r.t. their lexicographic DFS sorting 

 other non-essential operations: additions, multiplications, 

shifts/swaps in arrays, …

Essential vs. Non-Essential Operations
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Idea:

for k from 1 to n-1:

 assume array a[1]…a[k] to be sorted

 insert a[k+1] correctly into a[1]…a[k+1]

Insertion Sort

Swfung8

see also https://en.wikipedia.org/wiki/Insertion_sort

https://en.wikipedia.org/wiki/Insertion_sort
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Worst case:

 reverse ordering: insert always to the beginning

 then 1 + 2 + 3 +⋯+ (𝑛 − 1) = Θ(𝑛2) comparisons needed

Average Case:

 even here: Θ(𝑛2) comparisons needed (without proof)

Insertion Sort: Analysis
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Idea for an improved version:

use binary search for the right position of new entry in sorted 

subarray

 to insert array element 𝑎[𝑖], we need log(𝑖 + 1) comparisons in 

worst case (= depth of the binary tree search)

 overall, therefore

෍

1≤𝑖≤𝑛−1

log(𝑖 + 1) = ෍

2≤𝑖≤𝑛

log(𝑖) < log 𝑛! + 𝑛

comparisons are needed

 from last time, we know that 

log 𝑛! ≤ 𝑒𝑛𝑛+
1
2 𝑒−𝑛 = 𝑛 log 𝑛 − 𝑛 log 𝑒 + 𝑂 log 𝑛

in total, insertion sort with binary search needs

𝑛 log 𝑛 − 0.4426𝑛 + 𝑂(log 𝑛 )

comparisons in the worst case.

Insertion Sort with Binary Search
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Another Possible Sorting Idea:

 sort first and second half of the array independently

 then merge the pre-sorted halves:

 take the smaller of the smallest two values each time

Mergesort(𝑎1, … , 𝑎𝑛)

if 𝑛 = 1 then stop

if 𝑛 > 1 then:

 𝑏1, … , 𝑏 𝑛/2 = Mergesort(𝑎1, … , 𝑎 𝑛/2 )

 𝑐1, … , 𝑐 𝑛/2 = Mergesort(𝑎 𝑛/2 +1, … , 𝑎𝑛)

 return 𝑑1, … , 𝑑𝑛 = Merge(𝑏1, … , 𝑏 𝑛/2 , 𝑐1, … , 𝑐 𝑛/2 )

Mergesort
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Another Possible Sorting Idea:

 sort first and second half of the array independently

 then merge the pre-sorted halves:

 take the smaller of the smallest two values each time

Mergesort(𝑎1, … , 𝑎𝑛)

if 𝑛 = 1 then stop

if 𝑛 > 1 then:

 𝑏1, … , 𝑏 𝑛/2 = Mergesort(𝑎1, … , 𝑎 𝑛/2 )

 𝑐1, … , 𝑐 𝑛/2 = Mergesort(𝑎 𝑛/2 +1, … , 𝑎𝑛)

 return 𝑑1, … , 𝑑𝑛 = Merge(𝑏1, … , 𝑏 𝑛/2 , 𝑐1, … , 𝑐 𝑛/2 )

Mergesort
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 the number of essential comparisons C(n) when sorting n items 

with Mergesort is

C 1 = 0, 𝐶 𝑛 = 𝐶
𝑛

2
+ 𝐶

𝑛

2
+ 𝑛 − 1

 without proof, C 𝑛 = 𝑛 log 𝑛 + 𝑛 − 1 if 𝑛 = 2𝑘

Remark:

Mergesort is practical for huge data sets, that don’t fit into memory

Mergesort: Runtime

sorting

left half

sorting

right half

merging
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 python uses a combination of Mergesort with insertion sort

https://en.wikipedia.org/wiki/Timsort

 insertion sort for small arrays quicker than merging from n=1 

(can be done in memory)

 in addition, Timsort searches for subarrays which are already 

sorted (called ”natural runs”) and that are handled as blocks

 worst case runtime of 𝑂(𝑛 log(𝑛)), best case: 𝑂(𝑛)

Python’s Sorting: Timsort
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Comparing sorting algorithms in python

Goals:

 learn about Mergesort (and how to implement it)

 observe the differences in runtime between your own Mergesort

and python’s internal Timsort

 learn how to do a scientific (numerical) experiment and how to 

report the results

Exercise in Python



49Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 49

Mastertitelformat bearbeiten

TODOs:

 implement your own Mergesort e.g. based on lists

 compare the differences in runtime between your own Mergesort
and python’s internal Timsort (‘sorted(…)’) on randomly 

generated lists of integers

 plot the times to sort 1,000 lists of equal length 𝑛 with both 

algorithms for different values of 𝑛 ∈ {10, 100, 1 000, 10 000}

Tip:

>>> import timeit

>>> timeit.timeit(‘your code', number=1000)

Another (even more important) Tip:

use the “?” to get help on a module (and “??” to inspect the code)

Exercise in Python
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I hope it became clear...

...what is a graph, a node/vertex, an edge, ...

...what sorting is about and how fast we can do it

Conclusions


