
Algorithms & Complexity
Lecture 2: Sorting

Dimo Brockhoff

Inria Saclay – Ile-de-France

September 24, 2019

CentraleSupélec / ESSEC Business School

2Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 2

Mastertitelformat bearbeiten

! The definition of the O-notation had a mistake related to where the

absolute value was !

 it reads correctly 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛) instead of 𝑓 𝑛 ≤ 𝑐 ⋅ |𝑔(𝑛)|
in the definition [corrected in old slides on the web]

 it definitely makes more sense like that:

 – 𝑛 = 𝑂(𝑛) i.e. – 𝑛 increases at most as quickly as 𝑛

Correction from Last Lecture

4Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 4

Mastertitelformat bearbeiten

Thu Topic

Thu, 12.09.2019 PM Introduction, Combinatorics, O-notation, data structures

Tue, 24.09.2019 PM Sorting algorithms I

Tue, 1.10.2019 PM Sorting algorithms II, recursive algorithms

Tue, 8.10.2019 PM Greedy algorithms

Tue, 15.10.2019 PM Dynamic programming

Thu, 31.10.2019 AM Randomized Algorithms and Blackbox Optimization

Tue, 5.11.2019 PM Complexity theory I

Tue, 26.11.2019 PM Complexity theory II

Tue, 17.12.2019 AM Exam (written)

Course Overview

exceptions)



5Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 5

Mastertitelformat bearbeiten

 Basics of combinatorics and the O-notation

 Data structures

 Arrays: fast access, slow search, no insert

 Lists: slow access, slow search, but insert/remove in constant

time

 Hence python lists are implemented as dynamic arrays

(once array is full, a larger chunk of memory gets allocated)

http://www.laurentluce.com/posts/python-list-

implementation/

 Trees: log(n) access, log(n) add/remove [today]

 Dictionaries: we will see 

Quick Recap

http://www.laurentluce.com/posts/python-list-implementation/

6Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 6

Mastertitelformat bearbeitenTrees

Brian Green

7Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 7

Mastertitelformat bearbeitenTrees

8Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 8

Mastertitelformat bearbeitenTrees

root

parent

children

data

pointer(s)
not necessarily ≤ 2

leaves

9Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 9

Mastertitelformat bearbeiten

For a more formal definition, we need to introduce the concept of

graphs…

Trees are Special Graphs

10Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 10

Mastertitelformat bearbeiten

Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

http://math.tut.fi/~ruohonen/GT_English.pdf

11Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 11

Mastertitelformat bearbeiten

 vertices = nodes

 edges = lines

 Note: edges cover two unordered vertices (undirected graph)

 if they are ordered, we call G a directed graph with edges

𝑒 = (𝑢, 𝑣)

Graphs

12Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 12

Mastertitelformat bearbeiten

 G is called empty if E empty

 u and v are end vertices of an edge {u,v}

 Edges are adjacent if they share an end vertex

 Vertices u and v are adjacent if {u,v} is in E

 The degree of a vertex is the number of times it is an end vertex

 A complete graph contains all possible edges (once):

Graphs: Basic Definitions

a loop

K1 K2 K3 K4

13Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 13

Mastertitelformat bearbeiten

A walk is

 closed if first and last node coincide

 a trail if each edge traversed at most once

 a path if each vertex is visited at most once

 a closed path is a circuit or cycle

 a closed path involving all vertices of G is a Hamiltonian cycle

Walks, Paths, and Circuits

14Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 14

Mastertitelformat bearbeiten

 Two vertices are called connected if there is a walk between

them in G

 If all vertex pairs in G are connected, G is called connected

 The connected components of G are the (maximal) subgraphs

which are connected.

Graphs: Connectedness

15Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 15

Mastertitelformat bearbeiten

 A forest is a cycle-free graph

 A tree is a connected forest

A spanning tree of a connected graph G is a tree in G which

contains all vertices of G

Trees and Forests

root parentchildren

16Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 16

Mastertitelformat bearbeiten

Sometimes, we need to traverse a graph, e.g. to find certain vertices

Depth-first search and breadth-first search are two algorithms to do so

Depth-first Search (for undirected/acyclic and connected graphs)

 start at any node x; set i=0

 as long as there are unvisited edges {x,y}:

 choose the next unvisited edge {x,y} to a vertex y and mark x

as the parent of y

 if y has not been visited so far: i=i+1, label y as the node

visited at iteration i, and continue the search at x=y in step 2

 else continue with next unvisited edge of x

 if all edges {x,y} are visited, we continue with x=parent(x) at step 2

or stop if x equals the starting node v0

Depth-First Search (DFS)

17Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 17

Mastertitelformat bearbeiten

Exercise the DFS algorithm on the following graph!

DFS: Stage Exercise

E

B

G

L

F H

C

K

D

I MJ

A
e1 e2

e3

e4

e5

e6 e7
e8

e9

e10

e11

e12 e13

e14 e15

e16

e17

e18

e19

e20 e21 e22

18Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 18

Mastertitelformat bearbeiten

Breadth-first Search (for undirected/acyclic and connected graphs)

 start at any node x, set i=0, and label x with value i

 as long as there are unvisited edges {x,y} which are adjacent to a

vertex x that is labeled with value i:

 label all vertices y with value i+1

 set i=i+1 and go to step 2

Breadth-First Search (BFS)

0

1

1

1

1

2

2

2

2

3

19Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 19

Mastertitelformat bearbeiten

Binary Search Tree

 a tree with degree ≤ 2

 children sorted such that the left subtree always contains values

smaller than the corresponding root and the right subtree only

values larger

Back to Trees as Data Structure

20Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 20

Mastertitelformat bearbeitenClass Exercise: Filling a Binary Search Tree

Round 1:

give an integer to be filled into our tree

Round 2:

tell where the next integer inserts

21Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 21

Mastertitelformat bearbeiten

Search

 similar to binary search in array (go left or right until found)

 𝑂(log (𝑛)) if tree is well balanced

 Θ(𝑛) in worst case (linear list)

Insertion

 first like search to determine the parent of the new node

 then add in 𝑂(1) [we are always at a leaf or have an “empty child”]

Remove (more tricky)

 if node has no child, remove it

 if node has a single child, replace node by its child

 if node has two children: find left-most tree entry L larger than the

to-be-removed node, copy its value to the to-be-removed node,

and remove L according to the two above rules

 cost: 𝑂(tree depth), in worst case: Θ(n)

Binary Search Tree: Complexities

22Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 22

Mastertitelformat bearbeiten

Binary Search Tree

average case (random inserts) worst case

average case (random inserts) worst case

Binary Trees: Can We Do Better?

search insert delete search insert delete

𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛))

search insert delete search insert delete

𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) Θ(𝑛) Θ(𝑛) Θ(𝑛)

Guarantee a balanced tree:
• AVL trees

• B trees

• Red-Black trees

• …

23Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 23

Mastertitelformat bearbeiten

Balanced Trees

average case (random inserts) worst case

average case (random inserts) worst case

Can We Do Even Better on Average?

search insert delete search insert delete

𝚯(𝟏) 𝚯(𝟏) 𝚯(𝟏) Θ(𝑛) Θ(𝑛) Θ(𝑛)

search insert delete search insert delete

𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛)) 𝑂(log(𝑛))

?

24Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 24

Mastertitelformat bearbeiten

In python:

my_dict = {‘Joe': 113, ‘Pete': 7, ‘Alan': ‘110'}

print(“my_dict[‘Joe']: “ + my_dict[‘Joe'])

gives my_dict[‘Joe’]: 113 as output

 the immutables ‘Joe’, ‘Pete’, and ‘Alan’ are the keys

 113, 7, and 110 are the values (or the stored data)

Next: Why dictionaries and how are they implemented?

Dictionaries

25Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 25

Mastertitelformat bearbeiten

 In python:

Dictionaries

Where is Alan?

26Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 26

Mastertitelformat bearbeiten

 Go through all offices one by one?

like in list and array

 No, you would ask the receptionist for the office number

Where is Alan?

Evan Bench

27Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 27

Mastertitelformat bearbeiten

Names

Alan

Joe

Pete

…

Dictionaries Implemented as Hashtables

Offices

7

…

110

111

112

113

Evan Bench

28Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 28

Mastertitelformat bearbeiten

Keys

Alan

Joe

Pete

…

Dictionaries Implemented as Hashtables

Memory Address

7

…

110

111

112

113

Hash

function

Possible hash function: h = z mod n

29Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 29

Mastertitelformat bearbeiten

…should be

 deterministic: find data again

 uniform: use allocated memory space well

[more tricky with variable length keys such as strings]

Problems to address in practice:

 how to deal with collisions (e.g. via multiple hash functions)

 deleting needs to insert dummy keys when a collision appeared

 what if the hash table is full?  resizing

All this gives a constant average performance in practice

and a worst case of Θ(𝑛) for insert/remove/search

Not more details here, but if you are interested:

For more details on python’s dictionary:

https://www.youtube.com/watch?v=C4Kc8xzcA68

Hash Functions

30Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 30

Mastertitelformat bearbeiten

 Combinatorics: basic ways of counting things

 O-notation: how to formalize classes of asymptotic function growth

 Basic data structures and their operations

 arrays

 lists

 (binary search) trees

 dictionaries / hash tables

see also https://www.bigocheatsheet.com/

 And along the way: graph theory, DFS, and BFS

What Have We Learned?

discussion home exercises

32Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 32

Mastertitelformat bearbeiten

Exercise 1: Matrix Multiplication

 𝑐𝑖𝑗 = σ𝑘=1
𝑛 𝑎𝑖,𝑘𝑏𝑘,𝑗

 naïve implementation:

𝐟𝐨𝐫 𝑖 = 1 𝐭𝐨 𝑚 𝐝𝐨:
𝐟𝐨𝐫 𝑗 = 1 𝐭𝐨 𝑙 𝐝𝐨:

𝑐𝑖𝑗 = 0

𝐟𝐨𝐫 𝑘 = 1 𝐭𝐨 𝑛 𝐝𝐨:
𝑐𝑖𝑗 = 𝑐𝑖𝑗 + 𝑎𝑖𝑘 ⋅ 𝑏𝑘𝑗

 computation per cell: 𝑛 additions and 𝑛 multiplications

 has to be done for all 𝑚 × 𝑙 cells

 in total: 𝑚 ⋅ 𝑙 ⋅ 𝑛 additions and 𝑚 ⋅ 𝑙 ⋅ 𝑛 multiplications

 Θ(𝑛3) if 𝑘 = 𝑙 = 𝑛

 interesting: we can do better:

𝑂 𝑛log 7 = 𝑂(𝑛2.807…) by Strassen (1968)

even 𝑂(𝑛2.3728639) by Le Gall (2014)

Discussion Home Exercise

OgreBot

𝑚 × 𝑛

𝑛 × 𝑙

33Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 33

Mastertitelformat bearbeiten

Exercise 2: Tennis Event

 2 players: trivial

 4 players:

 first round: 2 games

 final (winners from first

games) gives best player

 another game needed (!):

winner of the two losers against best is 2nd best

 4 games in total

 with 𝑛 = 2𝑘 players: k rounds kicks out half of the players with
𝑛

2
+

𝑛

4
+

𝑛

8
+⋯+ 4 + 2 + 1 = 𝑛 − 1 games to find out best

 Then 𝑘 − 2 = 𝑂(log(𝑛)) more games needed to find second best

as best among the losers against overall best

Discussion Home Exercise

Mad melone

34Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 34

Mastertitelformat bearbeiten

Exercise 3: Tennis Event II

No change in asymptotic number of Θ(𝑛) games, because already

finding out about the best player needs Θ(𝑛) games

Discussion Home Exercise

35Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 35

Mastertitelformat bearbeiten

Exercise 4: 𝑶-Notation

𝑂(𝑓1) + 𝑂(𝑓2) = 𝑂(𝑓1 + 𝑓2)

Proof:

 choose 𝑔1 ∈ 𝑂(𝑓1) and 𝑔2 ∈ 𝑂(𝑓2) arbitrarily

 i.e. we have constants 𝑛1, 𝑛2, 𝑐1, 𝑐2 > 0 such that

𝑔1 𝑛 ≤ 𝑐1 ⋅ 𝑓1(𝑛) for all 𝑛 > 𝑛1 and

𝑔2 𝑛 ≤ 𝑐2 ⋅ 𝑓2(𝑛) for all 𝑛 > 𝑛2
 but with 𝑐+ = max{𝑐1, 𝑐2} then also

𝑔1 𝑛 + 𝑔2 𝑛 ≤ 𝑔1 𝑛 + 𝑔2 𝑛

≤ 𝑐1 ⋅ 𝑓1(𝑛) + 𝑐2 ⋅ 𝑓2(𝑛) ≤ 𝑐+ ⋅ (𝑓1(𝑛) + 𝑓2(𝑛))

Discussion Home Exercise

36Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 36

Mastertitelformat bearbeiten

Exercise 4: 𝑶-Notation

𝑂 𝑓1 − 𝑂 𝑓2 ≠ 𝑂(𝑓1 − 𝑓2)

Proof by counter example:

 use 𝑓1(𝑛) = 𝑓2(𝑛) = 𝑛

 let 𝑔1 𝑛 = 𝑛 and 𝑔2 𝑛 = 0

 now we have that 𝑔1 ∈ 𝑂(𝑓1) and 𝑔2 ∈ 𝑂 𝑓2
 but 𝑔1 + 𝑔2 = 𝑛 + 0 ∈ 𝑂 𝑓1 + 𝑓2 = 𝑂(0)

Discussion Home Exercise

37Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 37

Mastertitelformat bearbeiten

jwhittenburg

now: sorting…

38Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 38

Mastertitelformat bearbeiten

Aim: Sort a set of numbers

Questions:

 What is the underlying algorithm you used?

 How long did it take to sort?

 What is a good measure?

 Is there a better algorithm or did you find the optimal one?

Exercise: Sorting

39Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 39

Mastertitelformat bearbeiten

Sorting

 Insertion sort

 Insertion sort with binary search

 Mergesort

 Timsort idea

 Quicksort idea

Exercise

 Comparison of sorting algorithms

Overview of Today’s Lecture

40Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 40

Mastertitelformat bearbeiten

In sorting, we distinguish

 comparison- and non-comparison-based sorting

 in the former, we distinguish further:

 comparisons as essential operations

 they are comparable over computer architectures,

operating systems, implementations, (historic) time

 they can take more time than other operations, e.g. when

we compare trees w.r.t. their lexicographic DFS sorting

 other non-essential operations: additions, multiplications,

shifts/swaps in arrays, …

Essential vs. Non-Essential Operations

41Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 41

Mastertitelformat bearbeiten

Idea:

for k from 1 to n-1:

 assume array a[1]…a[k] to be sorted

 insert a[k+1] correctly into a[1]…a[k+1]

Insertion Sort

Swfung8

see also https://en.wikipedia.org/wiki/Insertion_sort

https://en.wikipedia.org/wiki/Insertion_sort

42Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 42

Mastertitelformat bearbeiten

Worst case:

 reverse ordering: insert always to the beginning

 then 1 + 2 + 3 +⋯+ (𝑛 − 1) = Θ(𝑛2) comparisons needed

Average Case:

 even here: Θ(𝑛2) comparisons needed (without proof)

Insertion Sort: Analysis

43Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 43

Mastertitelformat bearbeiten

Idea for an improved version:

use binary search for the right position of new entry in sorted

subarray

 to insert array element 𝑎[𝑖], we need log(𝑖 + 1) comparisons in

worst case (= depth of the binary tree search)

 overall, therefore

෍

1≤𝑖≤𝑛−1

log(𝑖 + 1) = ෍

2≤𝑖≤𝑛

log(𝑖) < log 𝑛! + 𝑛

comparisons are needed

 from last time, we know that

log 𝑛! ≤ 𝑒𝑛𝑛+
1
2 𝑒−𝑛 = 𝑛 log 𝑛 − 𝑛 log 𝑒 + 𝑂 log 𝑛

in total, insertion sort with binary search needs

𝑛 log 𝑛 − 0.4426𝑛 + 𝑂(log 𝑛)

comparisons in the worst case.

Insertion Sort with Binary Search

44Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 44

Mastertitelformat bearbeiten

Another Possible Sorting Idea:

 sort first and second half of the array independently

 then merge the pre-sorted halves:

 take the smaller of the smallest two values each time

Mergesort(𝑎1, … , 𝑎𝑛)

if 𝑛 = 1 then stop

if 𝑛 > 1 then:

 𝑏1, … , 𝑏 𝑛/2 = Mergesort(𝑎1, … , 𝑎 𝑛/2)

 𝑐1, … , 𝑐 𝑛/2 = Mergesort(𝑎 𝑛/2 +1, … , 𝑎𝑛)

 return 𝑑1, … , 𝑑𝑛 = Merge(𝑏1, … , 𝑏 𝑛/2 , 𝑐1, … , 𝑐 𝑛/2)

Mergesort

45Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 45

Mastertitelformat bearbeiten

Another Possible Sorting Idea:

 sort first and second half of the array independently

 then merge the pre-sorted halves:

 take the smaller of the smallest two values each time

Mergesort(𝑎1, … , 𝑎𝑛)

if 𝑛 = 1 then stop

if 𝑛 > 1 then:

 𝑏1, … , 𝑏 𝑛/2 = Mergesort(𝑎1, … , 𝑎 𝑛/2)

 𝑐1, … , 𝑐 𝑛/2 = Mergesort(𝑎 𝑛/2 +1, … , 𝑎𝑛)

 return 𝑑1, … , 𝑑𝑛 = Merge(𝑏1, … , 𝑏 𝑛/2 , 𝑐1, … , 𝑐 𝑛/2)

Mergesort

46Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 46

Mastertitelformat bearbeiten

 the number of essential comparisons C(n) when sorting n items

with Mergesort is

C 1 = 0, 𝐶 𝑛 = 𝐶
𝑛

2
+ 𝐶

𝑛

2
+ 𝑛 − 1

 without proof, C 𝑛 = 𝑛 log 𝑛 + 𝑛 − 1 if 𝑛 = 2𝑘

Remark:

Mergesort is practical for huge data sets, that don’t fit into memory

Mergesort: Runtime

sorting

left half

sorting

right half

merging

47Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 47

Mastertitelformat bearbeiten

 python uses a combination of Mergesort with insertion sort

https://en.wikipedia.org/wiki/Timsort

 insertion sort for small arrays quicker than merging from n=1

(can be done in memory)

 in addition, Timsort searches for subarrays which are already

sorted (called ”natural runs”) and that are handled as blocks

 worst case runtime of 𝑂(𝑛 log(𝑛)), best case: 𝑂(𝑛)

Python’s Sorting: Timsort

48Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 48

Mastertitelformat bearbeiten

Comparing sorting algorithms in python

Goals:

 learn about Mergesort (and how to implement it)

 observe the differences in runtime between your own Mergesort

and python’s internal Timsort

 learn how to do a scientific (numerical) experiment and how to

report the results

Exercise in Python

49Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 49

Mastertitelformat bearbeiten

TODOs:

 implement your own Mergesort e.g. based on lists

 compare the differences in runtime between your own Mergesort
and python’s internal Timsort (‘sorted(…)’) on randomly

generated lists of integers

 plot the times to sort 1,000 lists of equal length 𝑛 with both

algorithms for different values of 𝑛 ∈ {10, 100, 1 000, 10 000}

Tip:

>>> import timeit

>>> timeit.timeit(‘your code', number=1000)

Another (even more important) Tip:

use the “?” to get help on a module (and “??” to inspect the code)

Exercise in Python

50Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 24, 2019© Dimo Brockhoff, Inria 2019 50

Mastertitelformat bearbeiten

I hope it became clear...

...what is a graph, a node/vertex, an edge, ...

...what sorting is about and how fast we can do it

Conclusions

