
Algorithms & Complexity
Lecture 2: Data Structures

Dimo Brockhoff

Inria Saclay – Ile-de-France

September 28, 2020

CentraleSupélec / ESSEC Business School

2Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 2

Mastertitelformat bearbeiten

Thu Topic

Mon, 21.09.2020 PM Introduction, Combinatorics, O-notation, data structures

Mon, 28.09.2020 PM Data structures II

Mon, 5.10.2020 PM Sorting algorithms, recursive algorithms

Mon, 12.10.2020 PM Greedy algorithms

Mon, 19.10.2020 PM Dynamic programming

Mon, 2.11.2020 PM Randomized Algorithms and Blackbox Optimization

Mon, 16.11.2020 PM Complexity theory I

Mon, 23.11.2020 PM Complexity theory II

Mon, 14.12.2019 PM Exam

Course Overview

3Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 3

Mastertitelformat bearbeiten

Array: a fixed chunk of memory of constant size that can contain a

given number of 𝑛 elements of a given type

 think of a vector or a table

 in python:

 import numpy as np

 a = np.array([1, 2, 3])

 a[1] returns 2 [python counts from 0!]

Common operations and their complexity:

 Get(i) and Update(i) in constant time

 but Remove(i), Move j in between positions i and i+1, …

are not possible in constant time, because necessary

memory alterations not local

 To know whether a given item is in the array: linear time

Arrays

4Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 4

Mastertitelformat bearbeiten

 Assume a sorted array 𝑎[1] < 𝑎[2] < … < 𝑎[𝑛].

 How long will it take to find the smallest element ≥ 𝑘?

(Best case, worse case, average case)

Searching in Sorted Arrays

5Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 5

Mastertitelformat bearbeiten

 Assume a sorted array 𝑎[1] < 𝑎[2] < … < 𝑎[𝑛].

 How long will it take to find the smallest element ≥ 𝑘?

Or to decide whether a value 𝑎 is in the array?

(best case, worse case, average case)

Linear search

 go through array from 𝑎[1] to 𝑎[𝑛] until entry found

 still Θ(𝑛) in the worst case

 average case the same (if we assume that each item is queried

with equal probability)

Searching in Sorted Arrays

6Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 6

Mastertitelformat bearbeiten

Binary search

 Look at position 𝑛/2 first

 Is it the sought after entry? If yes, stop

 If not: search recursively in left or right interval, depending on

whether the middle entry is larger or smaller than the sought

after entry

Runtimes

 Best case:

 Worst case:

 sought after entry not in array

 simple case: 𝑛 = 2𝑘 − 1 array elements

 array-part where entry could be located is of length 2𝑘−1 − 1

 by induction: maximally 𝑘 comparisons needed

 𝑘 = Θ(log 𝑛)

Searching in Sorted Arrays

1

7Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 7

Mastertitelformat bearbeiten

 Matrices can be stored in arrays, too

 Row first or column first?

 Storing sparse matrices efficiently:

not covered here

Remarks: Arrays and Matrices

Cmglee

8Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 8

Mastertitelformat bearbeiten

 Dynamic data structure of varying length

 Allows to add and remove entries (remember: arrays don’t)

 However, also not stored in contiguous memory anymore

Idea of a Linear List

Linked Lists

data pointer

9Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 9

Mastertitelformat bearbeiten

 Dynamic data structure of varying length

 Allows to add and remove entries (remember: arrays don’t)

 However, also not stored in contiguous memory anymore

Idea of a Linear List

Linked Lists

a list

of words
nil /

null /

None

10Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 10

Mastertitelformat bearbeiten

 Dynamic data structure of varying length

 Allows to add and remove entries (remember: arrays don’t)

 However, also not stored in contiguous memory anymore

Idea of a Linear List

Linked Lists

memory

address
… 87 88 89 90 91 92 93 …

memory

content
… 4 90 … 7 92 1 104 …

[4, 7, 1, …] in memory could be for example:

11Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 11

Mastertitelformat bearbeiten

 Dynamic data structure of varying length

 Allows to add and remove entries (remember: arrays don’t)

 However, also not stored in contiguous memory anymore

Idea of a Linear List

Linked Lists

memory

address
… 87 88 89 90 91 92 93 …

memory

content
… 4 90 … 7 92 1 104 …

?
[4, 7, 1, …] in memory could be for example:

12Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 12

Mastertitelformat bearbeiten

 Dynamic data structure of varying length

 Allows to add and remove entries (remember: arrays don’t)

 However, also not stored in contiguous memory anymore

Idea of a Linear List

 go through list until 7 is found

 always keep track of last pointer (the one finally to 7)

 move this pointer to the former pointer of entry 7

Linked Lists

memory

address
… 87 88 89 90 91 92 93 …

memory

content
… 4 90 … 7 92 1 104 …

[4, 7, 1, …] in memory could be for example:

92

13Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 13

Mastertitelformat bearbeiten

 removal of element in constant time 𝒪(1)

 very similar for adding: 𝒪(1)

 adding into a sorted list: 𝒪(𝑛)

 but now searching is more difficult, even if sorted

 reason: we don’t have access to the “middle” element

 search for element 𝑖: Θ(𝑖) if list is sorted

we need a different data structure if we want to search, insert, and

delete efficiently

Linked Lists

14Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 14

Mastertitelformat bearbeitenTrees

Brian Green

15Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 15

Mastertitelformat bearbeitenTrees

16Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 16

Mastertitelformat bearbeitenTrees

root

parent

children

data

pointer(s)
not necessarily ≤ 2

leaves

17Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 17

Mastertitelformat bearbeiten

For a more formal definition, we need to introduce the concept of

graphs…

Trees are Special Graphs

18Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 18

Mastertitelformat bearbeiten

Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

http://math.tut.fi/~ruohonen/GT_English.pdf

19Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 19

Mastertitelformat bearbeiten

 vertices = nodes

 edges = lines

 Note: edges cover two unordered vertices (undirected graph)

 if they are ordered, we call G a directed graph with edges

𝑒 = (𝑢, 𝑣)

 to draw an ordered graph, we use arrows

Graphs

u

v

20Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 20

Mastertitelformat bearbeiten

 u and v are end vertices of an edge {u,v}

 Edges are adjacent if they share an end vertex

 Vertices u and v are adjacent if {u,v} is in E

 The degree of a vertex is the number of times it is an end vertex

 A complete graph contains all possible edges (once):

Graphs: Basic Definitions

a loop

K1 K2 K3 K4

21Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 21

Mastertitelformat bearbeiten

A walk is

 closed if first and last node coincide

 a path if each vertex is visited at most once

 a closed path is a circuit or cycle

 a closed path involving all vertices of G is a Hamiltonian cycle

Walks, Paths, and Circuits

22Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 22

Mastertitelformat bearbeiten

 Two vertices are called connected if there is a walk between

them in G

 If all vertex pairs in G are connected, G is called connected

 The connected components of G are the (maximal) subgraphs

which are connected.

Graphs: Connectedness

23Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 23

Mastertitelformat bearbeiten

 A forest is a cycle-free graph

 A tree is a connected forest

A spanning tree of a connected graph G is a tree in G which

contains all vertices of G

Trees and Forests

24Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 24

Mastertitelformat bearbeitenSpecial Notations for Trees With Added Directions

Assume: Tree-like graph with directed edges s.t. each vertex is

connected to a specific vertex, the root

Note:

choice of root/parent/children not always unique in undirected trees

rootleaves
parent

children

25Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 25

Mastertitelformat bearbeiten

Sometimes, we need to traverse a graph, e.g. to find certain vertices

Depth-first search and breadth-first search are two algorithms to do so

Depth-first Search (for undirected/acyclic and connected graphs)

 start at any node x; set i=0

 as long as there are unvisited edges {x,y}:

 choose the next unvisited edge {x,y} to a vertex y and mark x

as the parent of y

 if y has not been visited so far: i=i+1, label y as the node

visited at iteration i, and continue the search at x=y in step 2

 else continue with next unvisited edge of x

 if all edges {x,y} are visited, we continue with x=parent(x) at step 2

or stop if x equals the starting node v0

Depth-First Search (DFS)

26Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 26

Mastertitelformat bearbeiten

Exercise the DFS algorithm on the following graph!

DFS: Stage Exercise

E

B

G

L

F H

C

K

D

I MJ

A
e1 e2

e3

e4

e5

e6 e7
e8

e9

e10

e11

e12 e13

e14 e15

e16

e17

e18

e19

e20 e21 e22

27Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 27

Mastertitelformat bearbeiten

Breadth-first Search (for undirected/acyclic and connected graphs)

 start at any node x, set i=0, and label x with value i

 as long as there are unvisited edges {x,y} which are adjacent to a

vertex x that is labeled with value i:

 label all unlabeled vertices y with value i+1

 set i=i+1 and go to step 2

Breadth-First Search (BFS)

0

1

1

1

1

2

2

2

2

3

28Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 28

Mastertitelformat bearbeiten

Binary Search Tree

 a tree with degree ≤ 2

 children sorted such that the left subtree always contains values

smaller than the corresponding root and the right subtree only

values larger

Back to Trees as Data Structure

29Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 29

Mastertitelformat bearbeitenClass Exercise: Filling a Binary Search Tree

Round 1:

Each online student: give an integer to be filled into tree

Round 2:

In class: tell where the next integer inserts

31Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 31

Mastertitelformat bearbeiten

Search

 similar to binary search in array (go left or right until found)

 𝒪(log (𝑛)) if tree is well balanced

 Θ(𝑛) in worst case (linear list)

Insertion

 first like search to determine the parent of the new node

 then add in 𝒪(1) [we are always at a leaf or have an “empty child”]

Remove (more tricky)

 if node has no child, remove it

 if node has a single child, replace node by its child

 if node has two children: find left-most tree entry L larger than the

to-be-removed node, copy its value to the to-be-removed node,

and remove L according to the two above rules

 cost: 𝒪(tree depth), in worst case: Θ(n)

Binary Search Tree: Complexities

32Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 32

Mastertitelformat bearbeiten

Binary Search Tree

average case (random inserts) worst case

average case (random inserts) worst case

Binary Trees: Can We Do Better?

search insert delete search insert delete

𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛))

search insert delete Search Insert Delete

𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛)) Θ(𝑛) Θ(𝑛) Θ(𝑛)

Guarantee a balanced tree:
• AVL trees

• B trees

• Red-Black trees

• …

33Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 33

Mastertitelformat bearbeiten

Balanced Trees

average case (random inserts) worst case

average case (random inserts) worst case

Can We Do Even Better on Average?

search insert delete search insert delete

𝚯(𝟏) 𝚯(𝟏) 𝚯(𝟏) Θ(𝑛) Θ(𝑛) Θ(𝑛)

search insert delete search insert delete

𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛))

?

34Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 34

Mastertitelformat bearbeiten

In python:

my_dict = {‘Joe': 113, ‘Pete': 7, ‘Alan': ‘110'}

print(“my_dict[‘Joe']: “ + my_dict[‘Joe'])

gives my_dict[‘Joe’]: 113 as output

 the immutables ‘Joe’, ‘Pete’, and ‘Alan’ are the keys

 113, 7, and 110 are the values (or the stored data)

Next: Why dictionaries and how are they implemented?

Dictionaries

35Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 35

Mastertitelformat bearbeiten

 In python:

Dictionaries

Where is Alan?

36Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 36

Mastertitelformat bearbeiten

 Go through all offices one by one?

like in list and array

 No, you would ask the receptionist for the office number

Where is Alan?

Evan Bench

37Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 37

Mastertitelformat bearbeiten

Names

Alan

Joe

Pete

…

Dictionaries Implemented as Hashtables

Offices

7

…

110

111

112

113

Evan Bench

38Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 38

Mastertitelformat bearbeiten

Keys

Alan

Joe

Pete

…

Dictionaries Implemented as Hashtables

Memory Address

7

…

110

111

112

113

Hash

function

Possible hash function: h = z mod n

39Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 39

Mastertitelformat bearbeiten

…should be

 deterministic: find data again

 uniform: use allocated memory space well

[more tricky with variable length keys such as strings]

Problems to address in practice:

 how to deal with collisions (e.g. via multiple hash functions)

 deleting needs to insert dummy keys when a collision appeared

 what if the hash table is full?  resizing

All this gives a constant average performance in practice

and a worst case of Θ(𝑛) for insert/remove/search

Not more details here, but if you are interested:

For more details on python’s dictionary:

https://www.youtube.com/watch?v=C4Kc8xzcA68

Hash Functions

40Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 40

Mastertitelformat bearbeiten

 Arrays: fast access, slow search, no insert

 (Linked) Lists: slow access, slow search, but insert/remove in

constant time

 Hence python lists are implemented as dynamic arrays

(once array is full, a larger chunk of memory gets allocated)

http://www.laurentluce.com/posts/python-list-implementation/

 Trees: log(n) access, log(n) add/remove

 Dictionaries: constant average performance in practice

and a linear worst case for insert/remove/search

see also https://www.bigocheatsheet.com/

Quick Recap Data Structures

http://www.laurentluce.com/posts/python-list-implementation/

discussion home exercises

42Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 42

Mastertitelformat bearbeiten

Exercise 1: Matrix Multiplication

 𝑐𝑖𝑗 = σ𝑘=1
𝑛 𝑎𝑖,𝑘𝑏𝑘,𝑗

 naïve implementation:

𝐟𝐨𝐫 𝑖 = 1 𝐭𝐨 𝑚 𝐝𝐨:
𝐟𝐨𝐫 𝑗 = 1 𝐭𝐨 𝑙 𝐝𝐨:

𝑐𝑖𝑗 = 0

𝐟𝐨𝐫 𝑘 = 1 𝐭𝐨 𝑛 𝐝𝐨:
𝑐𝑖𝑗 = 𝑐𝑖𝑗 + 𝑎𝑖𝑘 ⋅ 𝑏𝑘𝑗

 computation per cell: 𝑛 additions and 𝑛 multiplications

 has to be done for all 𝑚 × 𝑙 cells

 in total: 𝑚 ⋅ 𝑙 ⋅ 𝑛 additions and 𝑚 ⋅ 𝑙 ⋅ 𝑛 multiplications

 Θ(𝑛3) if 𝑘 = 𝑙 = 𝑛

 interesting: we can do better:

𝒪 𝑛log 7 = 𝒪(𝑛2.807…) by Strassen (1968)

even 𝒪(𝑛2.3728639) by Le Gall (2014)

Discussion Home Exercise

OgreBot

𝑚 × 𝑛

𝑛 × 𝑙

43Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 43

Mastertitelformat bearbeiten

Exercise 2: Finding Smallest Element

simple implementation:

assume array to be 𝑨 = [𝑨[𝟏], … , 𝑨[𝒏]]

𝐦 = 𝐀[𝟏]

𝐟𝐨𝐫 𝑖 = 2 𝐭𝐨 𝑛 𝐝𝐨:
𝐢𝐟 𝑨 𝒊 < 𝒎 𝐝𝐨:

𝐦 = 𝐀[𝐢]

Worst case: smallest element is at 𝑨[𝒏]

 Runtime 𝒪(𝑛)

Best case (?): smallest element is at 𝑨[𝟏]

 But Algorithm does not know this before to see all elements!

 Also runtime of 𝒪(𝑛)

Discussion Home Exercise

44Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 44

Mastertitelformat bearbeiten

Exercise 3: Finding Smallest Element II

(finding also 2nd and 3rd smallest)

Idea: always keep the two/three smallest already seen solutions

𝐬,𝐦, 𝐥 = +∞,+∞,+∞ # s: smallest, m: 2nd smallest, l: 3rd smallest
𝐟𝐨𝐫 𝑖 = 1 𝐭𝐨 𝑛 𝐝𝐨:

𝐢𝐟 𝑨 𝒊 < 𝒔 𝐝𝐨:
𝐬,𝐦, 𝐥 = 𝐀 𝐢 , 𝐬,𝐦

𝐞𝐥𝐬𝐞 𝐢𝐟 𝐀 𝒊 < 𝐦:
𝐬,𝐦, 𝐥 = 𝐬, 𝐀 𝐢 ,𝐦

𝐞𝐥𝐬𝐞 𝐢𝐟 𝐀 𝒊 < 𝐥:
𝐬,𝐦, 𝐥 = 𝐬,𝐦, 𝐀[𝐢]

Worst & best case again (asymptotically) the same: 𝒪(𝑛)

Discussion Home Exercise

45Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 45

Mastertitelformat bearbeiten

Exercise 4: 𝓞-Notation

𝒪 𝑓1 ≠ 𝒪(log(𝑓1))

Proof:

 choose for example 𝑔1 𝑥 = 2𝑥 and 𝑓1(𝑥) = 2𝑥. Then, by definition,

𝑔1 = 𝒪(𝑓1)

 But 𝑔1 ∉ 𝒪 log 𝑓1 :

 𝑔1 𝑥 = 2𝑥 > 𝑥 = log 2𝑥 = log(𝑓1(𝑥)) for all 𝑥 > 1

 Thus, there exists no constant 𝑐 > 0 such that the left-hand

side can be smaller than 𝑐 times the right-hand side for all 𝑥
above a certain threshold 𝑥0 > 0

Discussion Home Exercise

46Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 46

Mastertitelformat bearbeiten

Exercise 4: 𝓞-Notation

𝒪 𝑓1 ⋅ 𝒪(𝑓2) = 𝒪(𝑓1 ⋅ 𝑓2)

Proof:

 choose 𝑔1 ∈ 𝒪(𝑓1) and 𝑔2 ∈ 𝒪(𝑓2) arbitrarily

 i.e. we have constants 𝑛1, 𝑛2, 𝑐1, 𝑐2 > 0 such that

𝑔1 𝑛 ≤ 𝑐1 ⋅ 𝑓1(𝑛) for all 𝑛 > 𝑛1 and

𝑔2 𝑛 ≤ 𝑐2 ⋅ 𝑓2(𝑛) for all 𝑛 > 𝑛2
 but with 𝑐′ = 𝑐1 ⋅ 𝑐2 then also

𝑔1 𝑛 ⋅ 𝑔2 𝑛 ≤ 𝑔1 𝑛 ⋅ 𝑔2 𝑛

≤ 𝑐1 ⋅ 𝑓1 𝑛 ⋅ 𝑐2 ⋅ 𝑓2 𝑛 = 𝑐′ ⋅ (𝑓1 𝑛 ⋅ 𝑓2(𝑛))

for all 𝑛 > max(𝑛1, 𝑛2)

Discussion Home Exercise

