Algorithms & Complexity

September 21, 2020 CentraleSupélec / ESSEC Business School

Dimo Brockhoff Inria Saclay – Ile-de-France

Algorithms & Complexity

September 21, 2020 CentraleSupélec / ESSEC Business School

Dimo Brockhoff Inria Saclay – Ile-de-France

Weekly Covid-19 Update: It could be worse...

http://www.cmap.polytechnique.fr/~nikolaus.hansen/covid-19.html

Weekly Covid-19 Update: It could be worse...

Paris (departement 75, 2.15 million people)

http://www.cmap.polytechnique.fr/~nikolaus.hansen/covid-19.html

Weekly Covid-19 Update: It could be worse...

https://geodes.santepubliquefrance.fr/#c=indicator&i=sp_ti_tp_7j.tx_pe_gliss&s=2020-09-11-2020-09-17&selcodgeo=91&t=a01&view=map2

Why Algorithms & Complexity?

Algorithm

Word used by programmers when they do not want to explain what they did.

Why Algorithms & Complexity?

[...] an algorithm is a set of instructions, typically to solve a class of problems or perform a computation. [from wikipedia]

Algorithms widespread in almost every aspect of the "real-world"

- (automatic) problem solving
- sorting
- accessing data in data structures

• • • •

Mnemonic: Algorithm = Recipe

Recipe:

Cook cooks a meal

Algorithm:

A computer solves a problem

© Dimo Brockhoff, Inria 2019-2020

Mnemonic: Algorithm = Recipe

Recipe:

Cook cooks a meal

Algorithm:

A computer solves a problem

- Independent of cook, type of pan, type of stove/oven/...
- Independent of programmer, computer, programming language, …
- Actually, a computer is running an *implementation* of an algorithm

Aim: Sort a set of cards/words/data

[Google, for example, has to sort all webpages according to the relevance of your search]

Re-formulation: minimize the "unsortedness"

Classical Questions:

- What is the underlying algorithm? (How do I solve a problem?)
- How long does it run to solve the problem? (How long does it take? Which guarantees can I give? How fast is the algorithm progressing?)
- Is there a better algorithm or did I find the optimal one?
 related to the complexity part of the lecture

Be Aware

Caution:

This is not an "algorithms for data scientists" lecture (!)

- we do not cover algorithms for regression, regularization, dimensionality reduction, clustering, deep learning, ...
- ...but cover much more basic things:
 - data structures
 - data sorting
 - fundamental algorithm design ideas
 - how to analyze an algorithm
 - how to prove lower runtime bounds for hard problems
 - ..
- the actual data science related topics are taught in later lectures

Learning Goals:

- In the second second
- e able to analyze theoretically some algorithms
 - give strong bounds on their "effectiveness"
 - understand the ideas of (worst case) algo complexity ("Am I too dumb to find a quick algorithm or can nobody do better?")
- B be able to use and understand existing algorithms ("practice, practice, practice!")

What we plan to do in the A&C lecture

How are we going to do that?

- look at a lot of examples of algorithms
- mixture of lectures and small exercises
- practice and theory
- additionally 1 home exercise per week

Please ask questions if things are unclear throughout the course!

Course Overview

Thu		Торіс		
Mon, 21.09.2020	PM	Introduction, Combinatorics, O-notation, data structures		
Mon, 28.09.2020	PM	Data structures II, Sorting algorithms I		
Mon, 5.10.2020	PM	Sorting algorithms II, recursive algorithms		
Mon, 12.10.2020	PM	Greedy algorithms		
Mon, 19.10.2020	PM	Dynamic programming		
Mon, 2.11.2020	PM	Randomized Algorithms and Blackbox Optimization		
Mon, 16.11.2020	PM	Complexity theory I		
Mon, 23.11.2020	PM	Complexity theory II		
Mon, 14.12.2019	PM	Exam		

- included within the lecture (typically 1/3 of it)
- expected to be done on paper or in python [we'll see...]
- hence, please make sure you have python installed on your laptop until the second lecture
- Anaconda is the recommended way to get there:

https://www.anaconda.com/distribution/

- (basic) example solutions will be made available afterwards
- I will try to also include some interactive formats for the students online
- not graded but please see it as training for the exam

Remarks on Exercises II

In addition:

- 7 home exercises with 20 points each
- Counts 1/3 to overall grade (exam is the other 2/3)

Remarks on Exercises II

Remarks on	Achieved points	grade	Difference
 In addition: 7 home exerc Counts 1/3 to Graded as: 	$136 \le p \le 140$	20	4
	$132 \le p < 136$	19	4
	$128 \le p < 132$	18	4
	$124 \le p < 128$	17	4
	$118 \le p < 124$	16	6
	$112 \le p < 118$	15	6
	$106 \le p < 112$	14	8
	$98 \le p < 106$	13	8
	$90 \le p < 98$	12	8
	$80 \le p < 90$	11	10
	$70 \le p < 80$	10	10
	$60 \le p < 70$	9	10
	$50 \le p < 60$	8	10
	$40 \le p < 50$	7	10
	$34 \le p \le 40$	6	6
		15	6, 6, 6, 6, 6
	$0 \le p < 4$	0	4

Remarks on Exercises II

In addition:

- 7 home exercises with 20 points each
- Counts 1/3 to overall grade (exam is the other 2/3)
- Graded as explained before
- Group submissions of 5 students allowed (and highly encouraged!)
- But: maximally 3 submissions with the same student pair
- Exercise available on Mondays
- Deadline for submission by email on Fridays
 - tight, but allows me to hopefully have them corrected by the next lecture
- Solutions will be discussed during the next lecture

The Exam

- Monday, 14th December 2020 in the afternoon (3 hours)
- (most likely) multiple-choice with 20-30 questions
- (most likely) on-site + online [details to be shared later]
- open book: use as much material as you want
- in previous year: no electronic devices allowed that connect to the internet [we'll also see for this one ^(C)]

All information available at

and also on EDUNAO (exercise sheets, lecture slides, additional information, links, ...)

any questions?

Overview of Today's Lecture

Basics

- Fundamental combinatorics
- notations such as the O-notation
- algorithms on basic data structures
 - arrays
 - lists
 - trees
 - ..

Basics I: Combinatorics

For this and the next parts, a nice-to-read reference is https://www.math.upenn.edu/~wilf/AlgoComp.pdf

Combinatorics = Counting

counting combinations and counting permutations

Why combinatorics?

- In order to compute probabilities $P(event) = \frac{\# favorable outcomes}{\# possible outcomes}$
- Related to graph theory (later)
- Related to combinatorial optimization (later)

Permutation: a sequence/order of members of a set

How many different orders exist on [n] := 1, ..., n?

- First integer: choice among n
- Second integer: choice among n-1
- Last integer: no choice among 1
- In total: $n \cdot (n-1) \cdot \dots \cdot 1 =: n!$

How to Generate a Random Permutation?

Idea: generate a random vector, sort it and use the generated sorting order as the permutation

```
import numpy as np
n = 4
random_array = np.random.rand(n)
random_perm = np.argsort(random_array)
```

More elegant way:

random_perm = np.random.permutation(n) ③

Combinations Without Replacement (*k***-combination)**

How many combinations of set members of a given size exist?

Example: number of different poker hands

- 52*51*50*49*48 = 311,875,200 ways to hand 5 cards out of 52
- but: order does not matter here!
- There are 5! = 120 orders of 5 cards
- Hence, there are 311,875,200/120 = 2,598,960 distinct pokers hands in total

In general, the number of k-combinations of n items (without replacements) is

$$\binom{n}{k} \coloneqq \frac{n!}{k! \, (n-k)!}$$

What if we want to allow duplicates?

- combinations with replacement
- also known as k-combination with repetitions or k-multicombination

Example:

What if we want to allow duplicates?

- combinations with replacement
- also known as k-combination with repetitions or k-multicombination

Example:

eat 3 donuts from a choice of 4 different ones

What if we want to allow duplicates?

- combinations with replacement
- also known as k-combination with repetitions or k-multicombination

Example:

eat 3 donuts from a choice of 4 different ones

Number of k-combinations with replacement:

$$\binom{n+k-1}{k} \left[= \binom{n+k-1}{n-1} \right]$$

Here with n = 4, k = 3: $\binom{4+3-1}{3} = \binom{6}{3} = 20$ combinations

Why That? The Stars and Bars Method

Stars and Bars: A useful counting method popularized by W. Feller*

How many combinations to put k objects into n bins?

- objects: stars
- bins: separated by bars
- Example of n=5 bins and k=7 objects: * * |*|| * * * | *
- Donut example: n=4 bins/donut types, k=3 objects

Number of combinations to put k objects into n bins = number of combinations to place k objects on n+k-1 places $\Rightarrow \binom{n+k-1}{k}$ = number of combinations to place n-1 bars on n+k-1 places $\Rightarrow \binom{n+k-1}{n-1}$

How to Generate a Random k-Combination?

Naïve way:

from itertools import combinations
import numpy as np

```
n = 4
```

```
k = 2
```

```
# all k-combinations of [0, 1, ..., n-1]:
```

```
comb = list(combinations(np.arange(n), k))
```

```
# pick one at random
random_k_combination =
    comb[np.random.randint(len(comb))]
```

Works only for small enough n and k: **1en (comb)** is 15,890,700 for n=50 and k=6 and 99,884,400 for n=50 and k=7

How to Generate a Random k-Combination?

More efficient way:

- iterate across each element of {1,...,n}
- pick each element with a dynamically changing probability of

 $\frac{k - \#samples \ chosen}{n - \#samples \ visited}$

until k elements are picked.

- a) In how many different ways can the 15 balls of a pool billiard be placed (on a line)?
- b) How many different combinations of five coins (Euros) can you have in your pocket?
- c) How likely is it to get your bike stolen with the lock on the right?

Solutions

- a) 15! (we look for the number of permutations of 15 distinct balls)
- b) (8+5-1) choose 5 = 792 (8 different coins, choose 5 with repetition)
- c) it's pretty safe: the probability to find the right number is $\frac{1}{10^5} = 10^{-5}$, assuming that a random number out of all $10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 10^5$ lock numbers is tried. It takes >10min to try out 1% of all 10^5 numbers if you try 2 lock combinations per second.

Basics II: The O-Notation

Motivation:

- we often want to characterize how quickly a function f(x) grows asymptotically
- e.g. we might want to say that an algorithm takes quadratically many steps (in *n*) to find the optimum of a problem with *n* (binary) variables, it is never exactly n², but maybe n² + 1 or (n + 1)²

Big-O Notation

should be known, here mainly restating the definition:

Definition 1 We write f(x) = O(g(x)) iff there exists a constant c > 0 and an $x_0 > 0$ such that $|f(x)| \le c \cdot g(x)$ holds for all $x > x_0$

we also view O(g(x)) as the set of all functions growing at most as quickly as g(x) and write $f(x) \in O(g(x))$

Big-O: Examples

- f(x) + c = O(f(x)) [as long as f(x) does not converge to zero]
- $c \cdot f(x) = O(f(x))$
- $f(x) \cdot g(x) = O(f(x) \cdot g(x))$
- $3n^4 + n^2 7 = O(n^4)$

Intuition of the Big-O:

- if f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically) for f
- constants don't play a role
- with Big-O, you should have '≤' in mind

Excursion: The O-Notation

Further definitions to generalize from ' \leq ' to ' \geq ' and '=':

- $f(x) = \Omega(g(x))$ if g(x) = O(f(x))
- $f(x) = \Theta(g(x))$ if f(x) = O(g(x)) and g(x) = O(f(x))

Note: Definitions equivalent to '<' and '>' exist as well, but are not needed in this course

Please order the following functions in terms of their asymptotic behavior (from smallest to largest):

- exp(n²)
- log n
- In n / In In n
- n
- n log n
- exp(n)
- In(n!)

Give for two of the relations a formal proof.

Exercise O-Notation (Solution)

Correct ordering:

$$\frac{\ln(n)}{\ln(\ln(n))} = O(\log n) \qquad \log n = O(n) \qquad n = O(n \log n)$$

n log n = $\Theta(\ln(n!))$ ln(n!)= $O(e^n)$ $e^n = O(e^{n^2})$

but for example $e^{n^2} \neq O(e^n)$

One exemplary proof: $\frac{\ln(n)}{\ln(\ln(n))} = O(\log n):$

$$\left|\frac{\ln(n)}{\ln(\ln(n))}\right| = \left|\frac{\log(n)}{\log(e)\ln(\ln(n))}\right| \leq \frac{3\log(n)}{\ln(\ln(n))} \leq 3\log(n)$$

for $n > 1$ for $n > 15$

Exercise O-Notation (Solution)

One more proof: In n! = O(n log n)

• Stirling's approximation: $n! \sim \sqrt{2\pi n} (n/e)^n$ or even

$$\sqrt{2\pi} n^{n+1/2} e^{-n} \le n! \le e n^{n+1/2} e^{-n}$$

•
$$\ln n! \leq \ln(en^{n+\frac{1}{2}}e^{-n}) = 1 + \left(n + \frac{1}{2}\right)\ln n - n$$

 $\leq \left(n + \frac{1}{2}\right)\ln n \leq 2n\ln n = 2n\frac{\log n}{\log e} = c \cdot n\log n$
okay for $c = 2/\log e$ and all $n \in \mathbb{N}$

n ln n = O(ln n!) proven in a similar vein

If it's not clear yet: Youtube

https://www.youtube.com/watch?v=__vX2sjlpXU

basic data structures

Why Data Structures? What are those?

A data structure is a data organization, management, and storage format that enables efficient access and modification.

More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data.

from wikipedia

Why important to know?

- Only with knowledge of data structures can you program well
- Knowledge of them is important to design efficient algorithms

Data Structures and Algorithm Complexity

Depending on how data is stored, it is more or less efficient to

- Add data
- Remove data
- Search for data

Common Complexities

Complexity	Running Time	
constant	0(1)	independent of data size
logarithmic	$O(\log(n))$	often base 2, grows relatively slowly with data size
linear	0(n)	nearly same amount of steps than data points
	$O(n\log(n))$	Common, still efficient in practice if n not huge
quadratic	$O(n^2)$	Often not any more efficient with large data sets
exponential	$O(2^n), O(n!),$	Should be avoided ©
see also: https://introprogramming.info/english-intro-csharp-book/read-online/chapter-19-data-structures-and-algorithm-complexity		

Best, Worst and Average Cases

Algorithm complexity can be given as best, worst or average cases:

Worst case:

- Assumes the worst possible scenario
- Algorithm can never perform worse
- Corresponds to an upper bound (on runtime, space requirements, ...)
- Most common

Best case:

- Best possible scenario
- Algorithm is never quicker/better/more efficient/...

Average case:

- Complexity averaged over all possible scenarios
- Often difficult to analyze

Arrays

Array: a fixed chunk of memory of constant size that can contain a given number of n elements of a given type

- think of a vector or a table
- in python:
 - import numpy as np
 - a = np.array([1, 2, 3])
 - a[1] returns 2 [python counts from 0!]

Common operations and their complexity:

- Get(i) and Update(i) in constant time
- but Remove(i), Move j in between positions i and i+1, ... are not possible in constant time, because necessary memory alterations not local
- To know whether a given item is in the array: linear time