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Thu Topic

Thu, 12.09.2019 PM Introduction, Combinatorics, O-notation, data structures

Tue, 24.09.2019 PM Sorting algorithms I

Tue, 1.10.2019 PM Sorting algorithms II, recursive algorithms

Tue, 8.10.2019 PM Recursive and Greedy Algorithms

Tue, 15.10.2019 PM Dynamic programming

Thu, 31.10.2019 AM Randomized Algorithms and Blackbox Optimization

Tue, 5.11.2019 PM Complexity theory I

Tue, 26.11.2019 PM Complexity theory II

Tue, 17.12.2019 AM Exam (written)

Course Overview


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Announcement 1
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 Starting from now, I will decrease the number of points for the 

home exercises by 1 for each hour, the solution is handed in too 

late

 Deadline: 11:59:59pm at the given date, Paris time

 Otherwise, it is unfair for the students who hand in on time

Announcement 2
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Discussion of Home Exercises
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Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

503 87 512 61 908 170 897 275 653 426 154 509 612 677 765 703

503
87

512 61 908 170 897 275 653 426 154 509 612 677 765 703

50387
512

61 908 170 897 275 653 426 154 509 612 677 765 703

?

?

50387
512

61 908 170 897 275 653 426 154 509 612 677 765 703

?

50387 512 61 908 170 897 275 653 426 154 509 612 677 765 703

+

+
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Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

50387 512 61 908 170 897 275 653 426 154 509 612 677 765 703

?

+ +

87 61 908 170 897 275 653 426 154 509 612 677 765 703

?

+ +

8761 908 170 897 275 653 426 154 509 612 677 765 703

?

+ +

503 512

503 512

+

8761 908 170 897 275 653 426 154 509 612 677 765 703

?

503 512

8761 908 170 897 275 653 426 154 509 612 677 765 703

+ +

503 512

+

+ + +?
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Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

8761 908
170

897 275 653 426 154 509 612 677 765 703

+ +

503 512

+

?

+

8761 908
170

897 275 653 426 154 509 612 677 765 703

+ +

503 512

+

?

+

8761 908
170

897 275 653 426 154 509 612 677 765 703

+ +

503 512

+

?

+

8761 908170
897 275 653 426 154 509 612 677 765 703

+ +

503 512

+ + +
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Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

8761 908170 897
275

653 426 154 509 612 677 765 703

+ +

503 512

+ + +

12 3

+

8761 908170 897275 653 426 154 509 612 677 765 703

+ +

503 512

+ + +

1 2 3

+ +

8761 908170 897275 653
426

154 509 612 677 765 703

+ +

503 512

+ + +

12 3

+ +

4

+

8761 908170 897275 653426
154

509 612 677 765 703

+ +

503 512

+ + +

12 3

+ + + +
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Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

8761 908170 897275 653426154 509 612 677 765 703

+ +

503 512

+ + +

1 23

+ + + +

4

+

8761 908170 897275 653426154 509
612

677 765 703

+ +

503 512

+ + +

1 2 3

+ + + +

4

+ +

8761 908170 897275 653426154 509 612
677

765 703

+ +

503 512

+ + +

1 2 3

+ + + +

4

+ + +
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Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

8761 908170 897275 653426154 509 612 677
765

703

+ +

503 512

+ + +

1 2 3

+ + + +

4

+ + + +

8761 908170 897275 653426154 509 612 677 765
703

+ +

503 512

+ + +

1 2 3

+ + + +

4

+ + + + +

In total: 47 comparisons

8761 908170 897275 653426154 509 612 677 765703503 512
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Exercise 2: Mergesort

Discussion Home Exercise

503 87 512 61 908 170 897 275 653 426 154 509 612 677 765 703

503 87 512 61 908 170 897 275 653 426 154 509 612 677 765 703

503 87 512 61 908 170 897 275 653 426 154 509 612 677 765 703

503 87 512 61 908 170 897 275 653 426 154 509 612 677 765 703

503 87 512 61 908 170 897 275 653 426 154 509 612 677 765 703
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Exercise 2: Mergesort

Discussion Home Exercise

503 87 512 61 908 170 897 275 653 426 154 509 612 677 765 703

61 87 170 275 503 512 897 908 154 426 509 612 653 677 703 765

61 87 503 512 170 275 897 908 154 426 509 653 612 677 703 765

87 503 61 512 170 908 275 897 426 653 154 509 612 677 703 765

61 87 154 170 275 426 503 509 512 612 653 677 703 765 897 908

8 comparisons so far

1

2

3 1 3

2 2

1 3 1 2

8+11 comparisons
1

3

2 4

5

6 1 2
4

3

5 8+11+11

comparisons
1 2

4

63

5

7

8

9

10 11 12 13 14

8+11+11+14 = 44 comparisons in total
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Exercise 3: Finding the k largest elements with Merge-sort

a) Algorithmic changes

 put the larger values to the left [or start merging from right]

 can stop each merging after k elements

b) A simple upper bound on the runtime (when 𝑘 is small)

 merge needs always at most 𝑂(𝑘) comparisons

 overall 
n

2
+

n

4
+

n

8
+⋯2 + 1 = 𝑂(𝑛) merge steps needed

 in total: 𝑂(𝑘 ⋅ 𝑛) comparisons needed to find 

largest 𝑘 elements

Discussion Home Exercise
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Exercise 3: Finding the k largest elements with Merge-sort

c) A general upper bound on the runtime: 𝑂(𝑛 log 𝑘)

 We assume for simplicity here that 𝑛 and 𝑘 are powers of 2

 In all splitting steps and in the first log 𝑘 merging steps, there 

is no difference between the “new” and the original 

Mergesort algorithm (because the merging does not produce 

larger arrays than of length 𝑘)

 These merging steps take maximally O(n) comparisons 

each, which means O(n log k) in total.

 Actually, in the ith merging step, there are 𝑛/2𝑖 merges of 

arrays of length 2𝑖−1 which need maximally 2 ⋅ 2𝑖−1 − 1 =

2𝑖 − 1 comparisons each (hence 
𝑛

2𝑖
⋅ 2𝑖 − 1 = 𝑂(𝑛) per 

merging step)

 More complicated is the analysis for the remaining log n –

log k = log (n/k) merging steps…

Discussion Home Exercise
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Exercise 3: Finding the k largest elements with Merge-sort

c) A general upper bound on the runtime: 𝑂(𝑛 log 𝑘)

 […]

 Slightly more complicated is the analysis for the remaining 

log 𝑛 – log 𝑘 = log(𝑛/𝑘) merging steps:

 In the 𝑖th-to-last merging step, we have 2𝑖−1 merges of 

arrays of length 𝑘 which need 𝑘 comparisons each

 summed over all log(𝑛/𝑘) remaining merge steps, we have

෍

𝑖=1

log(
𝑛
𝑘)

𝑘 ⋅ 2𝑖−1 = 𝑘 ⋅ ෍

𝑖=0

log
𝑛
𝑘 −1

2𝑖 = 𝑘 ⋅
1 − 2

log
𝑛
𝑘

−1
= 𝑛 − 𝑘

comparisons because σ𝑖=0
𝑛 𝑞𝑖 =

1−𝑞𝑛+1

1−𝑞

 Thanks to Valentina, Rodolphe, and Arthur for the proof idea!

Discussion Home Exercise
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Recursive Algorithms (recap)
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recursive algorithm/data structure/… 

= algorithm/data structure/… that calls/contains a self-reference

Examples:

 Mergesort

 Binary Search

 computing 𝑛! (= 𝑛 ⋅ (𝑛 − 1)!)

 there are also recursive data structures:

 a linked list is defined as an element with data and pointer to 

another linked list

 a tree: the root has other trees as children

 fractals are also recursive

Recursive Algorithms
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back to last python exercise
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Greedy Algorithms
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From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem 

solving heuristic of making the locally optimal choice at each 

stage with the hope of finding a global optimum.”

 Note: typically greedy algorithms do not find the global optimum

 We will see later when this is the case

Greedy Algorithms
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 Example 1: Money Change

 Example 2: Packing Circles in Triangles

 Example 3: Minimal Spanning Trees (MST) and the algorithm of 

Kruskal

 Example 4: Bin Packing

Greedy Algorithms: Lecture Overview
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Change-making problem

 Given n coins of distinct values w1=1, w2, ..., wn and a total 

change W (where w1, ..., wn, and W are integers). 

 Minimize the total amount of coins Σxi such that Σwixi = W and 

where xi is the number of times, coin i is given back as change. 

Greedy Algorithm

Unless total change not reached:

add the largest coin which is not larger than the remaining 

amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:

finishing darts (from 501 to 0 with 9 darts)

Example 1: Money Change
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G. F. Malfatti posed the following problem in 1803:

 how to cut three cylindrical columns out of a triangular prism of 

marble such that their total volume is maximized?

 his best solutions were so-called Malfatti circles in the triangular 

cross-section:

 all circles are tangent to each other

 two of them are tangent to each side of the triangle 

Example 2: Packing Circles in Triangles
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What would a greedy algorithm do?

Example 2: Packing Circles in Triangles
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What would a greedy algorithm do?

Note that Zalgaller and Los' showed in 1994 that the greedy 

algorithm is optimal [1]

[1] Zalgaller, V.A.; Los', G.A. (1994), "The solution of Malfatti's problem", Journal of 

Mathematical Sciences 72 (4): 3163–3177, doi:10.1007/BF01249514.

Example 2: Packing Circles in Triangles
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Outline:

 reminder of problem definition

 Kruskal’s algorithm

 including correctness proofs and analysis of running time

Example 3: Minimal Spanning Trees (MST)
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A spanning tree of a connected graph G is a tree in G which 

contains all vertices of G

Minimum Spanning Tree Problem (MST):

Given a (connected) graph G=(V,E) with edge weights wi for 

each edge ei. Find a spanning tree 𝑇 that minimizes the weights 

of the contained edges, i.e. where

σ𝑒𝑖∈𝑇
𝑤𝑖

is minimized.

MST: Reminder of Problem Definition
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Algorithm, see [1]

 Create forest F = (V,{}) with n components and no edge

 Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

 While S non-empty and F not spanning:

 delete cheapest edge from S

 add it to F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the 

traveling salesman problem". Proceedings of the American Mathematical 

Society 7: 48–50. doi:10.1090/S0002-9939-1956-0078686-7

Kruskal’s Algorithm
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Kruskal’s Algorithm: Example

E

B

G

L

F H

C

K

D

I MJ

A
4 12

7
22

2
21 17

16

3 6

11

20 8

10 19

9

1

18

13

15 14 5
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First question: how to implement the algorithm?

 sorting of edges needs O(|E| log |E|)

Kruskal’s Algorithm: Runtime Considerations

Algorithm

Create forest F = (V,{}) with n components and no edge

Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

While S non-empty and F not spanning:

delete cheapest edge from S

add it to F if no cycle is introduced

simple ?
forest implementation:

Disjoint-set

data structure
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Data structure: ground set 1...N grouped to disjoint sets

Operations:

 FIND(i): to which set (“tree”) does i belong?

 UNION(i,j): union the sets of i and j!

(“join the two trees of i and j”)

Implemented as trees:

 UNION(T1, T2): hang root node of smaller tree under root node of 

larger tree (constant time), thus

 FIND(u): traverse tree from u to root (to return a representative of 

u’s set) takes logarithmic time in total number of nodes

Disjoint-set Data Structure (“Union&Find”)

1 2 3 4

1      2 3 4

1

2

3

4

5

6
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Algorithm, rewritten with UNION-FIND:

 Create initial disjoint-set data structure, i.e. for each vertex vi, 

store vi as representative of its set

 Create empty forest F = {}

 Sort edges such that w.l.o.g. w1 < w2 < ... < w|E|

 for each edge ei={u,v} starting from i=1:

 if FIND(u) ≠ FIND(v): # no cycle introduced

 F = F ∪ {{u,v}}

 UNION(u,v)

 return F

Implementation of Kruskal’s Algorithm
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 Sorting of edges needs O(|E| log |E|)

 forest: Disjoint-set data structure

 initialization: O(|V|)

 log |V| to find out whether the minimum-cost edge {u,v} 

connects two sets (no cycle induced) or is within a set (cycle 

would be induced)

 2x FIND + potential UNION needs to be done O(|E|) times

 total O(|E| log |V|)

 Overall: O(|E| log |E|)

Back to Runtime Considerations
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slides with a blueish background have not been discussed in 

class and, thus, are not part of the final exam
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Two parts needed:

 Algo always produces a spanning tree

final F contains no cycle and is connected by definition 

 Algo always produces a minimum spanning tree

 argument by induction

 P: If F is forest at a given stage of the algorithm, then 

there is some minimum spanning tree that contains F.

 clearly true for F = (V, {})

 assume that P holds when new edge e is added to F and 

be T a MST that contains F

 if e in T, fine

 if e not in T: T + e has cycle C with edge f in C but not 

in F (otherwise e would have introduced a cycle in F)

 now T – f + e is a tree with same weight as T 

(since T is a MST and f was not chosen to F)

 hence T – f + e is MST including T + e (i.e. P 

holds)

Kruskal’s Algorithm: Proof of Correctness


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 Another greedy approach to the MST problem is Prim’s 

algorithm

 Somehow like the one of Kruskal but:

 always keeps a tree instead of a forest

 thus, take always the cheapest edge which connects to the 

current tree

 Runtime more or less the same for both algorithms, but analysis 

of Prim’s algorithm a bit more involved because it needs (even) 

more complicated data structures to achieve it (hence not shown 

here)

Another Greedy Algorithm for MST
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Bin Packing Problem

Given a set of n items with sizes a1, a2, ..., an. Find an 

assignment of the ai’s to bins of size V such that the number of 

bins is minimal and the sum of the sizes of all items assigned to 

each bin is  ≤ V.

Applications

similar to multiprocessor scheduling of n jobs to m processors

Example 3: Bin Packing (BP)
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Bin Packing Problem

Given a set of n items with sizes a1, a2, ..., an. Find an 

assignment of the ai’s to bins of size V such that the number of 

bins is minimal and the sum of the sizes of all items assigned to 

each bin is  ≤ V.

Known Facts

 no optimization algorithm reaches a better than 3/2 

approximation in polynomial time (not shown here)

 greedy first-fit approach already yields an approximation 

algorithm with approximation ratio of 2

Example 3: Bin Packing (BP)
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First-Fit Algorithm

 without sorting the items do:

 put each item into the first bin where it fits

 if it does not fit anywhere, open a new bin

Theorem: First-Fit algorithm is a 2-approximation algorithm

Proof: Assume First Fit uses m bins. Then, at least m-1 bins are more 

than half full (otherwise, move items).

because m and OPT are integer

First-Fit Approach

0.5 0.8 0.20.40.3 0.2 0.2

0.5 0.3 0.4

0.8

0.2 0.2 0.2

means: algo always finds

a solution with f-value of ≤ 2OPT
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What we have seen so far:

 three problems where a greedy algorithm was optimal

 money change

 circle packing

 minimum spanning tree (Kruskal’s algorithm)

 but also: greedy not always optimal

 see the example of bin packing

 this is true in particular for so-called NP-hard problems

Obvious Question: when is greedy good?

Answer: if the problem is a matroid (not covered here)

From Wikipedia: [...] a matroid is a structure that captures and 

generalizes the notion of linear independence in vector spaces. 

There are many equivalent ways to define a matroid, the most 

significant being in terms of independent sets, bases, circuits, 

closed sets or flats, closure operators, and rank functions.

Conclusion Greedy Algorithms I
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I hope it became clear...

...what a greedy algorithm is

...that it not always results in the optimal solution

...but that it does if and only if the problem is a matroid

Conclusions Greedy Algorithms II


