
Algorithms & Complexity
Lecture 4: Recursive and Greedy

Algorithms

Dimo Brockhoff

Inria Saclay – Ile-de-France

October 12, 2020

CentraleSupélec / ESSEC Business School

2Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 2

Corona Update

https://geodes.santepubliquefrance.fr/#bbox=38985,6323608,423056,255910&c=indicator&i=sp_ti_

tp_7j.tx_pe_gliss&s=2020-09-11-2020-09-17&selcodgeo=91&t=a01&view=map2

3Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 3

Thu Topic

Mon, 21.09.2020 PM Introduction, Combinatorics, O-notation, data structures

Mon, 28.09.2020 AM Data structures II

Mon, 5.10.2020 AM Sorting algorithms, recursive algorithms

Mon, 12.10.2020 PM Greedy algorithms

Mon, 19.10.2020 PM Dynamic programming

Mon, 2.11.2020 PM Randomized Algorithms and Blackbox Optimization

Mon, 16.11.2020 AM Complexity theory I

Mon, 23.11.2020 AM Complexity theory II

Mon, 14.12.2019 PM Exam

Course Overview

4Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 4

Discussion of Home Exercises

5Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 5

Exercise 1: Insertion Sort with binary search

Two choices when 𝑛 > 1:

 search/split array either at ⌊
𝑛

2
⌋

 or at ⌈
𝑛

2
⌉

Here, we choose the former

Discussion Home Exercise

503
87

512

50387
512

?

?

503
87

512

50387
512

?

?

50387
512

?

6Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 6

Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

503 87 512 61 908 170 897 275 654 426 154 509 612 653 765 703

503
87

512 61 908 170 897 275 654 426 154 509 612 653 765 703

50387
512

61 908 170 897 275 654 426 154 509 612 653 765 703

?

?

50387
512

61 908 170 897 275 654 426 154 509 612 653 765 703

?

50387 512 61 908 170 897 275 654 426 154 509 612 653 765 703

+

+

7Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 7

Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

50387 512 61 908 170 897 275 654 426 154 509 612 653 765 703

?

+ +

87 61 908 170 897 275 654 426 154 509 612 653 765 703

?

+ +

8761 908 170 897 275 654 426 154 509 612 653 765 703

?

+ +

503 512

503 512

+

8761 908 170 897 275 654 426 154 509 612 653 765 703

?

503 512

8761 908 170 897 275 654 426 154 509 612 653 765 703

+ +

503 512

+

+ + +?

8Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 8

Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

8761 908
170

897 275 654 426 154 509 612 653 765 703

+ +

503 512

+

?

+

8761 908
170

897 275 654 426 154 509 612 653 765 703

+ +

503 512

+

?

+

8761 908
170

897 275 654 426 154 509 612 653 765 703

+ +

503 512

+

?

+

8761 908170
897 275 654 426 154 509 612 653 765 703

+ +

503 512

+ + +

9Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 9

Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

8761 908170 897
275

654 426 154 509 612 653 765 703

+ +

503 512

+ + +

12 3

+

8761 908170 897275 654 426 154 509 612 653 765 703

+ +

503 512

+ + +

1 2 3

+ +

8761 908170 897275 654
426

154 509 612 653 765 703

+ +

503 512

+ + +

12 3

+ +

4

+

8761 908170 897275 654426
154

509 612 653 765 703

+ +

503 512

+ + +

12 3

+ + + +

10Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 10

Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

8761 908170 897275 654426154 509 612 653 765 703

+ +

503 512

+ + +

1 23

+ + + +

4

+

8761 908170 897275 654426154 509
612

653 765 703

+ +

503 512

+ + +

1 2 3

+ + + +

4

+ +

8761 908170 897275 654426154 509 612
653

765 703

+ +

503 512

+ + +

1 2 3

+ + + +

4

+ + +

11Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 11

Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

8761 908170 897275 653426154 509 612 654
765

703

+ +

503 512

+ + +

1 2 3

+ + + +

4

+ + + +

8761 908170 897275 653426154 509 612 654 765
703

+ +

503 512

+ + +

1 2 3

+ + + +

4

+ + + + +

In total: 47 comparisons

8761 908170 897275 653426154 509 612 654 765703503 512

12Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 12

Exercise 2: Mergesort

Discussion Home Exercise

510 57 512 38 909 241 897 250 653 499 154 511 612 677 865 777

510 57 512 38 909 241 897 250 653 499 154 511 612 677 865 777

510 57 512 38 909 241 897 250 653 499 154 511 612 677 865 777

510 57 512 38 909 241 897 250 653 499 154 511 612 677 865 777

510 57 512 38 909 241 897 250 653 499 154 511 612 677 865 777

13Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 13

Exercise 2: Mergesort

Discussion Home Exercise

510 57 512 38 909 241 897 250 653 499 154 511 612 677 865 777

38 57 241 250 510 512 897 909 112 499 511 612 653 677 777 865

38 57 510 512 241 250 897 909 112 499 511 653 612 677 777 865

57 510 38 512 241 909 250 897 499 653 112 511 612 677 777 865

38 57 112 241 250 499 510 511 512 612 653 677 777 865 897 909

8 comparisons so far

1

2

3 1 3

2 2

1 3 1 2

8+11 comparisons1

3

2 4

5

6 1 2
4

3

5 8+11+11

comparisons
1 2

4

63

5

7

8

9

10 11 12 13 14

8+11+11+14 = 44 comparisons in total

14Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 14

Exercise 3: Implementing Merge-sort and Comparison w/ Timsort

see Jupyter notebook

Discussion Home Exercise

15Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 15

Recursive Algorithms (recap)

16Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 16

recursive algorithm/data structure/…

= algorithm/data structure/… that calls/contains a self-reference

Examples:

 Mergesort

 Binary Search

 computing 𝑛! (= 𝑛 ⋅ (𝑛 − 1)!)

 there are also recursive data structures:

 a linked list is defined as an element with data and pointer to

another linked list

 a tree: the root has other trees as children

 fractals are also recursive

Recursive Algorithms

17Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 17

Greedy Algorithms

18Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 18

From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem

solving heuristic of making the locally optimal choice at each

stage with the hope of finding a global optimum.”

 Note: typically greedy algorithms do not find the global optimum

 We will see later when this is the case

Greedy Algorithms

19Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 19

 Example 1: Money Change

 Example 2: Packing Circles in Triangles

 Example 3: Minimal Spanning Trees (MST) and the algorithm of

Kruskal

 Example 4: Bin Packing

Greedy Algorithms: Lecture Overview

20Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 20

Change-making problem

 Given n coins of distinct values w1=1, w2, ..., wn and a total

change W (where w1, ..., wn, and W are integers).

 Minimize the total amount of coins Σxi such that Σwixi = W and

where xi is the number of times, coin i is given back as change.

Greedy Algorithm

Unless total change not reached:

add the largest coin which is not larger than the remaining

amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:

finishing darts (from 501 to 0 with 9 darts)

Example 1: Money Change

21Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 21

G. F. Malfatti posed the following problem in 1803:

 how to cut three cylindrical columns out of a triangular prism of

marble such that their total volume is maximized?

 his best solutions were so-called Malfatti circles in the triangular

cross-section:

 all circles are tangent to each other

 two of them are tangent to each side of the triangle

Example 2: Packing Circles in Triangles

22Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 22

What would a greedy algorithm do?

Example 2: Packing Circles in Triangles

23Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 23

What would a greedy algorithm do?

Note that Zalgaller and Los' showed in 1994 that the greedy

algorithm is optimal [1]

[1] Zalgaller, V.A.; Los', G.A. (1994), "The solution of Malfatti's problem", Journal of

Mathematical Sciences 72 (4): 3163–3177, doi:10.1007/BF01249514.

Example 2: Packing Circles in Triangles

24Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 24

Outline:

 problem definition

 Kruskal’s algorithm

 including correctness proofs and analysis of running time

Example 3: Minimal Spanning Trees (MST)

25Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 25

A spanning tree of a connected graph G is a tree in G which

contains all vertices of G

Minimum Spanning Tree Problem (MST):

Given a (connected) graph G=(V,E) with edge weights wi for

each edge ei. Find a spanning tree 𝑇 that minimizes the weights

of the contained edges, i.e. where

σ𝑒𝑖∈𝑇
𝑤𝑖

is minimized.

MST: Problem Definition

26Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 26

Algorithm, see [1]

 Create forest F = (V,{}) with n components and no edge

 Put sorted edges (such that w.l.o.g. w1 ≤ w2 ≤ ... ≤ w|E|) into S

 While S non-empty and F not spanning:

 delete cheapest edge from S

 add it to F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the

traveling salesman problem". Proceedings of the American Mathematical

Society 7: 48–50. doi:10.1090/S0002-9939-1956-0078686-7

Kruskal’s Algorithm

27Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 27

Kruskal’s Algorithm: Example

E

B

G

L

F H

C

K

D

I MJ

A
4 12

7
22

2
21 17

16

3 6

11

20 8

10 19

9

1

18

13

15 14 5

29Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 29

First question: how to implement the algorithm?

 sorting of edges needs O(|E| log |E|)

Kruskal’s Algorithm: Runtime Considerations

Algorithm

Create forest F = (V,{}) with n components and no edge

Put sorted edges (such that w.l.o.g. w1 ≤ w2 ≤ ... ≤ w|E|) into S

While S non-empty and F not spanning:

delete cheapest edge from S

add it to F if no cycle is introduced

simple ?
forest implementation:

Disjoint-set

data structure

30Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 30

Data structure: ground set 1...N grouped to disjoint sets

Operations:

 FIND(i): to which set (“tree”) does i belong?

 UNION(i,j): union the sets of i and j!

(“join the two trees of i and j”)

Implemented as trees:

 UNION(T1, T2): hang root node of smaller tree under root node of

larger tree (constant time), thus

 FIND(u): traverse tree from u to root (to return a representative of

u’s set) takes logarithmic time in total number of nodes

Disjoint-set Data Structure (“Union&Find”)

1 2 3 4

1 2 3 4

1

2

3

4

5

6

31Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 31

Algorithm, rewritten with UNION-FIND:

 Create initial disjoint-set data structure, i.e. for each vertex vi,

store vi as representative of its set

 Create empty forest F = {}

 Sort edges such that w.l.o.g. w1 < w2 < ... < w|E|

 for each edge ei={u,v} starting from i=1:

 if FIND(u) ≠ FIND(v): # no cycle introduced

 F = F ∪ {{u,v}}

 UNION(u,v)

 return F

Implementation of Kruskal’s Algorithm

32Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 32

 Sorting of edges needs O(|E| log |E|)

 forest: Disjoint-set data structure

 initialization: O(|V|)

 log |V| to find out whether the minimum-cost edge {u,v}

connects two sets (no cycle induced) or is within a set (cycle

would be induced)

 2x FIND + potential UNION needs to be done O(|E|) times

 total O(|E| log |V|)

 Overall: O(|E| log |E|)

Back to Runtime Considerations

33Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 33

Two parts needed:

 Algo always produces a spanning tree

final F contains no cycle and is connected by definition

 Algo always produces a minimum spanning tree

 argument by induction

 P: If F is forest at a given stage of the algorithm, then there is

some minimum spanning tree that contains F.

 clearly true for F = (V, {})

 assume that P holds when new edge e is added to F and be T a

MST that contains F

 if e in T, fine

 if e not in T: T + e has cycle C with edge f in C but not in F

(otherwise e would have introduced a cycle in F)

 now T – f + e is a tree with same weight as T (since T is

a MST and f was not chosen to F)

 hence T – f + e is MST including T + e (i.e. P holds)

Kruskal’s Algorithm: Proof of Correctness

34Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 34

Bin Packing Problem

Given a set of n items with sizes a1, a2, ..., an. Find an

assignment of the ai’s to bins of size V such that the number of

bins is minimal and the sum of the sizes of all items assigned to

each bin is ≤ V.

Applications

similar to multiprocessor scheduling of n jobs to m processors

Example 3: Bin Packing (BP)

35Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 35

Bin Packing Problem

Given a set of n items with sizes a1, a2, ..., an. Find an

assignment of the ai’s to bins of size V such that the number of

bins is minimal and the sum of the sizes of all items assigned to

each bin is ≤ V.

Known Facts

 no optimization algorithm reaches a better than 3/2

approximation in polynomial time (not shown here)

 greedy first-fit approach already yields an approximation

algorithm with approximation ratio of 2

Example 3: Bin Packing (BP)

36Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 36

First-Fit Algorithm

 without sorting the items do:

 put each item into the first bin where it fits

 if it does not fit anywhere, open a new bin

Theorem: First-Fit algorithm is a 2-approximation algorithm

Proof: Assume First Fit uses m bins. Then, at least m-1 bins are more

than half full (otherwise, move items).

because m and OPT are integer

First-Fit Approach

0.5 0.8 0.20.40.3 0.2 0.2

0.5 0.3 0.4

0.8

0.2 0.2 0.2

means: algo always finds

a solution with f-value of ≤ 2OPT

37Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 37

What we have seen so far:

 three problems where a greedy algorithm was optimal

 money change

 circle packing

 minimum spanning tree (Kruskal’s algorithm)

 but also: greedy not always optimal

 see the example of bin packing

 this is true in particular for so-called NP-hard problems

Obvious Question: when is greedy good?

Answer: if the problem is a matroid (not covered here)

From Wikipedia: [...] a matroid is a structure that captures and

generalizes the notion of linear independence in vector spaces.

There are many equivalent ways to define a matroid, the most

significant being in terms of independent sets, bases, circuits,

closed sets or flats, closure operators, and rank functions.

Conclusion Greedy Algorithms I

38Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020© Dimo Brockhoff, Inria 38

I hope it became clear...

...what a greedy algorithm is

...that it not always results in the optimal solution

...but that it does if and only if the problem is a matroid

Conclusions Greedy Algorithms II

