Algorithms & Complexity

September 21, 2020
CentraleSupélec / ESSEC Business School

Dimo Brockhoff

Inria Saclay — lle-de-France

TTTTTTTTTTTTTTTTTTTTTTTTTTT

INSTITUT

YT
@O\ TEc,
° 1
~ ‘ [%])
:
A '

» POLYTECHNIQUE -
'%,“qe' DE PARIS W2 1P PARIS

Algorithms & Complexity

September 21, 2020
CentraleSupélec / ESSEC Business School

Dimo Brockhoff

Inria Saclay — lle-de-France

TTTTTTTTTTTTTTTTTTTTTTTTTTT

INSTITUT PourTECHNIQUE

YT
QO T,
° %
~ ‘ °
-
= ’

" POLYTECHNIQUE
Y& DE PARIS B 1p pamis

Weekly Covid-19 Update: It could be worse...

Py SO
(‘ ihfitsinib(l Il ‘\‘\“'
(I
(R

5"r"‘1f T
LR

© Dimo Brockhoff, Inria 2019-2020

Weekly Covid-19 Update: It could be worse...

Paris (departement 75, 2.15 million people)

1 1 1 1 1 1 1 1]]]]] 1
10000 wj= ¥ tests per day
—f== ¥ positive per day = 1 =
- —— tests per positive test — 4 T MY
3000 = m=== positive per 100,000 people per day ﬁ - - —-!_— +—3 ¥ -4
== ditto in Paris Region (12 million people) ! + ¥
1000 o4 = hospitalized per 100,000 people | [
= admitted to intensive care per 100,000 people 3 ; ool Tt
- = deceased per 100,000 people — 2 | -+
300 o = admitted to intensive care per deceased, 18-day mqv.average =+ —
| | 1 | 18-
100 : . f sy A, o - _—
: 1 L _‘A‘ A '__ " i 4
1 | VAR 4
> i » - I &g . ‘ -
g 3 ViivAt T 1H j: S :
'&3 | “- - i3 . I ¥ :
Q '.A 1 !
g 10 X H —H—— . VIR IERIERE
'g & v 1 ‘ir} = - = = — : — 2 == == == = S
2 A VWA ¥ St
3 N . i
S |
139 “1 R~ I RE : 8¢ B B
A i —
03 + ¥ 9t ¥
0.1 — — ——}- | — B AV
= —— — —~ — — = = = == =
0.03 ’ ' 1} -
from 2020-05-13 tp 2020-09-17 i g 111}
r . -gouv. -Vi u d-f1
0.01 A53YFEE RHRS: GEER: | I .
m [=] o m o ~ < -~ ++] "2} ~ @0 wn o~ ()] O m o ~ m o ~ < ~ r~ <
L S o R 0 T - T~ S R A~ S - - A L S SO S - R - B GO S - S
m m < < < < n wn wn "2} O O (le] (le] o ~ ~ ~ ~ o] [<*] w w «© [+)} (=]
C 9 9 9 9 9 9 Q9 9 90 © 9 9 0 9 0 o 9 9 9 @ 9 9 9
o o o o o o o o o < o o o o o o o o o o o o
N N N NN N NN N ¢cdate[month-day] &N &N &N &N N N N N N N N N
[} () -~ ~ ~ = ~ ~ ~ r () () [} () (=) -~ ~ ~ ~ ~ -~ ()

http://www.cmap.polytechnique.fr/~nikolaus.hansen/covid-19.html

© Dimo Brockhoff, Inria 2019-2020

Weekly Covid-19 Update: It could be worse...

Taux d'incidence ACTIO

Chiffres-clés 2020-09-11-2020-09-17

Statistique France
France : 88,3 minimurm 12,0 (Creuse - 23)
maximum 285,8 (Guadeloupe - 971)
Essonne : 56,3 médiane 559
observations valides 104 sur 104

Graphiques et comparaisons
Evolution temporelle comparée -
Comparaison
100,0
20,0
80,0
70,0
60,0
50,0
40,0
30,0
20,0

10,0 =N
—

0,0

2020-05-17-2020-05-23 2020-05-30-2020-06-05 2020-06-12-2020-06-18 2020-08-25-2020-07-1 2020-07-08-2020-07-14 2020-07-21-2020-07-27 2020-08-03-2020-08-08 2020-08-18-2020-08-22 2020-08-29-2020-09-04 2020-08-11-2020-08-17
— ES50NNE m— France

https://geodes.santepubliquefrance.fr/#c=indicator&i=sp_ti tp 7j.tx_pe_gliss&s=2020-
09-11-2020-09-17&selcodgeo=91&t=a01&view=map2

© Dimo Brockhoff, Inria 2019-2020

Why Algorithms & Complexity?

Algorithm

(noun.)

Word used by programmers when they
do not want to explain what they did.

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

Why Algorithms & Complexity?

d by programmers
not want to explain what they

[...] an algorithm is a set of instructions, typically to
solve a class of problems or perform a computation.
[from wikipedia]

Algorithms widespread in almost every aspect of the “real-world”
= (automatic) problem solving
= sorting
* accessing data in data structures

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

Mnemonic: Algorithm = Recipe

Recipe: Algorithm:
= Cook cooks a meal = A computer solves a problem

Euclid's algorithm for the
greatest common divisor (gcd)
of two numbers

INPUT A, B

o]

*:‘ : no
BA 2V El
Peng @

no (< or =)

(4] B+<B-A |

(5] GoTOo2 |
—

(6] | A<A-B |

| cotoz |
|

[
PRINT A -
3] @ Somepics

© Dimo Brockhoff, Inria 2019-2020

Mnemonic: Algorithm = Recipe

Recipe: Algorithm:
= Cook cooks a meal = A computer solves a problem

= Independent of cook, type of = Independent of programmer,
pan, type of stove/oven/... computer, programming
language, ...
= Actually, a computer is
running an implementation of
an algorithm

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

Example: Sorting

Aim: Sort a set of cards/words/data

[Google, for example, has to sort all webpages
according to the relevance of your search]

Re-formulation: minimize the “unsortedness”

EFCADB
BACFDE 1 sortedness increases

ABCDEF

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

Example: Sorting

Classical Questions:
* What is the underlying algorithm?
(How do | solve a problem?)
= How long does it run to solve the problem?

(How long does it take? Which guarantees can | give? How
fast is the algorithm progressing?)

* |s there a better algorithm or did I find the optimal one?
related to the complexity part of the lecture

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

Caution:
This is not an “algorithms for data scientists” lecture (!)

= we do not cover algorithms for regression, regularization,
dimensionality reduction, clustering, deep learning, ...

= _..but cover much more basic things:
= data structures
= data sorting
= fundamental algorithm design ideas
= how to analyze an algorithm
= how to prove lower runtime bounds for hard problems

» the actual data science related topics are taught in later
lectures

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

What we plan to do in the A&C lecture

Learning Goals:

@ know basic design principles behind good algorithms
(“building blocks to help solving “your own” problems”)

® Dbe able to analyze theoretically some algorithms
= give strong bounds on their “effectiveness”

» understand the ideas of (worst case) algo complexity
("Am | too dumb to find a quick algorithm or can nobody
do better?")

® Dbe able to use and understand existing algorithms
(“practice, practice, practice!”)

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

What we plan to do in the A&C lecture

How are we going to do that?

* |ook at a lot of examples of algorithms
= mixture of lectures and small exercises
»= practice and theory

= additionally 1 home exercise per week

Please ask questions
If things are unclear throughout the course!

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

Course Overview

Thu

Mon, 21.09.2020
Mon, 28.09.2020
Mon, 5.10.2020
Mon, 12.10.2020
Mon, 19.10.2020
Mon, 2.11.2020
Mon, 16.11.2020
Mon, 23.11.2020

Mon, 14.12.2019

PM
PM
PM
PM
PM
PM
PM
PM

PM

__Topic

Introduction, Combinatorics, O-notation, data structures
Data structures Il, Sorting algorithms |

Sorting algorithms I, recursive algorithms

Greedy algorithms

Dynamic programming

Randomized Algorithms and Blackbox Optimization
Complexity theory |

Complexity theory Il

Exam

© Dimo Brockhoff, Inria 2019-2020

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

Remarks on Exercises |

* included within the lecture (typically 1/3 of it)
= expected to be done on paper or in python [we'll see...]

* hence, please make sure you have python installed on your
laptop until the second lecture

= Anaconda is the recommended way to get there:
https://www.anaconda.com/distribution/
» (basic) example solutions will be made available afterwards

= | will try to also include some interactive formats for the students
online

= not graded but please see it as training for the exam

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

Remarks on Exercises |l

In addition:
= 7 home exercises with 20 points each
= Counts 1/3 to overall grade (exam is the other 2/3)

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

Remarks on

Achieved points

In addition: 136 =p = 140 20 4
132 <p < 136 19 4
= 7 home exerc
128 < p < 132 18 4
= Counts 1/3 to 124 <p <128 T 7
= Graded as: 118 < p < 124 16 6
112 <p < 118 15 6
106 < p < 112 14 8
98 < p < 106 13 8
90 < p < 98 12 8
80 < p < 90 11 10
70 < p < 80 10 10
60 <p <70 9 10
50 < p < 60 8 10
40 < p < 50 7 10
34 <p <40 6 6
1.5 6,6, 6, 6, 6

0<p<4 0 4

© Dimo Brockhoff, Inria 2019-2020

Remarks on Exercises |l

In addition:

7 home exercises with 20 points each

Counts 1/3 to overall grade (exam is the other 2/3)

Graded as explained before

Group submissions of 5 students allowed (and highly encouraged!)
But: maximally 3 submissions with the same student pair

Exercise available on Mondays

Deadline for submission by email on Fridays

= tight, but allows me to hopefully have them corrected by the
next lecture

Solutions will be discussed during the next lecture

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 2

= Monday, 14" December 2020 in the afternoon (3 hours)

= (most likely) multiple-choice with 20-30 questions

= (most likely) on-site + online [detalils to be shared later]

= open book: use as much material as you want

= |n previous year: no electronic devices allowed that connect to

the internet [we’ll also see for this one ©)]
All information available at

http://www.cmap.polytechnique. fr/~dimo.brockhoff/
algorithmsandcomplexity/2020/

and also on EDUNAO
(exercise sheets, lecture slides, additional information, links, ...)

© Dimo Brockhoff, Inria 2019-2020

http://www.cmap.polytechnique.fr/~dimo.brockhoff/algorithmsandcomplexity/2020/

any questions?

© Dimo Brockhoff, Inria 2019-2020

Overview of Today’s Lecture

Basics

= Fundamental combinatorics

= notations such as the O-notation

= algorithms on basic data structures

= arrays
= |ists
= f{rees

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

Basics I: Combinatorics

For this and the next parts, a nice-to-read reference is
https://www.math.upenn.edu/~wilf/AlgoComp.pdf

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

https://www.math.upenn.edu/~wilf/AlgoComp.pdf

Combinatorics = Counting

counting combinations and counting permutations

Why combinatorics?

= |n order to compute probabilities
#favorable outcomes

P(event) =
(e) #possible outcomes

= Related to graph theory (later)
» Related to combinatorial optimization (later)

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

Number of Permutations

Permutation: a sequence/order of members of a set

How many different orders exist on [n] := 1,...,n?

= First integer: choice among n
= Second integer: choice among n-1
= Last integer: no choice among 1

= Intotaln-(n—1)-..-1 =: n!

@ Watchduck (a.k.a. Tilman Piesk)

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

How to Generate a Random Permutation?

ldea: generate a random vector, sort it and use the generated
sorting order as the permutation

import numpy as np

n =4

random array = np.random.rand(n)
random perm = np.argsort(random array)

More elegant way:

random perm = np.random.permutation(n) ©

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

Combinations Without Replacement (k-co

How many combinations of set members of a given size exist?

Example: number of different poker hands
= 52*51*50*49*48 = 311,875,200 ways
to hand 5 cards out of 52
= put: order does not matter here!
= There are 5! =120 orders of 5 cards

= Hence, there are DR
311,875,200/120 = 2,598,960 distinct pokers hands in total

In general, the number of k-combinations of n items (without
replacements) is

!
(1) = k!(nn— 0!

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep

Combinations with replacement

What if we want to allow duplicates?
= combinations with replacement

also known as k-combination with repetitions or k-multicombination

Example:

© Dimo Brockhoff, Inria 2019-2020

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

I et M AT

Combinations with repl

WestportWiki

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

Combinations with replacement

What if we want to allow duplicates?
= combinations with replacement

also known as k-combination with repetitions or k-multicombination

Example:

eat 3 donuts from a choice of 4 different ones

© Dimo Brockhoff, Inria 2019-2020

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

Combinations with replacement

What if we want to allow duplicates?
= combinations with replacement

also known as k-combination with repetitions or k-multicombination

Example:

eat 3 donuts from a choice of 4 different ones

Number of k-combinations with replacement:
n+k—-1\((n+k-1
k B n—1
Here with n = 4, k = 3: (**37') = () = 20 combinations

© Dimo Brockhoff, Inria 2019-2020

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

Why That? The Stars and Bars Method

Stars and Bars: A useful counting method popularized by W. Feller*

How many combinations to put k objects into n bins?
= oObjects: stars
* bins: separated by bars

= Example of n=5 bins and k=7 objects: * % |%|| * * % | %
= Donut example: n=4 bins/donut types, k=3 objects

Number of combinations to put k objects into n bins
= number of combinations to place k objects on n+k-1 places =("""")

= number of combinations to place n-1 bars on n+k-1 places =>(":flf;1

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

How to Generate a Random k-Combination®

Naive way:
from itertools import combinations
import numpy as np

n =14

k = 2

all k-combinations of [0, 1, .., n-1]:
comb = list(combinations (np.arange(n), k))

pick one at random
random k combination =
comb [np.random.randint (len (comb))]

Works only for small enough n and k:
len (comb)is 15,890,700 for n=50 and k=6

and 99,884,400 for n=50 and k=7

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 2

How to Generate a Random k-Combination?

More efficient way:

» |terate across each element of {1,...,n}
» pick each element with a dynamically changing probability of

k — #samples chosen

n — #samples visited

until k elements are picked.

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

Exercise

a) In how many different ways can the 15 balls
of a pool billiard be placed (on a line)?

b) How many different combinations of five
coins (Euros) can you have in your pocket?

c) How likely is it to get your bike stolen with
the lock on the right?

© Dimo Brockhoff, Inria 2019-2020

a) 15! (we look for the number of permutations of 15 distinct balls)

b) (8+5-1) choose 5 = 792 (8 different coins, choose 5 with
repetition)

C) it's pretty safe: the probability to find the right number is

1

T 10~°, assuming that a random number out of all 10 - 10 - 10 -

10 - 10 = 10° lock numbers is tried. It takes >10min to try out 1%
of all 10° numbers if you try 2 lock combinations per second.

© Dimo Brockhoff, Inria 2019-2020

Basics |l: The O-Notation

© Dimo Brockhoff, Inria 2019-2020

Excursion: The O-Notation

Motivation:

= we often want to characterize how quickly a function f(x) grows
asymptotically

= e.g. we might want to say that an algorithm takes quadratically
many steps (in n) to find the optimum of a problem with n
(binary) variables, it is never exactly n?, but maybe n? + 1 or
(n + 1)*

Big-O Notation

should be known, here mainly restating the definition:

Definition 1 We write f(x) = 0(g(x)) iff there exists a constant
c > 0 and an xy >0 such that |f(x)| < ¢ - g(x) holds for all x > x,

we also view O(g(x)) as the set of all functions growing at most
as quickly as g(x) and write f(x) eO(g(x))

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

Big-O: Examples

= f(x) +c=0(f(x)) [aslong as f(x) does not converge to zero]
= c-f(x) = O(f(X))

= f(x) - 9(x) = O(f(x) - 9(x))
= 3n*+n?-7=0(n%

Intuition of the Big-O:

= if f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically)
for f

= constants don't play a role
= with Big-O, you should have ‘<’ in mind

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21 2

Excursion: The O-Notation

Further definitions to generalize from ‘<’ to 2" and ‘="

= 1(x) =Q(g(x)) 1t g(x) = O(f(x))
= f(x) = 0(g(x)) If f(x) = O(g(x)) and g(x) = O(f(x))

Note: Definitions equivalent to ‘< and >’ exist as well, but are not
needed in this course

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

Exercise O-Notation

Please order the following functions in terms of their asymptotic
behavior (from smallest to largest):

= exp(n®)

= Jogn

* Inn/Ininn
" n

= nlogn

= exp(n)

= In(n!)

Give for two of the relations a formal proof.

© Dimo Brockhoff, Inria 2019-2020

Exercise O-Notation (Solution)

Correct ordering:

|
n log n = O(In(n!)) In(n!)= O(e") e" = O(e"?)

but for example e"? # O(e")

One exemplary proof:

In(n) |
in(in(n)) ~ ©0g n):
In(n) log(n) 3log(n)
In(In(n))| |log(e) In(In(n)) = = 3 log(n)

T In(In(n)) T

forn>1 forn> 15

© Dimo Brockhoff, Inria 2019-2020

Exercise O-Notation (Solution)

One more proof: In n! =O(n log n)
= Stirling’s approximation: n! ~V2mn(n/e)" or even

Vornt1/2e™m < pl < enntl/2e™m

n+= 1
* |nn!<In(en "2e7™") =1+ (n+§) Inn—n

logn

=c-nlogn

1
< (n+—)lnn <2nlnn=2n
2 loge

okay forc = 2/loge and alln e N

= nlnn=0(nn!) proven in a similar vein

© Dimo Brockhoff, Inria 2019-2020

If it’s not clear yet: Youtube

= https://www.youtube.com/watch?v=__ vX2sjlpXU

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

basic data structures

© Dimo Brockhoff, Inria 2019-2020

Why Data Structures? What are those?

A data structure is a data organization, management, and storage
format that enables efficient access and modification.

More precisely, a data structure is a collection of data values, the

relationships among them, and the functions or operations that can
be applied to the data.

from wikipedia

Why important to know?

= Only with knowledge of data structures can you program well
= Knowledge of them is important to design efficient algorithms

© Dimo Brockhoff, Inria 2019-2020

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

Data Structures and Algorithm Complexity

Depending on how data is stored, it is more or less efficient to
= Add data
= Remove data
= Search for data

Common Complexities

Complexity | RunningTime |

constant 0(1) independent of data size
logarithmic 0 (log(n)) often base 2, grows relatively slowly with data
size
linear 0(n) nearly same amount of steps than data points
O(nlog(n)) Common, still efficient in practice if n not huge
guadratic 0(n?) Often not any more efficient with large data sets

exponential 0(2™),0(n!),... Should be avoided ©

see also: https://introprogramming.info/english-intro-csharp-book/read-online/chapter-19-data-structures-and-algorithm-complexity

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.

https://introprogramming.info/english-intro-csharp-book/read-online/chapter-19-data-structures-and-algorithm-complexity

Best, Worst and Average Cases

Algorithm complexity can be given as best, worst or average cases:

Worst case:

= Assumes the worst possible scenario

= Algorithm can never perform worse

= Corresponds to an upper bound (on runtime, space requirements,

)

= Most common

Best case:
= Best possible scenario
= Algorithm is never quicker/better/more efficient/...

Average case:

= Complexity averaged over all possible scenarios
= Often difficult to analyze

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21

Array: a fixed chunk of memory of constant size that can contain a
given number of n elements of a given type

= think of a vector or a table
= |n python:
= import numpy as np
= a = np.array([1l, 2, 3])
= a[1l] returns 2 [python counts from 0!]

Common operations and their complexity:
= Get(i) and Update(i) in constant time

= but Remove(i), Move j in between positions i and i+1, ...
are not possible in constant time, because necessary
memory alterations not local

* To know whether a given item is in the array: linear time

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 2

