g - Dimo Brockhoff

Algorithms & Complexity
Lecture 2: Sorting

September 24, 2019
CentraleSupélec / ESSEC Business School

RRRRRRRRRRRRRRRRRRRRRRRRRRR Inria Sac|ay — |lle-de-France

@ INSTITUT
@ POLYTECHNIQUE
Y& DE PARIS

Correction from Last Lecture

| The definition of the O-notation had a mistake related to where the
absolute value was !

» jtreads correctly |f(n)] < c¢-g(n) instead of f(n) < c-|g(n)|
In the definition [corrected in old slides on the web]

» it definitely makes more sense like that:
= -n=0(n)l.e. -nincreases at most as quickly as n

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Course Overview

Thu
Thu, 12.09.2019
» Tue, 24.09.2019
Tue, 1.10.2019
Tue, 8.10.2019
Tue, 15.10.2019
Thu, 31.10.2019
Tue, 5.11.2019
Tue, 26.11.2019

Tue, 17.12.2019

__Topic

PM
PM
PM
PM
PM
AM
PM
PM

AM

Introduction, Combinatorics, O-notation, data structures
Sorting algorithms |

Sorting algorithms I, recursive algorithms

Greedy algorithms

Dynamic programming

Randomized Algorithms and Blackbox Optimization
Complexity theory |

Complexity theory Il

Exam (written)

© Dimo Brockhoff, Inria 2019

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Quick Recap

= Basics of combinatorics and the O-notation
= Data structures
= Arrays: fast access, slow search, no insert
= [jists: slow access, slow search, but insert/remove in constant
time
= Hence python lists are implemented as dynamic arrays
(once array is full, a larger chunk of memory gets allocated)

http://www.laurentluce.com/posts/python-list-
Implementation/

= Trees: log(n) access, log(n) add/remove [today]
= Dictionaries: we will see ©

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

http://www.laurentluce.com/posts/python-list-implementation/

Brian Green

off, Inria i ity, CentraleSupélec/ESSEC, Sep.

PUBLIC
DOMAIN

© Dimo Brockhoff, Inria 2019

root

— data

— POINter(s)
not necessarily < 2

parent

children

leaves

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Trees are Special Graphs

For a more formal definition, we need to introduce the concept of
graphs...

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

http://math.tut.fi/~ruohonen/GT_English.pdf

Definition 1 An undirected graph G is a tupel G = (V, E) of edges e = {u,v} €
E over the vertex set V (i.e., u,v € V).

= vertices = nodes
= edges =lines
= Note: edges cover two unordered vertices (undirected graph)

= |f they are ordered, we call G a directed graph with edges
e = (u,v)

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Graphs: Basic Definitions

= G s called empty if E empty

= uandyv are end vertices of an edge {u,v} Q
» Edges are adjacent if they share an end vertex
= Vertices u and v are adjacent if {u,v}isin E

» The degree of a vertex is the number of times it is an end vertex
= A complete graph contains all possible edges (once):

Cote &% &
@ o—©

a loop

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Walks, Paths, and Circuits

Definition 1 A walk in a graph G = (V, E) is a sequence

alternating vertices and adjacent edges of G.

A walk Is

Vigs iy = (Vig, Viy)5 Viys €iy = (Viy, Vig)s -+ 5 €y, Vi

closed if first and last node coincide
a trail if each edge traversed at most once
a path if each vertex is visited at most once

a closed path is a circuit or cycle
a closed path involving all vertices of G is a Hamiltonian cycle

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Graphs: Connectedness

= Two vertices are called connected if there is a walk between
themin G

= |f all vertex pairs in G are connected, G is called connected

= The connected components of G are the (maximal) subgraphs
which are connected.

o(0®

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Trees and Forests

= A forestis a cycle-free graph
= Atree is a connected forest

root children parent

A spanning tree of a connected graph G is a tree in G which
contains all vertices of G

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Depth-First Search (DFS)

Sometimes, we need to traverse a graph, e.g. to find certain vertices
Depth-first search and breadth-first search are two algorithms to do so

Depth-first Search (for undirected/acyclic and connected graphs)
O start at any node x; set i=0
® as long as there are unvisited edges {x,y}:

= choose the next unvisited edge {x,y} to a vertex y and mark x
as the parent of y

= if y has not been visited so far: i=i+1, label y as the node
visited at iteration i, and continue the search at x=y in step 2

= else continue with next unvisited edge of x

©® if all edges {x,y} are visited, we continue with x=parent(x) at step 2
or stop if x equals the starting node vO

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

DFS: Stage Exercise

Exercise the DFS algorithm on the following graph!

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Breadth-First Search (BFS)

Breadth-first Search (for undirected/acyclic and connected graphs)
O start at any node x, set i=0, and label x with value |

® as long as there are unvisited edges {x,y} which are adjacent to a
vertex x that is labeled with value i:

= |abel all vertices y with value i+1
® seti=i+1 and go to step 2

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Back to Trees as Data Structure

Binary Search Tree

a tree with degree < 2

children sorted such that the left subtree always contains values
smaller than the corresponding root and the right subtree only
values larger

© Dimo Brockhoff, Inria 2019

Class Exercise: Filling a Binary Search Tree

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019

Binary Search Tree: Complexities

Search

= similar to binary search in array (go left or right until found)
= O(log (n)) if tree is well balanced

= O(n) In worst case (linear list)

Insertion
= first like search to determine the parent of the new node
= then addin 0(1) [we are always at a leaf or have an “empty child”]

Remove (more tricky)
» |f node has no child, remove it
= if node has a single child, replace node by its child

» |f node has two children: find left-most tree entry L larger than the
to-be-removed node, copy its value to the to-be-removed node,
and remove L according to the two above rules

= cost: O(tree depth), in worst case: 0(n)

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

Binary Trees: Can We Do Better?

Binary Search Tree

average case (random inserts) worst case
O(log(n)) O(log(n)) O(log(n)) O(n) O(n) O(n)

Guarantee a balanced tree:
e AVL trees

e B trees

 Red-Black trees

average case (random inserts) worst case

search insert delete search insert delete

O(log(n)) O(log(n)) O(log(m)) O(og(n)) O(log(n)) O(log(n))

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Can We Do Even Better on Average?

Balanced Trees

average case (random inserts) worst case

search insert delete search insert delete

O(log(n)) O(log(n)) O(log(m)) O(log(n)) O(log(n)) O(log(n))

?
average case (random inserts) worst case
(1) 0(1) 0(1) O(n) O(n) O(n)

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Dictionaries

In python:
my dict = {‘'Joe': 113, ‘Pete': 7, ‘Alan': ‘'110'}
print (“my dict[‘'Joe']: “ + my dict[‘Joe'])
gives my dict[‘Joe’]: 113 as output

= the immutables *Joe’, ‘Pete’, and ‘Alan’ are the keys
= 113, 7, and 110 are the values (or the stored data)

Next: Why dictionaries and how are they implemented?

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Dictionaries

= — T
S S ——
I e

' J

[—— S C—

L
l —==11
4 r\
- ! A L
————e—— — — —
-
|
/| T
F! -
1L

Where Is Alan?

|
i :
- B
N — . 2
 — re cm .
S—— 2
- —— | —l
1 = | ==
—)
\ > e— w— ——
! - —
4 Y S | 4.
{ .
P S
A
)

| .
| ! — e — 3 ; 3 |
| | A L pe
 —— S— — o — ' . “ . =
 —) — — R S— < { \
7 . ‘ - == “‘: % N |
2 — FUBLIC
I DOMAIN

Algorithms & Complexity, Centrale

1

"‘“N

© Dimo Brockhoff, Inria 2019

Where is Alan?

= Go through all offices one by one?
like In list and array

= No, you would ask the receptionist for the office number

@m Evan Bench

S EY

© Dimo Brockhoff, Inria 2019

Dictionaries Implemented as Hashtables

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Dictionaries Implemented as Hashtables

Hash

Alan function f

Joe

Pete 110
111
112
113

Possible hash function: h =z mod n

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Hash Functions

...should be
» deterministic: find data again

= uniform: use allocated memory space well
[more tricky with variable length keys such as strings]

Problems to address in practice:

= how to deal with collisions (e.g. via multiple hash functions)

= deleting needs to insert dummy keys when a collision appeared
= what if the hash table is full? - resizing

All this gives a constant average performance in practice
and a worst case of ©(n) for insert/remove/search

Not more detalls here, but if you are interested:

For more details on python’s dictionary:
https://www.youtube.com/watch?v=C4Kc8xzcAG6S8

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

What Have We Learned?

= Combinatorics: basic ways of counting things
= O-notation: how to formalize classes of asymptotic function growth
= Basic data structures and their operations

= arrays

= |ists

= (binary search) trees

= dictionaries / hash tables

see also https://www.bigocheatsheet.com/

= And along the way: graph theory, DFS, and BFS

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

discussion home exercises

Discussion Home Exercise

_ . .. : n Xl - B
Exercise 1. Matrix Multiplication — by, |bys
bZ.Z b2.3
[| .. o= n . . = — —
Cij = 2ie=1 al»kbk»f mXn mé
" pnaive implementation: |
fori =1 tom do: A a,,|a, , (e——— ()
forj=1toldo: Paa|®
Cij — 0 OgreBot

fork =1tondo:
Cij = Cij t ik * by;j

= computation per cell: n additions and n multiplications
= has to be done for all m x [cells
* intotal: m-[-n additions and m - [- n multiplications
= Ond)ifk=1l=n
* |nteresting: we can do better:
0(nl°87) = 0(n?897-) by Strassen (1968)
even 0(n?%3728639) py Le Gall (2014)

© Dimo Brockhoff, Inria 2019

Discussion Home Exercise

Exercise 2: Tennis Event

= 2 players: trivial
= 4 players:
= first round: 2 games

= final (winners from first
games) gives best player

= another game needed (!):
winner of the two losers against best is

= 4 games in total

= with n = 2% players: k rounds kicks out half of the players with
~+2+4-+-+4+2+1=n—1games tofind out best

»= Then k —2 = 0(log(n)) more games needed to find second best
as best among the losers against overall best

© Dimo Brockhoff, Inria 2019

Discussion Home Exercise

Exercise 3: Tennis Event Il

No change in asymptotic number of 8(n) games, because already
finding out about the best player needs 0(n) games

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Ser

Discussion Home Exercise

Exercise 4: O-Notation

0(f1) +0(f2) = O(f1 +12)

Proof:
= choose g, € 0(f;) and g, € 0(f,) arbitrarily

= |.e. we have constants nq, n,, c{,c, > 0 such that
g1(n) <c; - fi(n) for all n > n,; and
g,(n) <c,- fo(n)foralln >n,
= put with ¢, = max{c;, ¢c,} then also
lg1(n) + g, (M)| < [g1(MW)] + |g(n)]
<c¢-fiMm+ - fLr(n) <cp - (i) + ()

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC

Discussion Home Exercise

Exercise 4: O-Notation

0(f1) — 0(f2) # O(f1— f2)

Proof by counter example:
= use f1(n) =f2(n) =n
» letg;(n) =nandg,(n) =0
= now we have that g, € 0(f;) and g, € 0(f,)
* butg; +g, =n+0¢0(f; + f) = 0(0)

© Dimo Brockhoff, Inria 2019

Exercise: Sorting

Alm: Sort a set of numbers

Questions:
= What is the underlying algorithm you used?
= How long did it take to sort?

* What is a good measure?

» |s there a better algorithm or did you find the optimal one?

© Dimo Brockhoff, Inria 2019

Overview of Today’s Lecture

Sorting

* Insertion sort

* Insertion sort with binary search
= Mergesort

= Timsort idea

= Quicksort idea

Exercise
= Comparison of sorting algorithms

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Essential vs. Non-Essential Operations

In sorting, we distinguish
= comparison- and non-comparison-based sorting
* in the former, we distinguish further:

= comparisons as essential operations

= they are comparable over computer architectures,
operating systems, implementations, (historic) time

» they can take more time than other operations, e.g. when
we compare trees w.r.t. their lexicographic DFS sorting

= other non-essential operations: additions, multiplications,
shifts/swaps in arrays, ...

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Insertion Sort

ldea:
for k from 1 to n-1:
= assume array a[1]...a[k] to be sorted
= Insert alk+1] correctly into a[1]...a[k+1]

6 5§ 3 1 8 7 2 4

Swiunge

see also https://en.wikipedia.org/wiki/Insertion_sort

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

https://en.wikipedia.org/wiki/Insertion_sort

Insertion Sort: Analysis

Worst case:
» reverse ordering: insert always to the beginning
= then1+2+3+--+ (n—1) = 0(n?) comparisons needed

Average Case:
= even here: O(n?) comparisons needed (without proof)

© Dimo Brockhoff, Inria 2019

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Insertion Sort with Binary Search

Idea for an improved version:

use binary search for the right position of new entry in sorted
subarray

» toinsert array element a[i], we need [log(i + 1)] comparisons in
worst case (= depth of the binary tree search)

= overall, therefore

z [log(i + 1)] = z [log(i)] < log(n!) +n

1<isn-—1
comparisons are needed

= from last time, we know that

1
log(n!) < en™2 e ™ = nlog(n) — nlog(e) + 0(log(n))
In total, insertion sort with binary search needs
nlog(n) — 0.4426n + 0 (log(n))

comparisons in the worst case.

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Se

Another Possible Sorting Idea:

= sort first and second half of the array independently
= then merge the pre-sorted halves:

= take the smaller of the smallest two values each time

Mergesort(aq, ..., ay)
If n = 1 then stop
if n > 1 then:
* (b, ..., bpya1) = Mergesort(ay, ..., Apn/21)

* (¢4,) Cnyz)) = Mergesort(apn /2141, - an)
= return (dy, ...,d;) = Merge(by, oy Dinyap €15 ey Cny2))

© Dimo Brockhoff, Inria 2019

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Another Possible Sorting Idea:

38(27 |43 |3|9 /82|10

= sort first an /
= then merge 38|27 (433 9|82 |10

= take the l l ne
38|27 43 9|82 10

Mergesort(/ ! /

fn=1 38 27 43

ifn>1 \ / /
. (bl, }27 38 3|43 9 |82 10
= (e, l l

- retu 3|27 |38 |43 910 |82

NP
e

L/ZJ)

© Dimo Brockhoff, Inria 2019

Mergesort: Runtime

= the number of essential comparisons C(n) when sorting n items
with Mergesort is

c)=0, C@)= 2@1 2@@ ~1 merging}

sorting sorting

left half right half

= without proof, C(n) = nlog(n) +n—1ifn = 2%

Remark:
Mergesort is practical for huge data sets, that don'’t fit into memory

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Python’s Sorting: Timsort

= python uses a combination of Mergesort with insertion sort
https://en.wikipedia.org/wiki/Timsort
» nsertion sort for small arrays quicker than merging from n=1
(can be done in memory)
* |n addition, Timsort searches for subarrays which are already
sorted (called "natural runs”) and that are handled as blocks

= worst case runtime of O(n log(n)), best case: 0(n)

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24

Exercise in Python

Comparing sorting algorithms in python

Goals:
= |earn about Mergesort (and how to implement it)

= observe the differences in runtime between your own Mergesort
and python’s internal Timsort

= |earn how to do a scientific (numerical) experiment and how to
report the results

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupéle

Exercise in Python

TODGOs:
O implement your own Mergesort e.g. based on lists

® compare the differences in runtime between your own Mergesort
and python’s internal Timsort (*sorted(..) /) on randomly

generated lists of integers

® plot the times to sort 1,000 lists of equal length n with both
algorithms for different values of n € {10,100,1 000,10 000}

Tip:

>>> import timeit

>>> timeit.timeit(‘your code', number=1000)
Another (even more important) Tip:

use the “?” to get help on a module (and “??” to inspect the code)

© Dimo Brockhoff, Inria 2019

Conclusions

| hope it became clear...

...what is a graph, a node/vertex, an edge, ...
...what sorting is about and how fast we can do it

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

