Algorithms & Complexity
Lecture 5: Dynamic Programming

October 15, 2019
CentraleSupélec / ESSEC Business School

Dimo Brockhoff
Inria Saclay — lle-de-France

@ INSTITUT

@ POLYTECHNIQUE
TTTTTTTTTTTTTTTTTTTTTTTTTTT '«;,/“qy DE PARIS

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 1: Little Slopy Village

D/ L) ﬂ

LI

o CentraleSupelec/ESSEC, Oct. 15, 20

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 1: Little Slopy Village
4 ~ 4

Algorithm of Kruskal:
take always the shortest edge that does not produce a cycle

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oc

Discussion Home Exercise

Exercise 1: Little Slopy Village
4 ~ 4

O O

Algorithm of Kruskal:
take always the shortest edge that does not produce a cycle

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oc

Discussion Home Exercise

Exercise 1: Little Slopy Village
4 ~ 4

Algorithm of Kruskal:
take always the shortest edge that does not produce a cycle

I (way to the) solution not unique!

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 1: Little Slopy Village
4 ~ 4

O—0O0—=O

Algorithm of Kruskal:
take always the shortest edge that does not produce a cycle

I (way to the) solution not unique!

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 1: Little Slopy Village
4 ~ 4

O—O

Algorithm of Kruskal:
take always the shortest edge that does not produce a cycle

I (way to the) solution not unique!

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 2: Bin Packing
= jtemsofsizel,4,2,5,6,3,2,3,3,1,4
* Din size: 6, first fit strategy

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 2: Bin Packing
= jtemsofsizel,4,2,5,6,3,2,3,3,1,4
* Din size: 6, first fit strategy

Optimal?

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 3: Assisting in a Robbery

= nitems with weights wy, ... ,w,, and values vy, ... ,v,, max. load W
= calls for the knapsack problem

a) Potential Greedy Algorithm:

= take items according to their value-per-weight ratio v; /w; until
total weight W is reached

b) Analysis

= Choice is easy (l.e. 0(n)) as soon as we know the sorted ratios
= Ratio computing takes O(n) divisions

= Sorting takes 0(n logn) comparisons

= Qverall, therefore: runtime of O(n logn)

© Dimo Brockhoff, Inria

back to
greedy algorithms and Bin Packing

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 15

Example 3: Bin Packing (BP)

Bin Packing Problem

Given a set of n items with sizes a,, a,, ..., a,. Find an
assignment of the a;'s to bins of size V such that the number of
bins is minimal and the sum of the sizes of all items assigned to
each binis s V.

|

Applications
similar to multiprocessor scheduling of n jobs to m processors

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 15, 20

Example 3: Bin Packing (BP)

Bin Packing Problem

Given a set of n items with sizes a,, a,, ..., a,. Find an
assignment of the a;'s to bins of size V such that the number of
bins is minimal and the sum of the sizes of all items assigned to
each binis s V.

|

Known Facts

* no optimization algorithm reaches a better than 3/2
approximation in polynomial time (not shown here)

= greedy first-fit approach already yields an approximation
algorithm with approximation ratio of 2

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 15

First-Fit Approach

First-Fit Algorithm

= without sorting the items do:
* put each item into the first bin where it fits
= |f it does not fit anywhere, open a new bin

—>

0.8 0.2]10.2]0.2

ihoz 0.2

‘ means: algo always finds
a solution with f-value of < 20PT

| 0.8

Theorem: First-Fit algorithm is a 2-approximation algorithm
Proof: Assume First Fit uses m bins. Then, at least m-1 bins are more
than half full (otherwise, move items).

OPT > = «= 20PT >m 1= 20PT >m
because m and OPT are integer

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct

Conclusion Greedy Algorithms |

What we have seen so far:

» three problems where a greedy algorithm was optimal
= money change
= circle packing
= minimum spanning tree (Kruskal’s algorithm)

= but also: greedy not always optimal
= see the example of bin packing
= this is true in particular for so-called NP-hard problems

Obvious Question: when is greedy good?
Answer: if the problem is a matroid (not covered here)

From Wikipedia: [...] @ matroid is a structure that captures and
generalizes the notion of linear independence in vector spaces.
There are many equivalent ways to define a matroid, the most
significant being in terms of independent sets, bases, circuits,
closed sets or flats, closure operators, and rank functions.

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oc

Conclusions Greedy Algorithms |l

| hope it became clear...

...what a greedy algorithm is
...that it not always results in the optimal solution
...but that it does if and only if the problem is a matroid

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 15

Course Overview

Thu
Thu, 12.09.2019
Tue, 24.09.2019
Tue, 1.10.2019
Tue, 8.10.2019
» Tue, 15.10.2019
Thu, 31.10.2019
Tue, 5.11.2019
Tue, 26.11.2019

Tue, 17.12.2019

__Topic

PM
PM
PM
PM
PM
AM
PM
PM

AM

Introduction, Combinatorics, O-notation, data structures
Sorting algorithms |

Sorting algorithms Il, recursive algorithms

Recursive and Greedy Algorithms

Dynamic programming

Randomized Algorithms and Blackbox Optimization
Complexity theory |

Complexity theory Il

Exam (written)

© Dimo Brockhoff, Inria

o CentraleSupelec/ESSEC, Oct. 15, 2019

Dynamic Programming

Wikipedia:
“[...] dynamic programming is a method for solving a complex

problem by breaking it down into a collection of simpler
subproblems.”

But that’s not all:

= dynamic programming also makes sure that the subproblems
are not solved too often but only once by keeping the solutions
of simpler subproblems in memory (“trading space vs. time”)

= jtis an exact method, i.e. in comparison to the greedy approach,
It always solves a problem to optimality

© Dimo Brockhoff, Inria

@ CentraleSupelec/ESSEC, Oct. 15

Two Properties Needed

Optimal Substructure

A solution can be constructed efficiently from optimal solutions of
sub-problems

Overlapping Subproblems

Wikipedia: “[...] a problem is said to have overlapping
subproblems if the problem can be broken down into
subproblems which are reused several times or [if] a recursive
algorithm for the problem solves the same subproblem over and
over rather than always generating new subproblems.”

Note: in case of optimal substructure but independent subproblems,
often greedy algorithms are a good choice; in this case, dynamic
programming is often called “divide and conquer” instead

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct

Main Idea Behind Dynamic Programming

Main idea: solve larger subproblems by breaking them down to
smaller, easier subproblems in a recursive manner

Typical Algorithm Design:

© decompose the problem into subproblems and think about how
to solve a larger problem with the solutions of its subproblems

® specify how you compute the value of a larger problem
recursively with the help of the optimal values of its subproblems
(“Bellman equation”)

©® bottom-up solving of the subproblems (i.e. computing their
optimal value), starting from the smallest by using a table
structure to store the optimal values and the Bellman equality

(top-down approach also possible, but less common)

® eventually construct the final solution (can be omitted if only the
value of an optimal solution is sought)

© Dimo Brockhoff, Inria

Bellman Equation (aka “Principle of Opti

» introduced by R. Bellman as “Principle of Optimality” in 1957
» the basic equation underlying dynamic programming
= necessary condition for optimality

citing Wikipedia:
“Richard Bellman showed that a dynamic optimization problem in
discrete time can be stated in a recursive, step-by-step form
known as backward induction by writing down the relationship
between the value function in one period and the value function

In the next period. The relationship between these two value
functions is called the "Bellman equation".”

= The value function here is the objective function.

= The Bellman equation exactly formalizes how to compute the
optimal function value for a larger subproblem from the
optimal function value of smaller subproblems.

we will see examples later today...

© Dimo Brockhoff, Inria

Historical Note

Why is it called “dynamic” and why “programming”?
= R. Bellman worked at the time, when he “invented” the idea, at the
RAND Corporation who were strongly connected with the Air Force

= In order to avoid conflicts with the head of the Air Force at this
time, R. Bellman decided against using terms like “mathematical”
and he liked the word dynamic because it “has an absolutely
precise meaning” and cannot be used “in a pejorative sense”

* |n addition, it had the right meaning: “| wanted to get across the
Idea that this was dynamic, this was multistage, this was time-
varying.”

» Citing Wikipedia: “The word programming referred to the use of the
method to find an optimal program, in the sense of a military
schedule for training or logistics.”

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oc

A First Example: Shortest Path Problem

Shortest Path problem:
Given a graph G=(V,E) with edge weights w, for each edge e,.
Find the shortest path from a vertex v to a vertex u, I.e., the path

(v, e,={v, vV}, Vq, -y Vi €,={V,, U}, U) Such that wy + ... + w s
minimized. 7 1

Note:
We can often assume that
the edge weights are stored
In a distance matrix D of
dimension |V|x|V| where
an entry D;; gives the weight between nodes | and j and "non-
edges” are assigned a value of «

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct.

Opt. Substructure and Overlapping Subprok

Optimal Substructure

The optimal path from u to v, if it contains another vertex p can
be constructed by simply joining the optimal path from u to p with
the optimal path from p to v.

Overlapping Subproblems
Optimal shortest
sub-paths can be reused 1
when computing longer paths: 3 L @,
e.g. the optimal path from u to p
IS contained in the optimal path from
u to g and in the optimal path from u to v.

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct.

The Algorithm of E. Dijkstra (1956)

Basic Idea:
= distinguish between visited and unvisited nodes
* in each step visit only one new node

= How?
= choose the one with smallest distance to the current set of
nodes

» update all shortest path lengths of the new point’s neighbors
= keep track of second-to-last node on those shortest paths

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 15, 20

The Algorithm of E. Dijkstra (1956)

ShortestPathDijkstra(G, D, source, target):
Initialization:
= dist(source) = 0 and for all v € V: dist(v)= D

= forallveV:
If Dgource v fiNIte: prev(v) = source # predecessors on opt. path
else: prev(v) = None

= U=V\{source} # U: unexplored vertices
Unless U empty do:
= newNode = argmin,,_, {dist(u)}
= remove newNode from U
» for each neighbor v of newNode do:
= alternativeDist = dist(hewNode) + D
= |f alternativeDist < dist(v):
= dist(v) = alternativeDist
= prev(v) =u

source,v

newNode,v

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 15

The Algorithm of R. Floyd (1962)

ldea:
= if we knew that the shortest path between source and target
goes through node v, we would be able to construct the
optimal path from the shorter paths “source—>v” and “v->target”

= subproblem P(k): compute all shortest paths where the
Intermediate nodes can be chosen from v, ..., v,

ShortestPathFloyd(G, D, source, target) [= AllPairsShortestPath(G)]
= Init: forall 1 =i,j < |V[: dist(i,j) = D;;
* Fork=1to|V| # solve subproblems P(k)
= for all pairs of nodes (i.e. 1 <i,j < |V]):
= dist(i,j) = min { dist(i,)), dist(i,k) + dist(k,)) }

Note: This algorithm has the advantage that it can handle negative
weights as long as no cycle with negative total weight exists

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 15, 2019

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 15, 2019

9 -1

>0 (> >0)

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 15, 2

allow 1 as intermediate node

—_— —
oo 1

(> o0

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 15

allow 1 as intermediate node

—_— —
oo 1

(> o0

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 15

allow 1 as intermediate node

—_— —
oo 1

(> o0

© Dimo Brockhoff, Inria

allow 1 as intermediate node
—_— To——
00 1 00 2 00 0 00

) 9] -1)

© Dimo Brockhoff, Inria

© Dimo Brockhoff, Inria

© Dimo Brockhoff, Inria

© Dimo Brockhoff, Inria

allow {1,2,3} as intermediate nodes
/

T—
1 °0 1 1 °0 1 °0 2 11 1 °0

BN - 2 !
©w o 9 -] o 00
9 18 8 =
1 10 0 3 3
©w 5 o

© Dimo Brockhoff, Inria

allow {1,2,3} as intermediate nodes
— T—

1 o0 1 1 00 1 11 £

Bl - 2
©© o 9 -] 9 00
9 18 8 9 18 8
1 10 O 10 3
00 5)

© Dimo Brockhoff, Inria

allow {1,2,3} as intermediate nodes
/

T—
1 °0 1 1 °0 = 18 2 11 1 °0

1 R
© o 9 1 16 18 9 1 =
9 18 8 = 18 8 =
1 10 0 3 10 0 3
© 5 = 5 13

© Dimo Brockhoff, Inria

© Dimo Brockhoff, Inria

allow {1,2,3,4} as intermediate nodes

_—
18 2 11
16 18 9 -1

/9 18 8

© Dimo Brockhoff, Inria

allow {1,2,3,4} as intermediate nodes

_—
18 2 11
16 18 9 -1

/9 18 8

8 11
0O 3
13 16

© Dimo Brockhoff, Inria

allow all nodes as intermediate nodes
—_— To——
&= 0 2 11 1 4 e O 2 11 1 4

2 0 9 -1 2 2 0 9 -1 2
7 9 18 8 1 7 9 18 8 1
1 1 10 0 3 1 1 10 0 3

12 14 5 13 16 PEM 12 14 5 13 16

© Dimo Brockhoff, Inria

allow all nodes as intermediate nodes
—_— To—
1 0 2 11 1 4 1 0 2 9 1 4

2 0 9 -1 2 RN -
7 9 18 8 1 7 9 16 8 1
1 1 10 0 3 1 1 8 0 3

12 14 5 13 16 PEM 12 14 5 13 16

© Dimo Brockhoff, Inria

Runtime Considerations and Correctness

O(]V]3) easy to show
= O(|V|?) many distances need to be updated O(|V|) times

Correctness
= given by the Bellman equation
dist(i,}) = min { dist(i,)), dist(i,k) + dist(k,j) }
= only correct if cycles do not have negative total weight (can

be checked in final distance matrix if diagonal elements are
negative)

© Dimo Brockhoff, Inria qori plexity @ CentraleSupelec/ESSEC, Oct. 15, 20

But How Can We Actually Construct the Path

= Construct matrix of predecessors P alongside distance matrix
= P; (k) = predecessor of node | on path from i to | (at algo. step k)

= no extra costs (asymptotically)

0y [0 1=l ordy =

[in all other cases

p; (k) = P j(k —1) ifdist(i,j) < dist(i, k) + dist(k, j)
AT Prj(k— 1) ifdist(i, j) > dist(i, k) + dist(k,))

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 15, 20

A Second Example: The 0-1 Knapsack P

0-1 Knapsack Problem (KP)

max. ijacj with z; € {0,1}

j=1

n
S.1. Z ’wj.ZCj S %74

j=1

Dake

Goal: a dynamic programming algorithm for KP

Questions:
a) what could be subproblems?
b) how to solve subproblems with the help of smaller ones?
c) how to solve the smallest subproblems exactly?

© Dimo Brockhoff, Inria

Dynamic Programming Approach to the KP

To circumvent computing the subproblems more than once, we can
store their results (in a matrix for example)...

knapsack weight

n-------

P(1.))

+— [tems

best achievable
profit with items 1...i
and a knapsack of
size |

o CentraleSupelec/ESSEC, Oct. 15, 2019

© Dimo Brockhoff, Inria

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

knapsack weight

n-----n-nn

+— |tems

Initialization:
P(i,j)=0ifi=0o0rj=0

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 15, 2019

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

knapsack weight

n-----n-nn

+— |tems

o O O O O

Initialization:
P(i,j)=0ifi=0o0rj=0

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 15, 2019

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

0
=
2 0 =T
0 G— ——)
| B . — -—
0 S ——
0 G — >
fori =1 ton:
forj=1to W:
P(i,j) = P(i—1,)) ifw; >j

max{P(i — 1,j), pl-I-P(l—l]—W)}lle <)

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct.

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

=
9 o |0
0
| BN
0
0
fori =1ton:
forj=1to W:
PG,) = P(i—1,)) ifw; >j

max{P(i — 1,j), pl+P(l—1]—w)}1le <)

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 15, 20

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

=
g O 0 O
0
| BN
0
0
fori =1ton:
forj=1to W:
PG,) = P(i—1,)) ifw; >j

max{P(i — 1,j), pl+P(l—1]—w)}1le <)

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 15, 20

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

0 0 0 0

+— |tems

o O O O O

fori =1ton:
forj=1to W:

PG,) = P(i—1,)) ifw; >j
' max{P(i — 1,j), pl+P(l—1]—w)}1sz<J

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 15, 20

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

g OF 0 TO 0 0
Q 0 0 0 0 S
T +p1(= 4)
0
j ;
0
0
fori =1 to n:
forj=1to W:

max{P(i —1,)), pl + P(l —1,j — Wl)}lsz <)

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 15, 2019

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

g <_ 0 TO
2 0 0 0 0 04— 4
- +p1(=4)

0
1 ,

0

0
fori =1 ton:

forj=1to W:

max{P(i —1,)), pl + P(l —1,j — Wl)}lsz <)

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 15, 2019

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

0 0 0 0 4 4 4 4 4 4 4

+— |tems

o O O O O

fori =1ton:
forj=1to W:

PG,) = P(i—1,)) ifw; >j
' max{P(i —1,)), pl +P(i—1,j —w)Yiiw =

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 15, 20

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

0 0 0 0 4 4 4 4 4 4 4
0 0 0 0 4 4

+— |tems

o O O O O

fori =1ton:
forj=1to W:

PG,) = P(i—1,)) ifw; >j
' max{P(i —1,)), pl +P(i—1,j —w)Yiiw =

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 15, 20

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

(7))}
=
2 Oﬁo 0 0 0 14 4 4 4 4
0 0 0 0 0
l +p, (= 10)
0
0
0
fori =1 ton:
forj=1to W:
1 ifw;, >7j

max{P(i —1,)), pl + P(l —1,j —w)}twi =

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 15, 2019

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

0 0 0 0 4 4 4 4 4 4 4
0 0 0 0 4 4 10 10 10 10 10

+— |tems

o O O O O

fori =1ton:
forj=1to W:

. — 1.7 ifw; >j
P(i,) = P(i—1,)) i =)

max{P(i —1,)), pl +P(i—1,j —w)Yiiw =

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 15, 20

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

4 4 4 4 4 4 4
4 4 10 10 10 10 10

o O
o O
o O
o O

+— |tems

o O O O O
o
w
w
w

fori =1ton:
forj=1to W:

. — 1.7 ifw; >j
P(,j) = P(i—1,)) i =)

max{P(i —1,)), pl +P(i—1,j —w)Yiiw =

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 15, 20

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

(7))
-
g 0 0 0 0 0 4 4 4 4 4 4 4
O O O O0_. 0 44 4 10 10 10 10 10
l o 0 3 3'\14
+p3(=3
0
0
fori =1 ton:
forj=1to W:
A ifw; >j

max{P(i —1,)), pl + P(l —1,j —w)}twi =

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 15, 20

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

0 4 4 4 4 4 4 4
0 4 4 10 10 10 10 10

3'4\14

+p3(= 3)

o O
o O
o O

+— |tems

o O O O O
o
w
w

fori =1ton:
forj=1to W:

. — 1.7 ifw; >j
P(,j) = P(i—1,)) i =)

max{P(i —1,)), pl +P(i—1,j —w)Yiiw =

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 15, 20

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

4 4 4 4 4 4 4
4 4 10 10 10 10 10

4 '4\110 etc.

+p3(= 3)

o O
o O
o O
o O

+— |tems

o O O O O
o
w
w
w

fori =1ton:
forj=1to W:

. — 1.7 ifw; >j
P(,j) = P(i—1,)) i =)

max{P(i —1,)), pl +P(i—1,j —w)Yiiw =

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 15, 20

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

=
g O 0 O 0 0 4 4 4
0O 0 O 0 0 4 4 10
l O 0 3 3 3 4 4 10
O 0 3 3 5 5 8 10
0O 0 3 3 5 6 8 10
fori =1ton:

forj=1to W:

P(i,j) = P(i—1,j)

4
10
10
10
10

4
10
13
13
13

4 4
10 10
13 13
13 15
13 15
ifw; >j

ﬂ-----ﬂ-ﬂﬂ

max{P(i —1,)), pl +P(i—1,j —w)Yiiw =

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 15, 20

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

=
g O 0 O 0 0 4 4 4
0O 0 O 0 0 4 4 10
l O 0 3 3 3 4 4 10
O 0 3 3 5 5 8 10
0O 0 3 3 5 6 8 10
fori =1ton:

forj=1to W:

P(i,j) = P(i—1,j)

4
10
10
10
10

4
10
13
13
13

4 4
10 10
13 13
13 15
1
ifw; >j

ﬂ-----ﬂ-ﬂﬂ

max{P(i —1,)), pl +P(i—1,j —w)Yiiw =

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 15, 20

Dynamic Programming Approach to the KP

Question: How to obtain the actual packing?
Answer: we just need to remember where the max came from!

knapsack weight

n-----n-nn
% n 0
5 S % O 0 O _ 4, 4 4 4 4 4 4
" —_— X2 — 1
0 0 0 0 0 10_,0 10 10 10
o o 3 3 3 4 10 13, 13 13
0o 0 3 3 5 8 10 10 13 T35
o 0o 3 3 5 6 8 10 10 13 13 'i5

x5=O
fori =1ton:
forj=1to W:

PG, f) = P(i—1,)) ifw; >j
' max{P(i —1,)), pl-l-P(l—l]—Wl)}lle <)

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 15, 20

Runtime Considerations

= |f we try all possible combinations, we can solve the KP in time
0(2™)

= With the dynamic programming approach, we can do it in O(nW)

= For small enough weights (of the knapsack), this is quicker

= We might come back to this in the lectures on computational
complexity...

© Dimo Brockhoff, Inria qori plexity @ CentraleSupelec/ESSEC, Oct. 15, 20

Conclusions

| hope it became clear...

...what the algorithm design idea of dynamic programming is
...for which problem types it is supposed to be suitable
...and how to apply the idea to the knapsack problem

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 15

