Algorithms & Complexity
Lecture 2: Data Structures

September 28, 2020
CentraleSupélec / ESSEC Business School

g - Dimo Brockhoff

RRRRRRRRRRRRRRRRRRRRRRRRRRR Inria Sac|ay — lle-de-France

@ INSTITUT
‘@ ®: POLYTECHNIQUE B 1P PARIS
“ DE PARIS




Course Overview

Thu

Mon, 28.09.2020
Mon, 5.10.2020

Mon, 12.10.2020
Mon, 19.10.2020
Mon, 2.11.2020

Mon, 16.11.2020
Mon, 23.11.2020

Mon, 14.12.2019

__Topic

PM
PM
PM
PM
PM
PM
PM

PM

Data structures Il

Sorting algorithms, recursive algorithms

Greedy algorithms

Dynamic programming

Randomized Algorithms and Blackbox Optimization
Complexity theory |

Complexity theory Il

Exam

© Dimo Brockhoff, Inria 2019-2020

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28



Array: a fixed chunk of memory of constant size that can contain a
given number of n elements of a given type

= think of a vector or a table
= |n python:
= import numpy as np
= a = np.array([1l, 2, 3])
= a[1l] returns 2 [python counts from 0!]

Common operations and their complexity:
= Get(i) and Update(i) in constant time

= but Remove(i), Move j in between positions i and i+1, ...
are not possible in constant time, because necessary
memory alterations not local

* To know whether a given item is in the array: linear time

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 2



Searching in Sorted Arrays

= Assume a sorted array a[l1] < a[2] < .. < a[n].
= How long will it take to find the smallest element > k?
(Best case, worse case, average case)

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28



Searching in Sorted Arrays

= Assume a sorted array a[l1] < a[2] < .. < a[n].

= How long will it take to find the smallest element > k?
Or to decide whether a value a is in the array?
(best case, worse case, average case)

Linear search
= go through array from a[1] to a[n] until entry found
= still @(n) in the worst case

= average case the same (if we assume that each item is queried
with equal probability)

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2



Searching in Sorted Arrays

Binary search
= Look at position [n/2] first

= s it the sought after entry? If yes, stop

= |f not: search recursively in left or right interval, depending on
whether the middle entry is larger or smaller than the sought

after entry

Runtimes
= PBestcase: 1
= \Worst case:

= sought after entry not in array
= simple case: n = 2% — 1 array elements

= array-part where entry could be located is of length 2%~1 — 1

= by induction: maximally k comparisons needed

* k= 0(log(n))

© Dimo Brockhoff, Inria 2019-2020

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28



Remarks: Arrays and Matrices

= Matrices can be stored in arrays, too
= Row first or column first?

= Storing sparse matrices efficiently:
not covered here

Row-major order

3

3

3

Column-major order

Cmglee

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020



Linked Lists

= Dynamic data structure of varying length
= Allows to add and remove entries (remember: arrays don't)
= However, also not stored in contiguous memory anymore

Ildea of a Linear List

|

data pointer

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.



Linked Lists

= Dynamic data structure of varying length
= Allows to add and remove entries (remember: arrays don't)
= However, also not stored in contiguous memory anymore

Ildea of a Linear List

" list _~

of

" words

nil /
null /
None

© Dimo Brockhoff, Inria 2019-2020

Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2



Linked Lists

= Dynamic data structure of varying length
= Allows to add and remove entries (remember: arrays don't)
= However, also not stored in contiguous memory anymore

Ildea of a Linear List

4,7, 1, ...] in memory could be for example:

memory 87 | 88 91 | 92 | 93
address

memory
content

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020



Linked Lists

= Dynamic data structure of varying length
= Allows to add and remove entries (remember: arrays don't)
= However, also not stored in contiguous memory anymore

Ildea of a Linear List

?
[4X1 ...] in memory could be for example:

memory 87 | 88 91 | 92 | 93
address

memory
content

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020



Linked Lists

= Dynamic data structure of varying length
= Allows to add and remove entries (remember: arrays don't)
= However, also not stored in contiguous memory anymore

Ildea of a Linear List

[4X1 ...] in memory could be for example:

lﬂm-
address

memory
content

= go through list until 7 is found
= always keep track of last pointer (the one finally to 7)
= move this pointer to the former pointer of entry 7

© Dimo Brockhoff, Inria 2019-2020



Linked Lists

= removal of element in constant time O(1)

= very similar for adding: O(1)

= adding into a sorted list: O(n)

= but now searching is more difficult, even if sorted
= reason: we don’t have access to the “middle” element
= search for element i: O(i) if list is sorted

we need a different data structure if we want to search, insert, and
delete efficiently

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2C



Brian Green

© Dimo Brockhoff, Inria 20 i ity, CentraleSupélec/ESSEC, Sep.



PUBLIC
DOMAIN

© Dimo Brockhoff, Inria 2019-2020



root

— data

— POINter(s)
not necessarily < 2

parent

children

leaves

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28



Trees are Special Graphs

For a more formal definition, we need to introduce the concept of
graphs...

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28



Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28


http://math.tut.fi/~ruohonen/GT_English.pdf

Graphs

Definition 1 An undirected graph G is a tupel G = (V, E) of edges e = {u,v} €
E over the vertex set V (i.e., u,v € V).

= vertices = nodes
= edges =lines
= Note: edges cover two unordered vertices (undirected graph)
= |f they are ordered, we call G a directed graph with edges
e = (u,v)
= to draw an ordered graph, we use arrows

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 20



Graphs: Basic Definitions

= uand v are end vertices of an edge {u,v} Q
= Edges are adjacent if they share an end vertex
= Vertices u and v are adjacent if {u,v}isin E a loop

» The degree of a vertex is the number of times it is an end vertex
= A complete graph contains all possible edges (once):

Cote &% &
@ o—@

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2C



Walks, Paths, and Circuits

Definition 1 A walk in a graph G = (V, E) is a sequence

Vigs iy = (Vig, Viy )5 Viys €iy = (Viy, Vig)s -+ 5 €y, Vi

alternating vertices and adjacent edges of G.

A walk is
closed if first and last node coincide
a path if each vertex is visited at most once

= aclosed path is a circuit or cycle
» aclosed path involving all vertices of G is a Hamiltonian cycle

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 202



Graphs: Connectedness

= Two vertices are called connected if there is a walk between
themin G

= |f all vertex pairs in G are connected, G is called connected

= The connected components of G are the (maximal) subgraphs
which are connected.

o(0®

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2C



Trees and Forests

= A forestis a cycle-free graph
= Atree is a connected forest

Sast

A spanning tree of a connected graph G is a tree in G which
contains all vertices of G

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2C



Special Notations for Trees With Added Direc

Assume: Tree-like graph with directed edges s.t. each vertex is
connected to a specific vertex, the root

l

/‘ /\
parent

leaves root

Note:
choice of root/parent/children not always unique in undirected trees

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 202



Depth-First Search (DFS)

Sometimes, we need to traverse a graph, e.g. to find certain vertices
Depth-first search and breadth-first search are two algorithms to do so

Depth-first Search (for undirected/acyclic and connected graphs)
O start at any node x; set i=0
® as long as there are unvisited edges {x,y}:

= choose the next unvisited edge {x,y} to a vertex y and mark x
as the parent of y

= if y has not been visited so far: i=i+1, label y as the node
visited at iteration i, and continue the search at x=y in step 2

= else continue with next unvisited edge of x

©® if all edges {x,y} are visited, we continue with x=parent(x) at step 2
or stop if x equals the starting node vO

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.



DFS: Stage Exercise

Exercise the DFS algorithm on the following graph!

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 2¢



Breadth-First Search (BFS)

Breadth-first Search (for undirected/acyclic and connected graphs)
O start at any node x, set i=0, and label x with value i

® as long as there are unvisited edges {x,y} which are adjacent to a
vertex X that is labeled with value i:

= |abel all unlabeled vertices y with value i+1
® seti=i+1 and go to step 2

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28



Back to Trees as Data Structure

Binary Search Tree
= atree with degree < 2

= children sorted such that the left subtree always contains values
smaller than the corresponding root and the right subtree only
values larger

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 202



Class Exercise: Filling a Binary Search Tree

Round 1:

Each online student: give an integer to be filled into tree
Round 2:

In class: tell where the next integer inserts

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 2






Binary Search Tree: Complexities

Search

= similar to binary search in array (go left or right until found)
= (O(log (n)) if tree is well balanced

= O(n) In worst case (linear list)

Insertion
= first like search to determine the parent of the new node
= then addin O(1) [we are always at a leaf or have an “empty child”]

Remove (more tricky)
» |f node has no child, remove it
= if node has a single child, replace node by its child

» |f node has two children: find left-most tree entry L larger than the
to-be-removed node, copy its value to the to-be-removed node,
and remove L according to the two above rules

= cost: O(tree depth), In worst case: O(n)

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep.



Binary Trees: Can We Do Better?

Binary Search Tree

average case (random inserts) worst case
O(log(m))  O(log(n))  O(log(n)) O(n) O(n) O(n)

Guarantee a balanced tree:
e AVL trees

« B trees

 Red-Black trees

average case (random inserts) worst case

search insert delete search insert delete

O(log(n)) ~ O(log(n))  O(log(n))  O(log(n))  O(log(n))  O(log(n))

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28



Can We Do Even Better on Average?

Balanced Trees

average case (random inserts) worst case

search insert delete search insert delete

O(log(m))  O(log(n))  O(log(n))  O(log(n))  O(log(n))  O(log(n))

?
average case (random inserts) worst case
0(1) 0(1) 0(1) O(n) O(n) 0(n)

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28



Dictionaries

In python:
my dict = {‘'Joe': 113, ‘Pete': 7, ‘Alan': '110'}
print("my dict[‘'Joe']: ™ + my dict[‘Joe'])
gives my dict[‘Joe’]: 113 as output

» the immutables *Joe’, ‘Pete’, and ‘Alan’ are the keys
= 113, 7, and 110 are the values (or the stored data)

Next: Why dictionaries and how are they implemented?

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 20



Dictionaries

— — —l 1
S S——
S w— A e

| 4

[ —— S S ——

L
l —==11
4 r\
- L A L
————e—— — — —
-
|
/| T
Y 72 .
= . |

Where Is Alan?

- —
— —— = -
— — =
—— m—— w— L sa
. i*  —— — -
. =5 E==
 roce -  W——
t " — ——
J | == P
= —— — : ‘ ' ' ‘
— ] |  S—— 3 I l
== = == ' ” '
—~—— : — l N T— e —— ’ \
- — \ '} b '\ &3 L P
—— \ .  rem— ‘ Gu - — —~——
i e C : =
S (1 —_— g PUBLIC
| DOMAIN

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, Centrale



Where is Alan?

= Go through all offices one by one?
like in list and array

= No, you would ask the receptionist for the office number

@m Evan Bench

S EY

© Dimo Brockhoff, Inria 2019-2020



Dictionaries Implemented as Hashtables

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020



Dictionaries Implemented as Hashtables

Hash

Alan function f

Joe

Pete 110
111
112
113

Possible hash function: h =z mod n

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020



Hash Functions

...should be
» deterministic: find data again

= uniform: use allocated memory space well
[more tricky with variable length keys such as strings]

Problems to address in practice:

= how to deal with collisions (e.g. via multiple hash functions)

= deleting needs to insert dummy keys when a collision appeared
= what if the hash table is full? - resizing

All this gives a constant average performance in practice
and a worst case of ©(n) for insert/remove/search

Not more detalls here, but if you are interested:

For more details on python’s dictionary:
https://www.youtube.com/watch?v=C4Kc8xzcAG6S8

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 2¢



Quick Recap Data Structures

= Arrays: fast access, slow search, no insert

» (Linked) Lists: slow access, slow search, but insert/remove in
constant time

= Hence python lists are implemented as dynamic arrays
(once array is full, a larger chunk of memory gets allocated)
http.//www.laurentluce.com/posts/python-list-implementation/

= Trees: log(n) access, log(n) add/remove

= Dictionaries: constant average performance in practice
and a linear worst case for insert/remove/search

see also https://www.bigocheatsheet.com/

© Dimo Brockhoff, Inria 2019-2020 Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28


http://www.laurentluce.com/posts/python-list-implementation/

discussion home exercises



Discussion Home Exercise

Exercise 1. Matrix Multiplication

Cij = Xk=1% Kbk,
" naive implementation:
fori =1tomdo:
forj =1to !l do:
cij =0
for k =1tondo:
Cij = Cij + Qi * by

= computation per cell: n additions and n multiplications
= has to be done for all m x [ cells
* intotal: m-[-n additions and m - [ - n multiplications
= Ond)ifk=1l=n
* |nteresting: we can do better:
0(nl°87) = 0(n?897-) by Strassen (1968)
even 0 (n%3728639) py Le Gall (2014)

© Dimo Brockhoff, Inria 2019-2020



Discussion Home Exercise

Exercise 2: Finding Smallest Element

simple implementation:
assume array to be A = [A[1], ..., A[n]]

m = A[1]
fori = 2tondo:
if Ali] < m do:
m = Ali|

Worst case: smallest element is at A[n]
* Runtime 0(n)
Best case (?): smallest element is at A[1]
= But Algorithm does not know this before to see all elements!

= Also runtime of O(n)

© Dimo Brockhoff, Inria 2019-2020



Discussion Home Exercise

Exercise 3: Finding Smallest Element Il
(finding also 2" and 3'9 smallest)

ldea: always keep the two/three smallest already seen solutions

s,m,l = +00, +00,+00 # s: smallest, m: 2" smallest, 1: 374 smallest
fori =1 tondo:
if Ali] < s do:
s,m,1 = A[i],s,m
else if Ali] < m:
s,m,1 =s A[i], m
elseif Ali] <1
s,m,l =s,m,A[i]

Worst & best case again (asymptotically) the same: O(n)

© Dimo Brockhoff, Inria 2019-2020




Discussion Home Exercise

Exercise 4: O-Notation

0(f1) # 0(log(f1))
Proof:
= choose for example g,(x) = 2* and f;(x) = 2*. Then, by definition,
91 = 0(f1)

* Butyg; € 0(log(f1)):
" g1 (x)| =2* > x =log(2*) = log(f;(x)) forall x > 1
= Thus, there exists no constant ¢ > 0 such that the left-hand
side can be smaller than ¢ times the right-hand side for all x
above a certain threshold x, > 0

© Dimo Brockhoff, Inria 2019-2020



Discussion Home Exercise

Exercise 4: O-Notation
0(f1) - 0(f2) =0(f1-f2)

Proof:
= choose g, € O(f;) and g, € O(f;) arbitrarily
= |.e. we have constants nq,n,, c{,c, > 0 such that
gi1(n) < c; - fi(n) for all n > n; and
g,(n) < c, - fo(n) foralln > n,
=  but with ¢’ = ¢; - ¢, then also
lg1(m) - g (M)| < |g1 ()| - g ()|
<c - -fin) c-fr(n)=c"-(f1(n) - f(n))

for all n > max(nq,n,)

© Dimo Brockhoff, Inria 2019-2020



