Algorithms & Complexity
Lecture 4: Recursive and Greedy
Algorithms

October 8, 2019
CentraleSupélec / ESSEC Business School

g - Dimo Brockhoff

RRRRRRRRRRRRRRRRRRRRRRRRRRR Inria Sac|ay — lle-de-France

@y, INSTITUT

'0 POLYTECHNIQUE @ 1 pamis
» 4w DE PARIS

Course Overview

Thu
Thu, 12.09.2019
Tue, 24.09.2019
Tue, 1.10.2019
» Tue, 8.10.2019
Tue, 15.10.2019
Thu, 31.10.2019
Tue, 5.11.2019
Tue, 26.11.2019

Tue, 17.12.2019

__Topic

PM
PM
PM
PM
PM
AM
PM
PM

AM

Introduction, Combinatorics, O-notation, data structures
Sorting algorithms |

Sorting algorithms Il, recursive algorithms

Recursive and Greedy Algorithms

Dynamic programming

Randomized Algorithms and Blackbox Optimization
Complexity theory |

Complexity theory Il

Exam (written)

© Dimo Brockhoff, Inria

o CentraleSupelec/ESSEC, Oct. 8, 2019

Announcement 1

& c Q ®a https://centralesupelec.edunao.com/course/view.php?id=1102 e @ Y} O\ Search i INn DO @©
() cOCo - Github

= <'I,) nn Tous les cours Calendrier Francais (fr) ~ @ Dimo Brockhoff -

7= MSC DSBA (M1) -
Algorithms

ﬁ Participants

MSC DSBA (M1) - Algorithms

0 Badges

Tableau de bord > Mes cours MSC DSBA (M1) - Algorithms
4 Compétences . .

B8 Notes

@ Tableau de bord Votre progression ©

A Accueil du site ‘ -—I Annonces l
@ Calendrier l
D Fichiers personnels ﬂ
7= Mes cours

Introduction, Combinatorics, O-notation, data structures B

7= MSC DSBA (M1) -
Algorithms

[,
lecture slides U ‘
home exercise I:]

Data Structures I

-
lecture slides O g
home exercises O |

off, Inria

Announcement 2

= Starting from now, | will decrease the number of points for the

home exercises by 1 for each hour, the solution is handed in too
late

» Deadline: 11:59:59pm at the given date, Paris time
= QOtherwise, it is unfair for the students who hand in on time

© Dimo Brockhoff, Inria

o CentraleSupelec/ESSEC, Oct. 8, 2019

Discussion of Home Exercises

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 8, 2019

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

503| 87 |512| 61 [908|170|897|275/653(426|154|509/612(677|765|703

512| 61 |908|170(897|275|653|426(154|509|612|677|765|703

"

2 |
R 61 [908(170(897|275|653|426|154|509|612|677|765|703
? | +]
512

61 |908|170({897|275|653|426|154|509|612|67/7|765|703

| +11

61 |908|170(897|275|/653|426|154|509|612|67/7|765|703

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

908|170(897|275|653|426(154|509(612|677|765|703

| +1] +1

908|170|897|275|653|426|154|509(612(677|7/65|703
| +11+1]

908|170|897|275|653|426/154|509|612|677|765|703

|+ + 11+

908|170|897|275|653|426/154|509|612|677|765|703

[+11+11+1l
908|170|897|275|653|426/154|509|612|677|765|703
[+11+ 11+l

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

?

170

897

275

653

426

154

509

612

677

765

703

|+ 10+ 11+ 11+

170]g97

275

653

426

154

509

612

677

765

703

|+ 11+ 11+ 11+ 11

897

275

653

426

154

509

612

677

765

703

897

|+ 11+ 1T+ 11+

275

653

426

154

509

612

677

765

703

|+ 10+ 1+ T+ T+ 1

© Dimo Brockhoff, Inria

@ CentraleSupelec/ESSEC

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

2

275

653|426|154|509|612|6/7|765|703
|+ 10+ 10+ 1+ T+ 1T+

653|406|154|509/612(677|765|703
[+ + 1+ +THT 1+ 1+ 1

426

1541509|612|677|765|703
|+ 10+ 10+ + T+ T+ T+ T+ IV

;T

154/500/612/677|765/703

|+ 10+ 0+ T+ TE+ T+ T+ T+ I+

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

509/612|677(765|703

[+ 10+ + T+ T+ T+ T+ T+ I+ T+ TV
4—1/_4%

612

677765703

1+ 00+ T+ T+ TEE+ T+ TH+ IV + T+ IV + [V

1, — 2 T

677765703

0+ 1+ T+ T+ T+ T+ T+ IV +TH+ IV + IV + 1V

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, O

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

R

703
0T+ 0+ T+ T+ T+ T+ T+ I+ T+ IV + IV + IV + IV

—/M‘/ 703

[+ T+ T+ T+ T+ T+ IV T+ IV + IV + IV + IV IV

In total: 47 comparisons

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oc

Discussion Home Exercise

Exercise 2. Mergesort

503| 87 |51

2

61 {908

170

897|275

653

426|154

509

612|677|765

703

503| 87 |512

6

1 908

170

897

275

653

426

154|509

612|677|765

703

503| 87 |512

61

908

170

897

275

653

426

154|509

612|677|76

5|703

503| 87 ||512

61

908

170

897

275

653

426

154|509

612|677|/765

703

503|| 87 ||512

61

908

170

897

275

653

426

154

509

612|677

765

703

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 2. Mergesort

503|| 87 ||512|| 61 ||908|{170(|897||275|/653||426||154|/509|1612||677||765||703
i N e N e I
87 |503|| 61 |512| |{170|908||275|897||426|653||154|509| 612|677|/703|765
T— 2 ~_7 T~ 2 8 comparisons so far
1 6 1 8+11 comparisons
61 | 87 |503|512| |170|275|897|908| |154|426|509|653 ‘612 677/703/765
~N— T > ~_ 57 g+11+11

comparisons

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 3: Finding the k largest elements with Merge-sort

a) Algorithmic changes
= put the larger values to the left [or start merging from right]
= can stop each merging after k elements

b) A simple upper bound on the runtime (when k is small)
" merge needs always at most 0(k) comparisons

= overall g + % + g + -2+ 1= 0(n) merge steps needed

= intotal: O(k - n) comparisons needed to find
largest k elements

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 3: Finding the k largest elements with Merge-sort

c) A general upper bound on the runtime: O(n log k)
= We assume for simplicity here that n and k are powers of 2

= |n all splitting steps and in the first log k merging steps, there
is no difference between the “new” and the original
Mergesort algorithm (because the merging does not produce
larger arrays than of length k)

» These merging steps take maximally O(n) comparisons
each, which means O(n log k) in total.

= Actually, in the ith merging step, there are n/2! merges of
arrays of length 2t=1 which need maX|maIIy 2.271 -1 =

2! — 1 comparisons each (hence — (Zl - 1) O(n) per

merging step)

= More complicated is the analysis for the remaining log n —
log k = log (n/k) merging steps

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 3: Finding the k largest elements with Merge-sort

c) A general upper bound on the runtime: O(n log k)
= [...]
= Slightly more complicated is the analysis for the remaining
logn - logk = log(n/k) merging steps:
= |n the ith-to-last merging step, we have 21 merges of
arrays of length k which need k comparisons each

= summed over all log(n/k) remaining merge steps, we have

log(log(%)—l 1— Zlog(%)
)

-1 _ I — 1.
zkz koY 2=k |\

=0

1_qn+1

comparisons because Y, q' = =
= Thanks to Valentina, Rodolphe, and Arthur for the proof idea!

© Dimo Brockhoff, Inria

Recursive Algorithms (recap)

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 8, 2019

Recursive Algorithms

recursive algorithm/data structure/...
= algorithm/data structure/... that calls/contains a self-reference

Examples:

= Mergesort

= Binary Search

= computingn! (=n-(n-—1)!)

= there are also recursive data structures:

= alinked list is defined as an element with data and pointer to
another linked list

= atree: the root has other trees as children
= fractals are also recursive

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 8, 2C

back to last python exercise

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 8, 2019

Greedy Algorithms

© Dimo Brockhoff, Inria Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 8

Greedy Algorithms

From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem
solving heuristic of making the locally optimal choice at each
stage with the hope of finding a global optimum.”

= Note: typically greedy algorithms do not find the global optimum

= \We will see later when this is the case

© Dimo Brockhoff, Inria qori plexity @ CentraleSupelec/ESSEC, Oct. 8, 201

Greedy Algorithms: Lecture Overview

= Example 1. Money Change
= Example 2: Packing Circles in Triangles

= Example 3: Minimal Spanning Trees (MST) and the algorithm of
Kruskal

= Example 4: Bin Packing

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 8, 2019

Example 1. Money Change

Change-making problem

= Given n coins of distinct values w,=1, w,, ..., w, and a total
change W (where wy, ..., w,, and W are integers).

= Minimize the total amount of coins 2x; such that 2wx, = W and
where Xx; is the number of times, coin i is given back as change.

Greedy Algorithm
Unless total change not reached:

add the largest coin which is not larger than the remaining
amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:
finishing darts (from 501 to O with 9 darts)

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 8

Example 2: Packing Circles in Triangles

G. F. Malfatti posed the following problem in 1803:

= how to cut three cylindrical columns out of a triangular prism of
marble such that their total volume is maximized?

» his best solutions were so-called Malfatti circles in the triangular
cross-section:

= all circles are tangent to each other
= two of them are tangent to each side of the triangle

PUBLIC
DOMAIN

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 8

Example 2: Packing Circles in Triangles

PUBLIC
DOMAIN

What would a greedy algorithm do?

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 8, 2019

Example 2: Packing Circles in Triangles

PUBLIC
DOMAIN

What would a greedy algorithm do?

Note that Zalgaller and Los' showed in 1994 that the greedy
algorithm is optimal [1]

[1] Zalgaller, V.A.; Los', G.A. (1994), "The solution of Malfatti's problem", Journal of
Mathematical Sciences 72 (4): 3163—-3177, doi:10.1007/BF01249514.

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 8, 2019

Example 3: Minimal Spanning Trees (MST)

QOutline:
= reminder of problem definition
= Kruskal's algorithm
* Including correctness proofs and analysis of running time

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 8, 2019

MST: Reminder of Problem Definition

A spanning tree of a connected graph G is a tree in G which
contains all vertices of G

Minimum Spanning Tree Problem (MST):

Given a (connected) graph G=(V,E) with edge weights w; for
each edge e,. Find a spanning tree T that minimizes the weights
of the contained edges, i.e. where

ZeiET Wi
IS minimized.

© Dimo Brockhoff, Inria qori plexity @ CentraleSupelec/ESSEC, Oct. 8, 201

Kruskal’s Algorithm

Algorithm, see [1]

= Create forest F = (V,{}) with n components and no edge
Put sorted edges (such that w.l.o.g. w; <w, < ... <wg) into set S
= While S non-empty and F not spanning:

= delete cheapest edge from S

= additto F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the
traveling salesman problem". Proceedings of the American Mathematical
Society 7: 48-50. doi:10.1090/S0002-9939-1956-0078686-7

© Dimo Brockhoff, Inria

o CentraleSupelec/ESSEC, Oct. 8, 2

Kruskal’s Algorithm: Example

© Dimo Brockhoff, Inria

Kruskal’s Algorithm: Runtime Consideratio

First question: how to implement the algorithm?
= sorting of edges needs O(|E]| log |E|)

Algorithm
Create forest F = (V,{}) with n components and no edge

Put sorted edges (SUC%% <..<Wg)intosetS
While S non-empty and\&_not spanning-

delete\cheapest

add it t ﬁ%

simple P,
forest implementation:
Disjoint-set
data structure

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 8

Disjoint-set Data Structure (“Union&Find”)

Data structure: ground set 1...N grouped to disjoint sets

Operations: @ @ @ @
= FIND(I): to which set (“tree”) does i belong?
= UNION(l,j): union the sets of i and |!

(“join the two trees of i and |") @ @ @

Implemented as trees:

= UNION(T1, T2): hang root node of smaller tree under root node of
larger tree (constant time), thus

= FIND(u): traverse tree from u to root (to return a representative of
u’s set) takes logarithmic time in total number of nodes

© Dimo Brockhoff, Inria

Implementation of Kruskal’s Algorithm

Algorithm, rewritten with UNION-FIND:

Create initial disjoint-set data structure, i.e. for each vertex v,
store v; as representative of its set

Create empty forest F = {}
Sort edges such that w.l.o.g. wy <w, < ... <Wg,
for each edge e={u,v} starting from i=1:
= if FIND(u) # FIND(v): # no cycle introduced
* F=FuU{{uv}}
= UNION(u,v)
return F

© Dimo Brockhoff, Inria qori plexity @ CentraleSupelec/ESSEC, Oct. 8, 20

Back to Runtime Considerations

= Sorting of edges needs O(|E| log |E|)
» forest: Disjoint-set data structure
= |nitialization: O(|V|)
= |og |V| to find out whether the minimum-cost edge {u,v}

connects two sets (no cycle induced) or is within a set (cycle
would be induced)

= 2X FIND + potential UNION needs to be done O(|E]|) times
= total O(|E| log |V])
= Qverall: O(|E| log |E|)

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 8, 2C

slides with a blueish background have not been discussed in
class and, thus, are not part of the final exam

© Dimo Brockhoff, Inria

Kruskal’s Algorithm: Proof of Cc

Two parts needed:
© Algo always produces a spanning tree
final F contains no cycle and is connected by definition v
® Algo always produces a minimum spanning tree
= argument by induction

= P:If Fis forest at a given stage of the algorithm, then
there is some minimum spanning tree that contains F.

= clearly true for F = (V, {})

= assume that P holds when new edge e is added to F and
be T a MST that contains F

= feinT, fine
= jfenotinT: T+ e has cycle C with edge fin C but not
In F (otherwise e would have introduced a cycle in F)

= now T —f+eisatree with same weightas T
(since T is a MST and f was not chosen to F)

= henceT—-f+eisMSTincludingT+e (i.e.P

© Dimo Brockhoff, Inria Algorithms&Complexity @

Another Greedy Algorithm for MS

= Another greedy approach to the MST problem is Prim’s
algorithm

= Somehow like the one of Kruskal but:
= always keeps a tree instead of a forest

» thus, take always the cheapest edge which connects to the
current tree

= Runtime more or less the same for both algorithms, but analysis
of Prim’s algorithm a bit more involved because it needs (even)
more complicated data structures to achieve it (hence not shown
here)

© Dimo Brockhoff, Inria

Example 3: Bin Packing (BP)

Bin Packing Problem

Given a set of n items with sizes a,, a,, ..., a,. Find an
assignment of the a;'s to bins of size V such that the number of
bins is minimal and the sum of the sizes of all items assigned to
each binis s V.

|

Applications
similar to multiprocessor scheduling of n jobs to m processors

© Dimo Brockhoff, Inria qori plexity @ CentraleSupelec/ESSEC, Oct. 8, 20

Example 3: Bin Packing (BP)

Bin Packing Problem

Given a set of n items with sizes a,, a,, ..., a,. Find an
assignment of the a;'s to bins of size V such that the number of
bins is minimal and the sum of the sizes of all items assigned to
each binis s V.

|

Known Facts

* no optimization algorithm reaches a better than 3/2
approximation in polynomial time (not shown here)

= greedy first-fit approach already yields an approximation
algorithm with approximation ratio of 2

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 8

First-Fit Approach

First-Fit Algorithm

= without sorting the items do:
* put each item into the first bin where it fits
= |f it does not fit anywhere, open a new bin

—>

0.8 0.2]10.2]0.2

ihoz 0.2

‘ means: algo always finds
a solution with f-value of < 20PT

| 0.8

Theorem: First-Fit algorithm is a 2-approximation algorithm
Proof: Assume First Fit uses m bins. Then, at least m-1 bins are more
than half full (otherwise, move items).

OPT > = «= 20PT >m 1= 20PT >m
because m and OPT are integer

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct

Conclusion Greedy Algorithms |

What we have seen so far:

» three problems where a greedy algorithm was optimal
= money change
= circle packing
= minimum spanning tree (Kruskal’s algorithm)

= but also: greedy not always optimal
= see the example of bin packing
= this is true in particular for so-called NP-hard problems

Obvious Question: when is greedy good?
Answer: if the problem is a matroid (not covered here)

From Wikipedia: [...] @ matroid is a structure that captures and
generalizes the notion of linear independence in vector spaces.
There are many equivalent ways to define a matroid, the most
significant being in terms of independent sets, bases, circuits,
closed sets or flats, closure operators, and rank functions.

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oc

Conclusions Greedy Algorithms |l

| hope it became clear...

...what a greedy algorithm is
...that it not always results in the optimal solution
...but that it does if and only if the problem is a matroid

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 8, 2019

