Home Exercise 1: Combinatorics, O-notation, and Data Structures

Algorithms and Complexity lecture
at CentraleSupélec / ESSEC

Dimo Brockhoff
firstname.lastname@inria.fr
due: September 25, 2020

Abstract

Please send your solutions by email to Dimo Brockhoff (preferably in PDF format) with a clear indication of your full name until the submission deadline on September 25, 2020 (a Friday). Groups of 5 students are explicitly allowed and highly encouraged. In the case of group submissions, please make sure that you submit maximally three times with the same partner!

1 Matrix Multiplication (5 points)

How many additions and how many multiplications does the well-known algorithm from linear algebra needs to multiply a matrix of size $m \times n$ with another one of size $n \times l$?

2 Finding Smallest Elements (5 points)

Assume you are given a (potentially unsorted!) array A of n elements. Describe an algorithm that computes the smallest element in A and how long it takes to compute it in the best and the worst case.

3 Finding Smallest Elements II (5 points)

How must your algorithm change (and how does its runtime change) when, instead of the smallest element, you are supposed to find the smallest 2 or the smallest 3 elements in an array A of n elements? Assume that $n \gg 3$.

4 O notation (5 points)

Which of the following "equations" hold? Please give either a proof or a counter example. Note that $O\left(f_{1}\right) \circ O\left(f_{2}\right)$ denotes the set $\left\{g_{1} \circ g_{2} \mid g_{1} \in\right.$ $\left.O\left(f_{1}\right), g_{2} \in O\left(f_{2}\right)\right\}$ for any operator \circ between two functions g_{1} and g_{2}.

1. $O\left(f_{1}\right)=O\left(\log \left(f_{1}\right)\right)$
2. $O\left(f_{1}\right) \cdot O\left(f_{2}\right)=O\left(f_{1} \cdot f_{2}\right)$
