
Home Exercise 3: Sorting

Algorithms and Complexity lecture
at CentraleSupélec / ESSEC

Dimo Brockhoff
firstname.lastname@inria.fr

due: Friday, October 9, 2020

Abstract

Please send your solutions by email to Dimo Brockhoff (preferably
in PDF format) with a clear indication of your full name until the sub-
mission deadline on October 9, 2020 (a Friday). Groups of 5 students
are explicitly allowed and highly encouraged. In the case of group
submissions, please make sure that you submit maximally three times
with the same partner!

1 Insertion Sort with binary search (5 points)

Run the Insertion Sort algorithm with binary search on the following (inte-
ger) array:

503 87 512 61 908 170 897 275 654 426 154 509 612 653 765 703

Please indicate how the array looks after each step. How many comparisons
did the algorithm perform?

1



2 Mergesort (5 points)

Run the Mergesort algorithm on the following array and, similar to the above,
show the array content after each step.

510 57 512 38 909 241 897 250 653 499 154 511 612 677 865 777

3 Implementing Mergesort and Comparison

with Timsort (5+5 points)

Part I (5 points) Implement your own Mergesort algorithm that is able
to sort any lists of floats. For this, please use the code in the jupyter
notebook that is provided at http://www.cmap.polytechnique.fr/~dimo.
brockhoff/algorithmsandcomplexity/2020/exercises/sorting_template.

ipynb. Concretely, implement the Mergesort algorithm within the function
def mergesort(ll) and make sure that the test is passing (i.e. the output
is something like TestResults(failed=0, attempted=4)).

Part II (5 points) Compare the differences in runtime between your own
Mergesort implementation and python’s internal Timsort (via the sorted(...)
function) on randomly generated lists of integers. To this end, plot the times
to sort 100 lists of equal length n with both algorithms for different values
of n ∈ {10, 100, 1 000, 10 000}.
Tip:

>>> import timeit

>>> timeit.timeit(‘your code’, number=100)

Another (even more important) Tip: use the ? to get help on a module (and
?? to inspect the code).

Questions:
What do you observe? Which algorithm is faster? Is one algorithm asymp-
totically faster?
For both parts, please send your python code as well!

2


