Home Exercise 3: Sorting

Algorithms and Complexity lecture
at CentraleSupélec / ESSEC

Dimo Brockhoff

firstname.lastname@inria.fr

due: Friday, October 9, 2020

Abstract

Please send your solutions by email to Dimo Brockhoff (preferably
in PDF format) with a clear indication of your full name until the sub-
mission deadline on October 9, 2020 (a Friday). Groups of 5 students
are explicitly allowed and highly encouraged. In the case of group
submissions, please make sure that you submit maximally three times
with the same partner!

1 Insertion Sort with binary search (5 points)

Run the Insertion Sort algorithm with binary search on the following (inte-
ger) array:

[503 [87 [512 [61 [908 [170 [897 [275 | 654 | 426 | 154 | 509 | 612 | 653 | 765 | 703 |

Please indicate how the array looks after each step. How many comparisons
did the algorithm perform?

2 Mergesort (5 points)

Run the Mergesort algorithm on the following array and, similar to the above,
show the array content after each step.

[510 [57 | 512 [38 [909 | 241 [897 [250 | 653 | 499 | 154 | 511 [612 [677 | 865 | 777 |

3 Implementing Mergesort and Comparison
with Timsort (545 points)

Part I (5 points) Implement your own Mergesort algorithm that is able

to sort any lists of floats. For this, please use the code in the jupyter
notebook that is provided at http://www.cmap.polytechnique.fr/~dimo.
brockhoff/algorithmsandcomplexity/2020/exercises/sorting_template.
ipynb. Concretely, implement the Mergesort algorithm within the function
def mergesort(1l) and make sure that the test is passing (i.e. the output

is something like TestResults(failed=0, attempted=4)).

Part II (5 points) Compare the differences in runtime between your own
Mergesort implementation and python’s internal Timsort (via the sorted(. . .)
function) on randomly generated lists of integers. To this end, plot the times
to sort 100 lists of equal length n with both algorithms for different values
of n € {10,100, 1000, 10000}.

Tip:

>>> import timeit
>>> timeit.timeit(‘your code’, number=100)

Another (even more important) Tip: use the ? to get help on a module (and
77 to inspect the code).

Questions:
What do you observe? Which algorithm is faster? Is one algorithm asymp-
totically faster?
For both parts, please send your python code as well!

