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Thu Topic

Mon, 21.09.2020 PM Introduction, Combinatorics, O-notation, data structures

Mon, 28.09.2020 PM Data structures II

Mon, 5.10.2020 PM Sorting algorithms, recursive algorithms

Mon, 12.10.2020 PM Greedy algorithms

Mon, 19.10.2020 PM Dynamic programming

Mon, 2.11.2020 PM Randomized Algorithms and Blackbox Optimization

Mon, 16.11.2020 PM Complexity theory I

Mon, 23.11.2020 PM Complexity theory II

Mon, 14.12.2019 PM Exam

Course Overview
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Array: a fixed chunk of memory of constant size that can contain a 

given number of 𝑛 elements of a given type

 think of a vector or a table

 in python:

 import numpy as np

 a = np.array([1, 2, 3])

 a[1] returns 2 [python counts from 0!]

Common operations and their complexity:

 Get(i) and Update(i) in constant time

 but Remove(i), Move j in between positions i and i+1, … 

are not possible in constant time, because necessary 

memory alterations not local

 To know whether a given item is in the array: linear time

Arrays
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 Assume a sorted array 𝑎[1] < 𝑎[2] < … < 𝑎[𝑛].

 How long will it take to find the smallest element ≥ 𝑘?

(Best case, worse case, average case)

Searching in Sorted Arrays
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 Assume a sorted array 𝑎[1] < 𝑎[2] < … < 𝑎[𝑛].

 How long will it take to find the smallest element ≥ 𝑘?

Or to decide whether a value 𝑎 is in the array?

(best case, worse case, average case)

Linear search

 go through array from 𝑎[1] to 𝑎[𝑛] until entry found

 still Θ(𝑛) in the worst case

 average case the same (if we assume that each item is queried 

with equal probability)

Searching in Sorted Arrays
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Binary search

 Look at position 𝑛/2 first

 Is it the sought after entry? If yes, stop

 If not: search recursively in left or right interval, depending on 

whether the middle entry is larger or smaller than the sought 

after entry

Runtimes

 Best case:

 Worst case:

 sought after entry not in array

 simple case: 𝑛 = 2𝑘 − 1 array elements

 array-part where entry could be located is of length 2𝑘−1 − 1

 by induction: maximally 𝑘 comparisons needed

 𝑘 = Θ(log 𝑛 )

Searching in Sorted Arrays

1
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 Matrices can be stored in arrays, too

 Row first or column first?

 Storing sparse matrices efficiently:

not covered here

Remarks: Arrays and Matrices

Cmglee
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 Dynamic data structure of varying length

 Allows to add and remove entries (remember: arrays don’t)

 However, also not stored in contiguous memory anymore

Idea of a Linear List

Linked Lists

data pointer
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 Dynamic data structure of varying length

 Allows to add and remove entries (remember: arrays don’t)

 However, also not stored in contiguous memory anymore

Idea of a Linear List

Linked Lists

a list

of words
nil /

null /

None
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 Dynamic data structure of varying length

 Allows to add and remove entries (remember: arrays don’t)

 However, also not stored in contiguous memory anymore

Idea of a Linear List

Linked Lists

memory 

address
… 87 88 89 90 91 92 93 …

memory 

content
… 4 90 … 7 92 1 104 …

[4, 7, 1, …] in memory could be for example:
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 Dynamic data structure of varying length

 Allows to add and remove entries (remember: arrays don’t)

 However, also not stored in contiguous memory anymore

Idea of a Linear List

Linked Lists

memory 

address
… 87 88 89 90 91 92 93 …

memory 

content
… 4 90 … 7 92 1 104 …

?
[4, 7, 1, …] in memory could be for example:
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 Dynamic data structure of varying length

 Allows to add and remove entries (remember: arrays don’t)

 However, also not stored in contiguous memory anymore

Idea of a Linear List

 go through list until 7 is found

 always keep track of last pointer (the one finally to 7)

 move this pointer to the former pointer of entry 7

Linked Lists

memory 

address
… 87 88 89 90 91 92 93 …

memory 

content
… 4 90 … 7 92 1 104 …

[4, 7, 1, …] in memory could be for example:

92
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 removal of element in constant time 𝒪(1)

 very similar for adding: 𝒪(1)

 adding into a sorted list: 𝒪(𝑛)

 but now searching is more difficult, even if sorted

 reason: we don’t have access to the “middle” element

 search for element 𝑖: Θ(𝑖) if list is sorted

we need a different data structure if we want to search, insert, and 

delete efficiently

Linked Lists
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Brian Green 
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root

parent

children

data

pointer(s)
not necessarily ≤ 2

leaves
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For a more formal definition, we need to introduce the concept of 

graphs…

Trees are Special Graphs
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Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

http://math.tut.fi/~ruohonen/GT_English.pdf
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 vertices = nodes

 edges = lines

 Note: edges cover two unordered vertices (undirected graph)

 if they are ordered, we call G a directed graph with edges 

𝑒 = (𝑢, 𝑣)

 to draw an ordered graph, we use arrows

Graphs

u

v
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 u and v are end vertices of an edge {u,v}

 Edges are adjacent if they share an end vertex

 Vertices u and v are adjacent if {u,v} is in E

 The degree of a vertex is the number of times it is an end vertex

 A complete graph contains all possible edges (once):

Graphs: Basic Definitions

a loop

K1 K2 K3 K4



21Algorithms & Complexity, CentraleSupélec/ESSEC, Sep. 28, 2020© Dimo Brockhoff, Inria 2019-2020 21

Mastertitelformat bearbeiten

A walk is

 closed if first and last node coincide

 a path if each vertex is visited at most once

 a closed path is a circuit or cycle

 a closed path involving all vertices of G is a Hamiltonian cycle

Walks, Paths, and Circuits
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 Two vertices are called connected if there is a walk between 

them in G

 If all vertex pairs in G are connected, G is called connected

 The connected components of G are the (maximal) subgraphs 

which are connected.

Graphs: Connectedness
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 A forest is a cycle-free graph

 A tree is a connected forest

A spanning tree of a connected graph G is a tree in G which 

contains all vertices of G

Trees and Forests
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Assume: Tree-like graph with directed edges s.t. each vertex is 

connected to a specific vertex, the root

Note: 

choice of root/parent/children not always unique in undirected trees

rootleaves
parent

children
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Sometimes, we need to traverse a graph, e.g. to find certain vertices

Depth-first search and breadth-first search are two algorithms to do so

Depth-first Search (for undirected/acyclic and connected graphs)

 start at any node x; set i=0

 as long as there are unvisited edges {x,y}:

 choose the next unvisited edge {x,y} to a vertex y and mark x 

as the parent of y

 if y has not been visited so far: i=i+1, label y as the node 

visited at iteration i, and continue the search at x=y in step 2

 else continue with next unvisited edge of x

 if all edges {x,y} are visited, we continue with x=parent(x) at step 2 

or stop if x equals the starting node v0

Depth-First Search (DFS)
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Exercise the DFS algorithm on the following graph!

DFS: Stage Exercise

E

B

G

L

F H

C

K

D

I MJ

A
e1 e2

e3

e4

e5

e6 e7
e8

e9

e10

e11

e12 e13

e14 e15

e16

e17

e18

e19

e20 e21 e22
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Breadth-first Search (for undirected/acyclic and connected graphs)

 start at any node x, set i=0, and label x with value i

 as long as there are unvisited edges {x,y} which are adjacent to a 

vertex x that is labeled with value i:

 label all unlabeled vertices y with value i+1

 set i=i+1 and go to step 2

Breadth-First Search (BFS)

0

1

1

1

1

2

2

2

2

3
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Binary Search Tree

 a tree with degree ≤ 2

 children sorted such that the left subtree always contains values 

smaller than the corresponding root and the right subtree only 

values larger

Back to Trees as Data Structure
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Round 1:

Each online student: give an integer to be filled into tree

Round 2: 

In class: tell where the next integer inserts
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Search

 similar to binary search in array (go left or right until found)

 𝒪(log (𝑛)) if tree is well balanced

 Θ(𝑛) in worst case (linear list)

Insertion

 first like search to determine the parent of the new node

 then add in 𝒪(1) [we are always at a leaf or have an “empty child”]

Remove (more tricky)

 if node has no child, remove it

 if node has a single child, replace node by its child

 if node has two children: find left-most tree entry L larger than the 

to-be-removed node, copy its value to the to-be-removed node, 

and remove L according to the two above rules

 cost: 𝒪(tree depth), in worst case: Θ(n)

Binary Search Tree: Complexities
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Binary Search Tree

average case (random inserts)                       worst case

average case (random inserts) worst case

Binary Trees: Can We Do Better?

search insert delete search insert delete

𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛))

search insert delete Search Insert Delete

𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛)) Θ(𝑛) Θ(𝑛) Θ(𝑛)

Guarantee a balanced tree:
• AVL trees

• B trees

• Red-Black trees

• …
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Balanced Trees

average case (random inserts)                       worst case

average case (random inserts)     worst case

Can We Do Even Better on Average?

search insert delete search insert delete

𝚯(𝟏) 𝚯(𝟏) 𝚯(𝟏) Θ(𝑛) Θ(𝑛) Θ(𝑛)

search insert delete search insert delete

𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛)) 𝒪(log(𝑛))

?
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In python:

my_dict = {‘Joe': 113, ‘Pete': 7, ‘Alan': ‘110'}

print(“my_dict[‘Joe']: “ + my_dict[‘Joe'])

gives  my_dict[‘Joe’]: 113 as output

 the immutables ‘Joe’, ‘Pete’, and ‘Alan’ are the keys

 113, 7, and 110 are the values (or the stored data)

Next: Why dictionaries and how are they implemented?

Dictionaries
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 In python:

Dictionaries

Where is Alan?
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 Go through all offices one by one?

like in list and array

 No, you would ask the receptionist for the office number

Where is Alan?

Evan Bench
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Names

Alan

Joe

Pete

…

Dictionaries Implemented as Hashtables

Offices

7

…

110

111

112

113

Evan Bench
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Keys

Alan

Joe

Pete

…

Dictionaries Implemented as Hashtables

Memory Address

7

…

110

111

112

113

Hash 

function

Possible hash function: h = z mod n
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…should be 

 deterministic: find data again

 uniform: use allocated memory space well

[more tricky with variable length keys such as strings]

Problems to address in practice:

 how to deal with collisions (e.g. via multiple hash functions)

 deleting needs to insert dummy keys when a collision appeared

 what if the hash table is full?  resizing

All this gives a constant average performance in practice

and a worst case of Θ(𝑛) for insert/remove/search

Not more details here, but if you are interested:

For more details on python’s dictionary: 

https://www.youtube.com/watch?v=C4Kc8xzcA68

Hash Functions
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 Arrays: fast access, slow search, no insert

 (Linked) Lists: slow access, slow search, but insert/remove in 

constant time

 Hence python lists are implemented as dynamic arrays 

(once array is full, a larger chunk of memory gets allocated)

http://www.laurentluce.com/posts/python-list-implementation/

 Trees: log(n) access, log(n) add/remove

 Dictionaries: constant average performance in practice

and a linear worst case for insert/remove/search

see also https://www.bigocheatsheet.com/

Quick Recap Data Structures

http://www.laurentluce.com/posts/python-list-implementation/


discussion home exercises
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Exercise 1: Matrix Multiplication

 𝑐𝑖𝑗 = σ𝑘=1
𝑛 𝑎𝑖,𝑘𝑏𝑘,𝑗

 naïve implementation:

𝐟𝐨𝐫 𝑖 = 1 𝐭𝐨 𝑚 𝐝𝐨:
𝐟𝐨𝐫 𝑗 = 1 𝐭𝐨 𝑙 𝐝𝐨:

𝑐𝑖𝑗 = 0

𝐟𝐨𝐫 𝑘 = 1 𝐭𝐨 𝑛 𝐝𝐨:
𝑐𝑖𝑗 = 𝑐𝑖𝑗 + 𝑎𝑖𝑘 ⋅ 𝑏𝑘𝑗

 computation per cell: 𝑛 additions and 𝑛 multiplications

 has to be done for all 𝑚 × 𝑙 cells

 in total: 𝑚 ⋅ 𝑙 ⋅ 𝑛 additions and 𝑚 ⋅ 𝑙 ⋅ 𝑛 multiplications

 Θ(𝑛3) if 𝑘 = 𝑙 = 𝑛

 interesting: we can do better: 

𝒪 𝑛log 7 = 𝒪(𝑛2.807…) by Strassen (1968)

even 𝒪(𝑛2.3728639) by Le Gall (2014)

Discussion Home Exercise

OgreBot

𝑚 × 𝑛

𝑛 × 𝑙
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Exercise 2: Finding Smallest Element

simple implementation: 

assume array to be 𝑨 = [𝑨[𝟏], … , 𝑨[𝒏]]

𝐦 = 𝐀[𝟏]

𝐟𝐨𝐫 𝑖 = 2 𝐭𝐨 𝑛 𝐝𝐨:
𝐢𝐟 𝑨 𝒊 < 𝒎 𝐝𝐨:

𝐦 = 𝐀[𝐢]

Worst case: smallest element is at 𝑨[𝒏]

 Runtime 𝒪(𝑛)

Best case (?): smallest element is at 𝑨[𝟏]

 But Algorithm does not know this before to see all elements!

 Also runtime of 𝒪(𝑛)

Discussion Home Exercise
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Exercise 3: Finding Smallest Element II 

(finding also 2nd and 3rd smallest)

Idea: always keep the two/three smallest already seen solutions

𝐬,𝐦, 𝐥 = +∞,+∞,+∞ # s: smallest, m: 2nd smallest, l: 3rd smallest
𝐟𝐨𝐫 𝑖 = 1 𝐭𝐨 𝑛 𝐝𝐨:

𝐢𝐟 𝑨 𝒊 < 𝒔 𝐝𝐨:
𝐬,𝐦, 𝐥 = 𝐀 𝐢 , 𝐬,𝐦

𝐞𝐥𝐬𝐞 𝐢𝐟 𝐀 𝒊 < 𝐦:
𝐬,𝐦, 𝐥 = 𝐬, 𝐀 𝐢 ,𝐦

𝐞𝐥𝐬𝐞 𝐢𝐟 𝐀 𝒊 < 𝐥:
𝐬,𝐦, 𝐥 = 𝐬,𝐦, 𝐀[𝐢]

Worst & best case again (asymptotically) the same: 𝒪(𝑛)

Discussion Home Exercise
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Exercise 4: 𝓞-Notation

𝒪 𝑓1 ≠ 𝒪(log(𝑓1))

Proof:

 choose for example 𝑔1 𝑥 = 2𝑥 and 𝑓1(𝑥) = 2𝑥. Then, by definition, 

𝑔1 = 𝒪(𝑓1)

 But 𝑔1 ∉ 𝒪 log 𝑓1 :

 𝑔1 𝑥 = 2𝑥 > 𝑥 = log 2𝑥 = log(𝑓1(𝑥)) for all 𝑥 > 1

 Thus, there exists no constant 𝑐 > 0 such that the left-hand 

side can be smaller than 𝑐 times the right-hand side for all 𝑥
above a certain threshold 𝑥0 > 0

Discussion Home Exercise
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Exercise 4: 𝓞-Notation

𝒪 𝑓1 ⋅ 𝒪(𝑓2) = 𝒪(𝑓1 ⋅ 𝑓2)

Proof:

 choose 𝑔1 ∈ 𝒪(𝑓1) and 𝑔2 ∈ 𝒪(𝑓2) arbitrarily

 i.e. we have constants 𝑛1, 𝑛2, 𝑐1, 𝑐2 > 0 such that

𝑔1 𝑛 ≤ 𝑐1 ⋅ 𝑓1(𝑛) for all 𝑛 > 𝑛1 and 

𝑔2 𝑛 ≤ 𝑐2 ⋅ 𝑓2(𝑛) for all 𝑛 > 𝑛2
 but with 𝑐′ = 𝑐1 ⋅ 𝑐2 then also

𝑔1 𝑛 ⋅ 𝑔2 𝑛 ≤ 𝑔1 𝑛 ⋅ 𝑔2 𝑛

≤ 𝑐1 ⋅ 𝑓1 𝑛 ⋅ 𝑐2 ⋅ 𝑓2 𝑛 = 𝑐′ ⋅ (𝑓1 𝑛 ⋅ 𝑓2(𝑛))

for all 𝑛 > max(𝑛1, 𝑛2)

Discussion Home Exercise


