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Exercise 1: What is it doing?

1) Start with input from Σ𝑛 = 0,1 𝑛 in q0 with head on left-most digit

2) Stays in q0 while running over the input until first B is found

3) Then move head to last digit and switch to q1

4) Now, it depends on what is read, but both cases are symmetric:

if 0 is read, write B, go right and into q2, then write 0, go left 

(onto the B from before) and into q4 OR

if 1 is read, write B, go right and into q3, then write 1, go left 

(onto the B from before) and into q4

Discussion Home Exercise

0 1 B

q0 (q0, 0, R) (q0, 1, R) (q1, B, L)

q1 (q2, B, R) (q3, B, R) STOP

q2 (q4, 0, L) (q4, 0, L) (q4, 0, L)

q3 (q4, 1, L) (q4, 1, L) (q4, 1, L)

q4 (q4, 1, R) (q4, 0, R) (q1, B, L)
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Exercise 1: What is it doing?

5) Hence, next step is always to go left, write back a B and go into q1

6) Now, we are back to point 4) unless we are at the (left) end of the 

input (=read a B) and stop

So, what is step 4 actually doing?

It shifts each cell entry one to the right, i.e., the entire input is finally 

moved one cell to the right!

Discussion Home Exercise

0 1 B

q0 (q0, 0, R) (q0, 1, R) (q1, B, L)

q1 (q2, B, R) (q3, B, R) STOP

q2 (q4, 0, L) (q4, 0, L) (q4, 0, L)

q3 (q4, 1, L) (q4, 1, L) (q4, 1, L)

q4 (q4, 1, R) (q4, 0, R) (q1, B, L)
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Exercise 2: Writing Ones Game

aka the Busy Beaver game

Goal: Find a Turing machine with 𝑛 states and alphabet Σ = {1} that 

writes as many 1s as possible before stopping

Considerations for 𝑛 = 2:

1) Must write 1 in the beginning

2) Must also change to q1

[otherwise: no stop]

3) In q1, need to go back to q0

[same reason of no stop]

4) Need a stopping state

Discussion Home Exercise

B 1

q0 (q1, 1, R) (q1, 1, L)

q1 (q0, 1, L) STOP
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Exercise 2: Writing Ones Game

aka the Busy Beaver game

What happens for 𝑛 > 2?

• maximal number of 1s attainable with an 𝑛 states Turing 

Machine: a fast-growing function (not computable!)

• only optimal values for 𝑛 ≤ 4 known!

Discussion Home Exercise

𝒏 = 2 𝒏 = 𝟑 𝒏 = 𝟒 𝒏 = 𝟓 𝒏 = 𝟔 𝒏 = 𝟕

4 

ones

6 

ones

13 

ones

4098 

ones 

?

> 3.5 × 1018267

ones
> 1010

1010
18705353

ones
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Thu Topic

Thu, 12.09.2019 PM Introduction, Combinatorics, O-notation, data structures

Tue, 24.09.2019 PM Sorting algorithms I

Tue, 1.10.2019 PM Sorting algorithms II, recursive algorithms

Tue, 8.10.2019 PM Recursive and Greedy Algorithms

Tue, 15.10.2019 PM Dynamic programming

Thu, 31.10.2019 AM Randomized Algorithms and Blackbox Optimization

Tue, 5.11.2019 PM Complexity theory I

Tue, 26.11.2019 PM Complexity theory II

Tue, 17.12.2019 AM Exam (written)

Course Overview


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 Analyze algorithms and their runtime to solve problems

 Categorize problems according to their difficulty (for an optimal 

algorithm)

Motivation

Stefan Szeider



8Algorithms and Complexity, CentraleSupélec/ESSEC, Nov. 26, 2019© Dimo Brockhoff, Inria 8

 Analyze algorithms and their runtime to solve problems

 Categorize problems according to their difficulty (for an optimal 

algorithm)

Motivation:

Stefan Szeider
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 Analyze algorithms and their runtime to solve problems

 Categorize problems according to their difficulty (for an optimal 

algorithm)

Motivation:

Stefan Szeider
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 Alan Turing (1912—1954)

 simplest computer model

Formal definition:

Reminder: The Turing Machine (TM)

computation

Brandon 

Blinkenberg
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Optimization problem:

find the best solution among all

feasible ones!

 KP: “find packing with maximal value”

Search problem:

output a solution with a given structure!

 KP: “give a packing with value V”

Decision problem:

is there a solution with a certain property?

 KP: “is there a packing with value ≥V”

A decision problem is solved by a TM when it halts in an “accepting 

state” iff the given instance has the desired property

Reminder: Different Problem Types

Dake
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𝐷𝑇𝐼𝑀𝐸 𝑡 𝑛 ≔ 𝑃

P is a decision problem
s. t. there exist an algorithm 𝐴

that solves P in time 𝑂 𝑡 𝑛

}

𝒫 = 𝑘≥1DTIME(𝑛ڂ
𝑘)

The Classes DTIME(t(n)) and 𝒫

PRIMES

MAXIMUM MATCHINGLP

GREATEST COMMON DIVISOR

…

P

MST



13Algorithms and Complexity, CentraleSupélec/ESSEC, Nov. 26, 2019© Dimo Brockhoff, Inria 13

Deterministic TM (DTM) have a deterministic transition function:

Nondeterministic TM (NTM) have only a transition relation:

Nondeterministic Turing Machines
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NP is the set of all problems which have polynomial time 

nondeterministic (!) algorithms

Intuition:

 If I know a solution I can prove in deterministic polynomial 

time whether it belongs to the answer "yes" or "no"

 "Guess" the right solution and prove it in polynomial time

Nondeterminism and the Class NP
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 deterministic machine models

 computability

 an example of a problem which cannot be solved by a 

computer: does a given Turing Machine hold after a finite 

number of steps?

 non-determinism and the class NP

 difficult problems:

 the classes NP-complete, NP-hard, etc.

 polynomial reductions

 the complexity zoo

Complexity Theory: Lecture Overview
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back to the intuition about

non-deterministic Turing Machines
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Deterministic TM (DTM) have a deterministic transition function:

Nondeterministic TM (NTM) have only a transition relation:

Which transitions will be actually performed?

 “lucky guesser”: nondet. TM guesses the right transition

 “parallel computation”: nondet. TM branches into many copies and 

accepts if one of the branches reaches an accepting state

 Note:

 non-det. TMs are a theoretical construct to “analyze” problems

 non-det. TMs can be simulated by deterministic TM

whether this is possible in polynomial time is part of the P=NP hypothesis

Nondeterministic Turing Machines
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Knapsack Problem (KP)

 Guess which items to choose, check that the knapsack

constraint is fulfilled, and sum up all profits

Travelling Salesperson Problem (TSP)

 Guess a tour and sum up all edge weights

Bin Packing (BP)

 Guess the assignment of items to bins, check that the size

restrictions are fulfilled, and count the number of bins used

Problems in NP
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the 𝓟 = 𝓝𝓟 hypothesis
or is it a 𝓟 ≠ 𝓝𝓟 hypothesis?
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 Clear: 𝒫 ⊆ 𝒩𝒫

 Not clear: 𝒫 = 𝒩𝒫

 What is the difference between, e.g., KP and PRIMES?

 For PRIMES, we know a polynomial time algorithm*, for KP, we

don't

 Is KP "harder to solve" than PRIMES?

 Idea: classify the hardest problems in 𝒩𝒫

 𝒩𝒫-complete problems (𝒩𝒫𝐶 ⊆ 𝒩𝒫)

 Cook (1971), Levin (1973): SAT ∈ 𝒩𝒫𝐶

 Reductions

Facts about P=NP Hypothesis

*Agrawal, Kayal, Saxena (2004): "Primes is in P", Annals of Mathematics, 160 (2004), 781–793

S. Cook (1971): "The Complexity of Theorem Proving Procedures", Proc. ACM symp. on Theory of computing, 151–158. 

L. Levin (1973): "Universal'nye perebornye zadachi". Problemy Peredachi Informatsii 9 (3): 265–266.



21Algorithms and Complexity, CentraleSupélec/ESSEC, Nov. 26, 2019© Dimo Brockhoff, Inria 21

Idea:

if problem A can be solved by using an algorithm for problem B, 

then A is not harder than B (except for a polynomial overhead)

Polynomial Reduction (Cook, 1971)

 Transform instance of A into one for B within polynomial time 

by a function 

 Use oracle for B once which computes the solution for 

transformed instance as solution for A



Turing Reduction               (Karp, 1972)

 Use oracle for problem B polynomially often to compute the 

solution of A



Reductions

Important: both reductions are transitive!
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Hamiltonian Cycle

= A cycle in a graph which visits each vertex exactly once.

Hamiltonian Cycle Problem (HC), decision version

 given an undirected graph, is there a Hamiltonian cycle?

Directed Hamiltonian Cycle Problem (DHC)

 same for directed graphs

Example: DHC ≤p HC
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Example: DHC ≤p HC

 Transformation in polynomial time O(nm) possible

 Directed hamiltonian cycle in instance of DHC

Hamiltonian cycle in HC

 Hamiltonian cycle in instance of HC

order of HC is always ..., vi,1, vi,2, vi,3, vj,1, vj,2, vj,3, ... or

..., vi,3, vi,2, vi,1, vj,3, vj,2, vj,1, ...

take either HC or the inverted HC as solution for DHC

DHC HC
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 The last example was a reduction from a special case to a 

general case

 Now: one slightly more complicated example

Different Types of Polynomial Reductions
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Traveling Salesperson Problem (TSP)

 Given a set of cities and their

distances

 Find the shortest path going

through all cities

 Decision version: is there a 

(Hamiltonian) path through the

graph that is shorter than a given

constant?

The Traveling Salesperson Problem (TSP)
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Observation: Hamilton Cycle Problem is a subproblem of TSP

Transformation:

Simulate same graph for TSP as the one given for HC

 Full graph actually, but weight 1 for each edge in HC graph 

and weight 2 for each „non-edge“ in HC

 Asking the TSP oracle whether a weight |V| tour exists

Correctness:

 If H is a Hamilton cycle in original graph, it is also a cycle 

through all cities but with weight ≤|V|

 Let T be a tour in the (transformed) TSP instance with weight 

≤|V|. It cannot contain an edge with weight 2. Hence, the 

cycle T is also a cycle in the original HC problem.

Example: HC ≤p TSP
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Given a 3-SAT instance with n variables xi and k clauses.

Construction of DHC instance:

 basic graph with 2𝑛 many Hamilton circuits (n rows, 3k columns)

 intuition: set xi to TRUE iff its row is traversed from left to right

Example: 3-SAT ≤p DHC

x1

x2

x3

xn

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08IntractabilityI.pdf
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Given a 3-SAT instance with n variables xi and k clauses.

Construction of DHC instance:

 for each clause add 1 vertex and 6 edges

Example: 3-SAT ≤p DHC

x1

x2

x3

xn

(x1 OR x2 OR x3) (x1 OR x2 OR xn)

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08IntractabilityI.pdf
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Given a 3-SAT instance with n variables xi and k clauses.

Construction of DHC instance:

 for each clause add 1 vertex and 6 edges

Example: 3-SAT ≤p DHC

x1

x2

x3

xn

(x1 OR x2 OR x3) (x1 OR x2 OR xn)

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08IntractabilityI.pdf

obviously computable in polynomial time
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3-SAT instance is satisfiable iff corresponding graph G has 

Hamilton cycle!

 let’s show “” first

 assume that the 3-SAT instance has satisfying assignment x*

 construct Hamiltonian cycle in G as follows:

 if x*i = 1, traverse row i from left to right

 if x*i = 0, traverse row i from right to left

 for each clause Cj, there is at least one row i in which we are 

going in "correct" direction to insert the corresponding Cj

vertex into the tour (we do this only once per clause vertex)

Proof of Correctness

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08IntractabilityI.pdf
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3-SAT instance is satisfiable iff corresponding graph G has 

Hamilton cycle!

 now, let us see “”

 assume a Hamiltonian cycle H in G

 by construction, it has to visit node Cj from and to the same row

 replacing the part of H through Cj by the edge in between its 

neighbors defines a Hamilton cycle on G\Cj

 doing this for all Cj allows to assign x*i = 1 if row i is traversed 

fully from left to right and x*i = 0 otherwise

 now since H traverses the clause vertex Cj originally, at least 

one of the paths through it is traversed in “correct” order and 

each clause is satisfied

Proof of Correctness

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08IntractabilityI.pdf
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 𝒩𝒫𝐶: set of all 𝒩𝒫-complete problems

 The "hardest problems in 𝒩𝒫"

 A is 𝒩𝒫-complete if

 A ∈ 𝒩𝒫

 All problems A𝒩𝒫 ∈ 𝒩𝒫 can be polynomially reduced to A:

∀A𝒩𝒫: A𝒩𝒫 ≤𝑝 𝐴

 𝒩𝒫-complete problems are the hardest of the ones in 𝒩𝒫 in the

sense that if I can solve them in polynomial time, I can solve all 

problems in 𝒩𝒫 in polynomial time

The Class NPC



33Algorithms and Complexity, CentraleSupélec/ESSEC, Nov. 26, 2019© Dimo Brockhoff, Inria 33

How to prove that a problem A is 𝒩𝒫-complete?

Two possibilities:

 Either prove A ∈ 𝒩𝒫 and for all problems in 𝒩𝒫 that
they can be reduced to A (complex, see Cook (1971)) or

 Prove A ∈ 𝒩𝒫 (simple) and a reduction from a problem B 

that is already known as 𝒩𝒫-complete to A (!)

Proving NP-completeness

caveat: be careful of the order in the reduction!
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Theorem: 3-SAT  NPC

 proven by Cook in 1971 and independently (with a slightly 

different proof) by Levin in 1973

 not enough time here for the detailed proof

But idea easy to understand:

 3-SAT  NP trivial

 Given any problem p  NPC and an instance i to that problem, 

construct a Boolean formula which is satisfiable iff the non-

deterministic TM for p accepts instance i

 Variables for states of the TM, e.g. Ti,j,k = true if tape cell i

contains symbol j at step k of the computation

 Polynomially many variables and Boolean statements enough 

because the TM runs in polynomial time

The Cook-Levin Theorem
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A is NP-complete if





A is NP-hard if 



Implications:

 An NP-hard problem is not necessarily a decision problem

 The search and optimization versions of an NP-complete 

problem are NP-hard

Difference between NP-complete and NP-hard
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The proof of NP-completeness is typically seen as a proof of difficulty:

“I did not find an efficient algorithm for my problem, maybe I am 

dumb?”

vs.

“I cannot find an efficient algorithm for my problem because there is 

none”

vs.

“I did not find an efficient algorithm for my problem but neither did all 

of those famous people”

Practical Implications of Reductions
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Having a proof of NP-completeness or NP-hardness, does not 

mean that a problem is not manageable in practice:

 the average-case complexity might be reasonable

 randomized algorithms might work well

 maybe, the difficult instances are not observed

Example of success: SAT solvers

But...
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Is P=NP?

 One of the 7 Millennium Prize problems selected by the Clay 

Mathematics Institute (worth 106 $)

 first mentioned in 1956 in letter from K. Gödel to J. von 

Neumann

 formalized by J. Cook in his 1971 seminal paper

 solving this problem might have significant practical implications 

(or not)

what do you think?

The Famous P versus NP Problem
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The „Complexity Zoo"

PRIMES

MAXIMUM MATCHINGLP

GREATEST COMMON DIVISOR

P

KP

SAT

3-SAT

TSPCLIQUE
KP

NPC

NPI=NP-P-NPC

GRAPH ISOMORPHY ?

VC

…

NP=PCP(log n,1)

…
BPP

2=NP(NP)

…
MST

?
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I hope it became clear...

...what complexity theory is about

...what is a Random Access Machine and a Turing Machine

... how a decision and an optimization problem differ

...what are the classes P, NP, and NPC

...and that complexity theory is more involved than what we

could see here 

Conclusions


