
Algorithms & Complexity

Dimo Brockhoff

Inria Saclay – Ile-de-France

September 21, 2020

CentraleSupélec / ESSEC Business School

Algorithms & Complexity

September 21, 2020

CentraleSupélec / ESSEC Business School

Dimo Brockhoff

Inria Saclay – Ile-de-France

3Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 3

Mastertitelformat bearbeitenWeekly Covid-19 Update: It could be worse…

http://www.cmap.polytechnique.fr/~nikolaus.hansen/covid-19.html

4Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 4

Mastertitelformat bearbeiten

http://www.cmap.polytechnique.fr/~nikolaus.hansen/covid-19.html

Weekly Covid-19 Update: It could be worse…

5Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 5

Mastertitelformat bearbeiten

https://geodes.santepubliquefrance.fr/#c=indicator&i=sp_ti_tp_7j.tx_pe_gliss&s=2020-

09-11-2020-09-17&selcodgeo=91&t=a01&view=map2

Weekly Covid-19 Update: It could be worse…

6Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 6

Mastertitelformat bearbeitenWhy Algorithms & Complexity?

7Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 7

Mastertitelformat bearbeiten

Algorithms widespread in almost every aspect of the “real-world”

 (automatic) problem solving

 sorting

 accessing data in data structures

 …

Why Algorithms & Complexity?

[…] an algorithm is a set of instructions, typically to

solve a class of problems or perform a computation.

[from wikipedia]

8Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 8

Mastertitelformat bearbeiten

Recipe:

 Cook cooks a meal

Mnemonic: Algorithm = Recipe

Algorithm:

 A computer solves a problem

Somepics

Peng

9Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 9

Mastertitelformat bearbeiten

Recipe:

 Cook cooks a meal

 Independent of cook, type of

pan, type of stove/oven/…

Mnemonic: Algorithm = Recipe

Algorithm:

 A computer solves a problem

 Independent of programmer,

computer, programming

language, …

 Actually, a computer is

running an implementation of

an algorithm

10Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 10

Mastertitelformat bearbeiten

Aim: Sort a set of cards/words/data

[Google, for example, has to sort all webpages

according to the relevance of your search]

Re-formulation: minimize the “unsortedness”

E F C A D B

B A C F D E

A B C D E F

Example: Sorting

sortedness increases

11Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 11

Mastertitelformat bearbeiten

Classical Questions:

 What is the underlying algorithm?

(How do I solve a problem?)

 How long does it run to solve the problem?

(How long does it take? Which guarantees can I give? How

fast is the algorithm progressing?)

 Is there a better algorithm or did I find the optimal one?

related to the complexity part of the lecture

Example: Sorting

12Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 12

Mastertitelformat bearbeiten

Caution:

This is not an “algorithms for data scientists” lecture (!)

 we do not cover algorithms for regression, regularization,

dimensionality reduction, clustering, deep learning, …

 …but cover much more basic things:

 data structures

 data sorting

 fundamental algorithm design ideas

 how to analyze an algorithm

 how to prove lower runtime bounds for hard problems

 …

 the actual data science related topics are taught in later

lectures

Be Aware

13Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 13

Mastertitelformat bearbeiten

Learning Goals:

 know basic design principles behind good algorithms

(“building blocks to help solving “your own” problems”)

 be able to analyze theoretically some algorithms

 give strong bounds on their “effectiveness”

 understand the ideas of (worst case) algo complexity

("Am I too dumb to find a quick algorithm or can nobody

do better?")

 be able to use and understand existing algorithms

(“practice, practice, practice!”)

What we plan to do in the A&C lecture

14Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 14

Mastertitelformat bearbeiten

How are we going to do that?

 look at a lot of examples of algorithms

 mixture of lectures and small exercises

 practice and theory

 additionally 1 home exercise per week

What we plan to do in the A&C lecture

Please ask questions

if things are unclear throughout the course!

15Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 15

Mastertitelformat bearbeiten

Thu Topic

Mon, 21.09.2020 PM Introduction, Combinatorics, O-notation, data structures

Mon, 28.09.2020 PM Data structures II, Sorting algorithms I

Mon, 5.10.2020 PM Sorting algorithms II, recursive algorithms

Mon, 12.10.2020 PM Greedy algorithms

Mon, 19.10.2020 PM Dynamic programming

Mon, 2.11.2020 PM Randomized Algorithms and Blackbox Optimization

Mon, 16.11.2020 PM Complexity theory I

Mon, 23.11.2020 PM Complexity theory II

Mon, 14.12.2019 PM Exam

Course Overview

16Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 16

Mastertitelformat bearbeiten

 included within the lecture (typically 1/3 of it)

 expected to be done on paper or in python [we’ll see…]

 hence, please make sure you have python installed on your

laptop until the second lecture

 Anaconda is the recommended way to get there:

https://www.anaconda.com/distribution/

 (basic) example solutions will be made available afterwards

 I will try to also include some interactive formats for the students

online

 not graded but please see it as training for the exam

Remarks on Exercises I

17Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 17

Mastertitelformat bearbeiten

In addition:

 7 home exercises with 20 points each

 Counts 1/3 to overall grade (exam is the other 2/3)

Remarks on Exercises II

18Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 18

Mastertitelformat bearbeiten

In addition:

 7 home exercises with 10 points each

 Counts 1/3 to overall grade (exam is the other 2/3)

 Graded as:

Remarks on Exercises II
Achieved points grade Difference

136 ≤ 𝑝 ≤ 140 20 4

132 ≤ 𝑝 < 136 19 4

128 ≤ 𝑝 < 132 18 4

124 ≤ 𝑝 < 128 17 4

118 ≤ 𝑝 < 124 16 6

112 ≤ 𝑝 < 118 15 6

106 ≤ 𝑝 < 112 14 8

98 ≤ 𝑝 < 106 13 8

90 ≤ 𝑝 < 98 12 8

80 ≤ 𝑝 < 90 11 10

70 ≤ 𝑝 < 80 10 10

60 ≤ 𝑝 < 70 9 10

50 ≤ 𝑝 < 60 8 10

40 ≤ 𝑝 < 50 7 10

34 ≤ 𝑝 ≤ 40 6 6

… 1..5 6, 6, 6, 6, 6

0 ≤ 𝑝 <4 0 4

19Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 19

Mastertitelformat bearbeiten

In addition:

 7 home exercises with 20 points each

 Counts 1/3 to overall grade (exam is the other 2/3)

 Graded as explained before

 Group submissions of 5 students allowed (and highly encouraged!)

 But: maximally 3 submissions with the same student pair

 Exercise available on Mondays

 Deadline for submission by email on Fridays

 tight, but allows me to hopefully have them corrected by the

next lecture

 Solutions will be discussed during the next lecture

Remarks on Exercises II

20Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 20

Mastertitelformat bearbeiten

 Monday, 14th December 2020 in the afternoon (3 hours)

 (most likely) multiple-choice with 20-30 questions

 (most likely) on-site + online [details to be shared later]

 open book: use as much material as you want

 in previous year: no electronic devices allowed that connect to

the internet [we’ll also see for this one ]

The Exam

All information available at

http://www.cmap.polytechnique.fr/~dimo.brockhoff/

algorithmsandcomplexity/2020/

and also on EDUNAO

(exercise sheets, lecture slides, additional information, links, ...)

http://www.cmap.polytechnique.fr/~dimo.brockhoff/algorithmsandcomplexity/2020/

21Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 21

Mastertitelformat bearbeiten

any questions?

22Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 22

Mastertitelformat bearbeiten

Basics

 Fundamental combinatorics

 notations such as the O-notation

 algorithms on basic data structures

 arrays

 lists

 trees

 …

Overview of Today’s Lecture

23Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 23

Mastertitelformat bearbeiten

Basics I: Combinatorics

For this and the next parts, a nice-to-read reference is

https://www.math.upenn.edu/~wilf/AlgoComp.pdf

https://www.math.upenn.edu/~wilf/AlgoComp.pdf

24Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 24

Mastertitelformat bearbeiten

counting combinations and counting permutations

Why combinatorics?

 In order to compute probabilities

𝑃 𝑒𝑣𝑒𝑛𝑡 =
#favorable outcomes

#possible outcomes

 Related to graph theory (later)

 Related to combinatorial optimization (later)

Combinatorics = Counting

25Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 25

Mastertitelformat bearbeiten

Permutation: a sequence/order of members of a set

How many different orders exist on [𝑛] ∶= 1,… , 𝑛?

 First integer: choice among n

 Second integer: choice among n-1

 Last integer: no choice among 1

 In total: 𝑛 ⋅ 𝑛 − 1 ⋅ … ⋅ 1 =: 𝑛!

Number of Permutations

Watchduck (a.k.a. Tilman Piesk)

26Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 26

Mastertitelformat bearbeiten

Idea: generate a random vector, sort it and use the generated

sorting order as the permutation

import numpy as np

n = 4

random_array = np.random.rand(n)

random_perm = np.argsort(random_array)

More elegant way:

random_perm = np.random.permutation(n) 

How to Generate a Random Permutation?

27Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 27

Mastertitelformat bearbeiten

How many combinations of set members of a given size exist?

Example: number of different poker hands

 52*51*50*49*48 = 311,875,200 ways

to hand 5 cards out of 52

 but: order does not matter here!

 There are 5! = 120 orders of 5 cards

 Hence, there are

311,875,200/120 = 2,598,960 distinct pokers hands in total

In general, the number of k-combinations of n items (without

replacements) is
𝑛
𝑘

≔
𝑛!

𝑘! (𝑛 − 𝑘)!

Combinations Without Replacement (k-combination)

28Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 28

Mastertitelformat bearbeiten

What if we want to allow duplicates?

 combinations with replacement

 also known as k-combination with repetitions or k-multicombination

Example:

Combinations with replacement

29Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 29

Mastertitelformat bearbeiten

What if we want to allow duplicates?

 combinations with replacement

 also known as k-combination with repetitions or k-multicombination

Example:

Combinations with replacement

WestportWiki

30Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 30

Mastertitelformat bearbeiten

What if we want to allow duplicates?

 combinations with replacement

 also known as k-combination with repetitions or k-multicombination

Example:

eat 3 donuts from a choice of 4 different ones

Combinations with replacement

WestportWiki

31Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 31

Mastertitelformat bearbeiten

What if we want to allow duplicates?

 combinations with replacement

 also known as k-combination with repetitions or k-multicombination

Example:

eat 3 donuts from a choice of 4 different ones

Number of k-combinations with replacement:

𝑛 + 𝑘 − 1

𝑘
=

𝑛 + 𝑘 − 1

𝑛 − 1

Here with 𝑛 = 4, 𝑘 = 3: 4+3−1
3

= 6
3

= 20 combinations

Combinations with replacement

WestportWiki

32Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 32

Mastertitelformat bearbeiten

Stars and Bars: A useful counting method popularized by W. Feller*

How many combinations to put k objects into n bins?

 objects: stars

 bins: separated by bars

 Example of n=5 bins and k=7 objects:   |||    | 

 Donut example: n=4 bins/donut types, k=3 objects

Number of combinations to put k objects into n bins

= number of combinations to place k objects on n+k-1 places  𝑛+𝑘−1
𝑘

= number of combinations to place n-1 bars on n+k-1 places  𝑛+𝑘−1
𝑛−1

Why That? The Stars and Bars Method

33Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 33

Mastertitelformat bearbeiten

Naïve way:

from itertools import combinations

import numpy as np

n = 4

k = 2

all k-combinations of [0, 1, …, n-1]:

comb = list(combinations(np.arange(n), k))

pick one at random

random_k_combination =

comb[np.random.randint(len(comb))]

Works only for small enough n and k:

len(comb)is 15,890,700 for n=50 and k=6

and 99,884,400 for n=50 and k=7

How to Generate a Random k-Combination?

34Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 34

Mastertitelformat bearbeiten

More efficient way:

 iterate across each element of {1,…,n}

 pick each element with a dynamically changing probability of

𝑘 − #𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐ℎ𝑜𝑠𝑒𝑛

𝑛 − #𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑣𝑖𝑠𝑖𝑡𝑒𝑑

until k elements are picked.

How to Generate a Random k-Combination?

35Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 35

Mastertitelformat bearbeiten

a) In how many different ways can the 15 balls

of a pool billiard be placed (on a line)?

b) How many different combinations of five

coins (Euros) can you have in your pocket?

c) How likely is it to get your bike stolen with

the lock on the right?

Exercise

Jeanot

36Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 36

Mastertitelformat bearbeiten

a) 15! (we look for the number of permutations of 15 distinct balls)

b) (8+5-1) choose 5 = 792 (8 different coins, choose 5 with

repetition)

c) it’s pretty safe: the probability to find the right number is
1

105
= 10−5, assuming that a random number out of all 10 ⋅ 10 ⋅ 10 ⋅

10 ⋅ 10 = 105 lock numbers is tried. It takes >10min to try out 1%

of all 105 numbers if you try 2 lock combinations per second.

Solutions

37Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 37

Mastertitelformat bearbeiten

Basics II: The O-Notation

38Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 38

Mastertitelformat bearbeiten

Motivation:

 we often want to characterize how quickly a function 𝑓(𝑥) grows

asymptotically

 e.g. we might want to say that an algorithm takes quadratically

many steps (in 𝑛) to find the optimum of a problem with 𝑛
(binary) variables, it is never exactly 𝑛2, but maybe 𝑛2 + 1 or

𝑛 + 1 2

Big-O Notation

should be known, here mainly restating the definition:

Definition 1 We write 𝑓(𝑥) = 𝑂(𝑔(𝑥)) iff there exists a constant
𝑐 > 0 and an 𝑥0 >0 such that 𝑓 𝑥 ≤ 𝑐 ⋅ 𝑔(𝑥) holds for all 𝑥 > 𝑥0

we also view O(g(x)) as the set of all functions growing at most

as quickly as g(x) and write f(x)O(g(x))

Excursion: The O-Notation

39Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 39

Mastertitelformat bearbeiten

 f(x) + c = O(f(x)) [as long as f(x) does not converge to zero]

 c·f(x) = O(f(x))

 f(x) · g(x) = O(f(x) · g(x))

 3n4 + n2 – 7 = O(n4)

Intuition of the Big-O:

 if f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically)

for f

 constants don't play a role

 with Big-O, you should have ‘≤’ in mind

Big-O: Examples

40Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 40

Mastertitelformat bearbeiten

Further definitions to generalize from ‘≤’ to ‘≥‘ and ‘=‘:

 f(x) = Ω(g(x)) if g(x) = O(f(x))

 f(x) = Θ(g(x)) if f(x) = O(g(x)) and g(x) = O(f(x))

Note: Definitions equivalent to ‘<‘ and ‘>’ exist as well, but are not

needed in this course

Excursion: The O-Notation

41Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 41

Mastertitelformat bearbeiten

Please order the following functions in terms of their asymptotic

behavior (from smallest to largest):

 exp(n2)

 log n

 ln n / ln ln n

 n

 n log n

 exp(n)

 ln(n!)

Give for two of the relations a formal proof.

Exercise O-Notation

42Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 42

Mastertitelformat bearbeiten

Correct ordering:

= O(log n) log n = O(n) n = O(n log n)

n log n = Θ(ln(n!)) ln(n!)= O(en) en = O(en^2)

but for example en^2 ≠ O(en)

One exemplary proof:

= O(log n):

ln(𝑛)

ln(ln 𝑛)
=

log(𝑛)

log 𝑒 ln(ln 𝑛)
≤

3log(𝑛)

ln(ln 𝑛)
≤ 3 log(𝑛)

Exercise O-Notation (Solution)

))ln(ln(

n)ln(

n

))ln(ln(

n)ln(

n

for 𝑛 > 15for 𝑛 > 1

43Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 43

Mastertitelformat bearbeiten

One more proof: ln n! = O(n log n)

 Stirling’s approximation: or even

 ln 𝑛! ≤ ln(𝑒𝑛𝑛+
1

2𝑒−𝑛) = 1 + 𝑛 +
1

2
ln 𝑛 − 𝑛

≤ 𝑛 +
1

2
ln 𝑛 ≤ 2𝑛 ln 𝑛 = 2𝑛

log 𝑛

log 𝑒
= 𝑐 ∙ 𝑛 log 𝑛

okay for 𝑐 = 2/ log 𝑒 and all 𝑛 ∈ ℕ

 n ln n = O(ln n!) proven in a similar vein

Exercise O-Notation (Solution)

44Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 44

Mastertitelformat bearbeiten

 https://www.youtube.com/watch?v=__vX2sjlpXU

If it’s not clear yet: Youtube

45Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 45

Mastertitelformat bearbeiten

basic data structures

46Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 46

Mastertitelformat bearbeiten

A data structure is a data organization, management, and storage

format that enables efficient access and modification.

More precisely, a data structure is a collection of data values, the

relationships among them, and the functions or operations that can

be applied to the data.

from wikipedia

Why important to know?

 Only with knowledge of data structures can you program well

 Knowledge of them is important to design efficient algorithms

Why Data Structures? What are those?

47Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 47

Mastertitelformat bearbeiten

Depending on how data is stored, it is more or less efficient to

 Add data

 Remove data

 Search for data

Common Complexities

see also: https://introprogramming.info/english-intro-csharp-book/read-online/chapter-19-data-structures-and-algorithm-complexity

Data Structures and Algorithm Complexity

Complexity Running Time

constant 𝑂(1) independent of data size

logarithmic 𝑂(log(𝑛)) often base 2, grows relatively slowly with data

size

linear 𝑂(𝑛) nearly same amount of steps than data points

𝑂(𝑛 log 𝑛) Common, still efficient in practice if 𝑛 not huge

quadratic 𝑂(𝑛2) Often not any more efficient with large data sets

…

exponential 𝑂 2𝑛 , 𝑂 𝑛! , … Should be avoided 

https://introprogramming.info/english-intro-csharp-book/read-online/chapter-19-data-structures-and-algorithm-complexity

48Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 48

Mastertitelformat bearbeiten

Algorithm complexity can be given as best, worst or average cases:

Worst case:

 Assumes the worst possible scenario

 Algorithm can never perform worse

 Corresponds to an upper bound (on runtime, space requirements,

…)

 Most common

Best case:

 Best possible scenario

 Algorithm is never quicker/better/more efficient/…

Average case:

 Complexity averaged over all possible scenarios

 Often difficult to analyze

Best, Worst and Average Cases

49Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 21, 2020© Dimo Brockhoff, Inria 2019-2020 49

Mastertitelformat bearbeiten

Array: a fixed chunk of memory of constant size that can contain a

given number of 𝑛 elements of a given type

 think of a vector or a table

 in python:

 import numpy as np

 a = np.array([1, 2, 3])

 a[1] returns 2 [python counts from 0!]

Common operations and their complexity:

 Get(i) and Update(i) in constant time

 but Remove(i), Move j in between positions i and i+1, …

are not possible in constant time, because necessary

memory alterations not local

 To know whether a given item is in the array: linear time

Arrays

