g - Dimo Brockhoff

Algorithms & Complexity
Lecture 3: Sorting

October 1, 2019
CentraleSupélec / ESSEC Business School

RRRRRRRRRRRRRRRRRRRRRRRRRRR Inria Sac|ay — |lle-de-France

@ INSTITUT
@ POLYTECHNIQUE
Y& DE PARIS




Course Overview

Thu
Thu, 12.09.2019
Tue, 24.09.2019
= Tue, 1.10.2019
Tue, 8.10.2019
Tue, 15.10.2019
Thu, 31.10.2019
Tue, 5.11.2019
Tue, 26.11.2019

Tue, 17.12.2019

__Topic

PM
PM
PM
PM
PM
AM
PM
PM

AM

Introduction, Combinatorics, O-notation, data structures
Sorting algorithms |

Sorting algorithms I, recursive algorithms

Greedy algorithms

Dynamic programming

Randomized Algorithms and Blackbox Optimization
Complexity theory |

Complexity theory Il

Exam (written)

© Dimo Brockhoff, Inria 2019

Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 1, 201¢



discussion home exercises



Discussion Home Exercise

Exercise 1. Connected Components

only two possibilities:
= new edge added within a connected component:
# connected components +0

= new edge added “in between” two connected components:
# connected components +1

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, O



Discussion Home Exercise

Exercise 2: Binary Search Tree

add 8, 9, 2, 10,6, 1, 3,7, 5, 4:

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct



Discussion Home Exercise

Exercise 2: Binary Search Tree

remove 10, 3, 8:

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct



Discussion Home Exercise

Exercise 2: Binary Search Tree

remove 10, 3, 8:

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct.



Discussion Home Exercise

Exercise 2: Binary Search Tree

remove 10, 3, 8:

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct.



Discussion Home Exercise

Exercise 3: DFS/BFS

assumption (important): children stored from left to right

DFS order: 1,2,5,6, 3,7, 4, 8,9, 10
BFS order: 1,2,3,4,5,6,7,8,9, 10

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Oc



Discussion Home Exercise

Exercise 4: Hashing with h(x) = x mod 19

Insert the (key, value) pairs

(key, value)

(63, “one”)
(388, “two”)
(296, “three”)

—

— 11

(68, “four”)
(160, “five”)
(264, “six”)
(10, “seven”)
(85, “eight”)

B
0
6 (63, “one”)
7
8 (388, “two”)
9 160, “five”
> ( 1 )”
10 > (10, “seven”)
> (296, “three”)
12 S (68, “four”)
13 (85, “eight”)
14
17 (264, “six”)

18

© Dimo Brockhoff, Inria 2019






Exercise: Sorting

Alm: Sort a set of numbers

Questions:
= What is the underlying algorithm you used?
= How long did it take to sort?

* What is a good measure?

» |s there a better algorithm or did you find the optimal one?

© Dimo Brockhoff, Inria 2019




Overview of Today’s Lecture

Sorting

* Insertion sort

* Insertion sort with binary search
= Mergesort

= Timsort idea

Exercise
= Comparison of sorting algorithms

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 1, 2019



Essential vs. Non-Essential Operations

In sorting, we distinguish
= comparison- and non-comparison-based sorting
* in the former, we distinguish further:

= comparisons as essential operations

= they are comparable over computer architectures,
operating systems, implementations, (historic) time

» they can take more time than other operations, e.g. when
we compare trees w.r.t. their lexicographic DFS sorting

= other non-essential operations: additions, multiplications,
shifts/swaps in arrays, ...

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 1, 20



Insertion Sort

ldea:
for k from 1 to n-1:
= assume array a[1]...a[k] is already sorted

= Insert alk+1] correctly into a[1]...a[k+1]
swapping a[k+1] with all other numbers larger than a[k+1]

6 5§ 3 1 8 7 2 4

Swiungs

see also https://en.wikipedia.org/wiki/Insertion_sort

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 1, 2019


https://en.wikipedia.org/wiki/Insertion_sort

Insertion Sort: Analysis

Worst case:
» reverse ordering: insert always to the beginning
= then1+2+3+--+ (n—1) = 0(n?) comparisons needed

Average Case:
= even here: O(n?) comparisons needed (without proof)

© Dimo Brockhoff, Inria 2019

Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 1, 2019



Insertion Sort with Binary Search

Idea for an improved version:

use binary search for the right position of new entry in sorted
subarray

» toinsert array element a[i], we need [log(i + 1)] comparisons in
worst case (= depth of the binary tree search)

= overall, therefore

z [log(i + 1)] = z [log(i)] < log(n!) +n

1<isn-—1
comparisons are needed

=  from last time, we know that

1
log(n!) < en™2 e ™ = nlog(n) — nlog(e) + 0(log(n))
In total, insertion sort with binary search needs
nlog(n) — 0.4426n + 0 (log(n))

comparisons in the worst case.

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Oc



Another Possible Sorting Idea:

= sort first and second half of the array independently
= then merge the pre-sorted halves:

= take the smaller of the smallest two values each time

Mergesort(aq, ..., ay)
If n = 1 then stop
if n > 1 then:
* (b, ..., bpya1) = Mergesort(ay, ..., Apn/21)

* (¢4, ) Cnyz)) = Mergesort(apn /2141, - an)
= return (dy, ...,d;) = Merge(by, oy Dinyap €15 ey Cny2))

© Dimo Brockhoff, Inria 2019

Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 1, 2019



Another Possible Sorting Idea:

38(27 |43 |3|9 /82|10

= sort first an /
= then merge 38|27 (433 9|82 |10

= take the l l ne
38|27 43 9|82 10

Mergesort( / ! /

fn=1 38 27 43

ifn>1 \ / /
. (bl, }27 38 3|43 9 |82 10
= (e, l l

- retu 3|27 |38 |43 910 |82

NP
e

L/ZJ)

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 1, 2019



Mergesort: Runtime

= the number of essential comparisons C(n) when sorting n items
with Mergesort is

c)=0, C@)= 2@1 2@@ ~1 merging}

sorting sorting

left half right half

= without proof, C(n) = nlog(n) +n—1ifn = 2%

Remarks:
Mergesort is practical for huge data sets, that don't fit into memory
Mergesort is a recursive algorithm (= calls itself)

...solves a problem by solving smaller sub-problems first

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 1, 20



Python’s Sorting: Timsort

= python uses a combination of Mergesort with insertion sort
https://en.wikipedia.org/wiki/Timsort
» nsertion sort for small arrays quicker than merging from n=1
(can be done in memory/cache)
* |n addition, Timsort searches for subarrays which are already
sorted (called "natural runs”) and that are handled as blocks

= worst case runtime of O(n log(n)), best case: 0(n)

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 1, 2019



Lower Bound for Comparison-Based Sorting

= [nsertion Sort, standard: 8(n?)
» |nsertion Sort with binary search: nlog(n) — 0.4426n + O(log(n))
= Mergesort: nlog(n) + n—1if n = 2%

Can we do better than nlog(n)?

= No! [at least for comparison-based sorting]

= Lower bound for comparison-based sorting of Q(n log(n))
without proof here

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 1, 2019



Exercise in Python

Comparing sorting algorithms in python

Goals:
= |earn about Mergesort (and how to implement it)

= observe the differences in runtime between your own Mergesort
and python’s internal Timsort

= |earn how to do a scientific (numerical) experiment and how to
report the results

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupéle



Exercise in Python

TODOs:

©® implement your own Mergesort e.g. based on lists
http://www.cmap.polytechnique.fr/~dimo.brockhoff/algorithmsandcomplexity/2019/schedule.php

® compare the differences in runtime between your own Mergesort
and python’s internal Timsort (*sorted(..) /) on randomly

generated lists of integers

® plot the times to sort 1,000 lists of equal length n with both
algorithms for different values of n € {10,100,1 000,10 000}

Tip:

>>> import timeit

>>> timeit.timeit(‘your code', number=1000)
Another (even more important) Tip:

use the “?” to get help on a module (and “??” to inspect the code)

© Dimo Brockhoff, Inria 2019


http://www.cmap.polytechnique.fr/~dimo.brockhoff/algorithmsandcomplexity/2019/schedule.php

Conclusions

| hope it became clear...

...what sorting is about and how fast we can do it

© Dimo Brockhoff, Inria 2019 Algorithms & Complexity, CentraleSupélec/ESSEC, Oct. 1, 2019



