Algorithms & Complexity Lecture 3: Sorting

October 1, 2019
CentraleSupélec / ESSEC Business School

Dimo Brockhoff Inria Saclay – Ile-de-France

Course Overview

	Thu		Topic
	Thu, 12.09.2019	PM	Introduction, Combinatorics, O-notation, data structures
	Tue, 24.09.2019	PM	Sorting algorithms I
-	Tue, 1.10.2019	PM	Sorting algorithms II, recursive algorithms
	Tue, 8.10.2019	PM	Greedy algorithms
	Tue, 15.10.2019	PM	Dynamic programming
	Thu, 31.10.2019	AM	Randomized Algorithms and Blackbox Optimization
	Tue, 5.11.2019	РМ	Complexity theory I
	Tue, 26.11.2019	PM	Complexity theory II
	Tue, 17.12.2019	AM	Exam (written)

discussion home exercises

Exercise 1: Connected Components

only two possibilities:

- new edge added within a connected component:
 # connected components ±0
- new edge added "in between" two connected components:
 # connected components +1

Exercise 2: Binary Search Tree

add 8, 9, 2, 10, 6, 1, 3, 7, 5, 4:

Exercise 2: Binary Search Tree

remove 10, 3, 8:

Exercise 2: Binary Search Tree

remove 10, 3, 8:

Exercise 2: Binary Search Tree

remove 10, 3, 8:

Exercise 3: DFS/BFS

assumption (important): children stored from left to right

DFS order: 1, 2, 5, 6, 3, 7, 4, 8, 9, 10

BFS order: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Exercise 4: Hashing with $h(x) = x \mod 19$

Insert the (key, value) pairs

	address	
	0	
	6	(63, "one")
	7	
>	8	(388, "two")
7	, 9	(160, "five")
•	10	(10, "seven")
>	.11	(296, "three")
	12	(68, "four")
	13	(85, "eight")
	14	
•	17	(264, "six")
	18	

Exercise: Sorting

Aim: Sort a set of numbers

Questions:

- What is the underlying algorithm you used?
- How long did it take to sort?
 - What is a good measure?
- Is there a better algorithm or did you find the optimal one?

Overview of Today's Lecture

Sorting

- Insertion sort
- Insertion sort with binary search
- Mergesort
- Timsort idea

Exercise

Comparison of sorting algorithms

Essential vs. Non-Essential Operations

In sorting, we distinguish

- comparison- and non-comparison-based sorting
- in the former, we distinguish further:
 - comparisons as essential operations
 - they are comparable over computer architectures, operating systems, implementations, (historic) time
 - they can take more time than other operations, e.g. when we compare trees w.r.t. their lexicographic DFS sorting
 - other non-essential operations: additions, multiplications, shifts/swaps in arrays, ...

Insertion Sort

Idea:

for k from 1 to n-1:

- assume array a[1]...a[k] is already sorted
- insert a[k+1] correctly into a[1]...a[k+1]

swapping a[k+1] with all other numbers larger than a[k+1]

6 5 3 1 8 7 2 4

see also https://en.wikipedia.org/wiki/Insertion_sort

Insertion Sort: Analysis

Worst case:

- reverse ordering: insert always to the beginning
- then $1+2+3+\cdots+(n-1)=\Theta(n^2)$ comparisons needed

Average Case:

• even here: $\Theta(n^2)$ comparisons needed (without proof)

Insertion Sort with Binary Search

Idea for an improved version:

use binary search for the right position of new entry in sorted subarray

- to insert array element a[i], we need $\lceil \log(i+1) \rceil$ comparisons in worst case (= depth of the binary tree search)
- overall, therefore

$$\sum_{1 \le i \le n-1} \lceil \log(i+1) \rceil = \sum_{2 \le i \le n} \lceil \log(i) \rceil < \log(n!) + n$$

comparisons are needed

from last time, we know that

$$\log(n!) \le e n^{n + \frac{1}{2}} e^{-n} = n \log(n) - n \log(e) + O(\log(n))$$

in total, insertion sort with binary search needs

$$n \log(n) - 0.4426n + O(\log(n))$$

comparisons in the worst case.

Mergesort

Another Possible Sorting Idea:

- sort first and second half of the array independently
- then merge the pre-sorted halves:
 - take the smaller of the smallest two values each time

```
Mergesort(a_1, ..., a_n)

if n = 1 then stop

if n > 1 then:

• (b_1, ..., b_{\lceil n/2 \rceil}) = \operatorname{Mergesort}(a_1, ..., a_{\lceil n/2 \rceil})

• (c_1, ..., c_{\lfloor n/2 \rfloor}) = \operatorname{Mergesort}(a_{\lceil n/2 \rceil + 1}, ..., a_n)

• return (d_1, ..., d_n) = \operatorname{Merge}(b_1, ..., b_{\lceil n/2 \rceil}, c_1, ..., c_{\lceil n/2 \rceil})
```

Mergesort

Another Possible Sorting Idea:

Mergesort: Runtime

 the number of essential comparisons C(n) when sorting n items with Mergesort is

$$C(1) = 0, C(n) = C(\left\lceil \frac{n}{2} \right\rceil) + C(\left\lceil \frac{n}{2} \right\rceil) + n - 1 merging$$
sorting sorting right half

• without proof, $C(n) = n \log(n) + n - 1$ if $n = 2^k$

Remarks:

Mergesort is practical for huge data sets, that don't fit into memory Mergesort is a recursive algorithm (= calls itself)

...solves a problem by solving smaller sub-problems first

Python's Sorting: Timsort

- python uses a combination of Mergesort with insertion sort https://en.wikipedia.org/wiki/Timsort
- insertion sort for small arrays quicker than merging from n=1 (can be done in memory/cache)
- in addition, Timsort searches for subarrays which are already sorted (called "natural runs") and that are handled as blocks
- worst case runtime of $O(n \log(n))$, best case: O(n)

Lower Bound for Comparison-Based Sorting

- Insertion Sort, standard: $\Theta(n^2)$
- Insertion Sort with binary search: $n \log(n) 0.4426n + O(\log(n))$
- Mergesort: $n \log(n) + n 1$ if $n = 2^k$

Can we do better than $n \log(n)$?

- No! [at least for comparison-based sorting]
- Lower bound for comparison-based sorting of $\Omega(n \log(n))$

without proof here

Exercise in Python

Comparing sorting algorithms in python

Goals:

- learn about Mergesort (and how to implement it)
- observe the differences in runtime between your own Mergesort and python's internal Timsort
- learn how to do a scientific (numerical) experiment and how to report the results

Exercise in Python

TODOs:

- implement your own Mergesort e.g. based on lists

 http://www.cmap.polytechnique.fr/~dimo.brockhoff/algorithmsandcomplexity/2019/schedule.php
- compare the differences in runtime between your own Mergesort and python's internal Timsort ('sorted(...)') on randomly generated lists of integers
- **❸** plot the times to sort 1,000 lists of equal length n with both algorithms for different values of $n \in \{10, 100, 1000, 10000\}$

Tip:

```
>>> import timeit
>>> timeit.timeit('your code', number=1000)
```

Another (even more important) Tip:

use the "?" to get help on a module (and "??" to inspect the code)

Conclusions

I hope it became clear...

...what sorting is about and how fast we can do it