Algorithms \& Complexity Lecture 4: Recursive and Greedy Algorithms

October 12, 2020
CentraleSupélec / ESSEC Business School

Dimo Brockhoff
Inria Saclay - Ile-de-France

Corona Update

Taux d'incidence

Chiffres-clés 2020-09-11-2020-09-17		
	Statistique	France
France : 107,4	minimum	14,6 (Creuse - 23)
	maximum	292,9 (Guadeloupe - 971)
Essonne : 105,8	médiane	66,4
	observation	104 sur 104

Graphiques et comparaisons
Évolution temporelle comparée
Comparaison

https://geodes.santepubliquefrance.fr/\#bbox=38985,6323608,423056,255910\&c=indicator\&i=sp_ti_ tp_7j.tx_pe_gliss\&s=2020-09-11-2020-09-17\&selcodgeo=91\&t=a01\&view=map2

Course Overview

Thu		Topic
Mon, 21.09.2020	PM	Introduction, Combinatorics, O-notation, data structures
Mon, 28.09.2020	AM	Data structures II
Mon, 5.10.2020	AM	Sorting algorithms, recursive algorithms
Mon, 12.10.2020	PM	Greedy algorithms
Mon, 19.10.2020	PM	Dynamic programming
Mon, 2.11.2020	PM	Randomized Algorithms and Blackbox Optimization
Mon, 16.11.2020	AM	Complexity theory I
Mon, 23.11.2020	AM	Complexity theory II
Mon, 14.12.2019	PM	Exam

Discussion of Home Exercises

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

Two choices when $n>1$:

- search/split array either at $\left\lfloor\frac{n}{2}\right\rfloor$
- or at $\left\lceil\frac{n}{2}\right\rceil$

Here, we choose the former

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

$6187154|170| 275426|503| 509512|612| 653|654| 703|765| 897908$
In total: 47 comparisons

Discussion Home Exercise

Exercise 2: Mergesort

510	57	512	38	909	241	897	250	653	499	154	511	612	677	865	777

Discussion Home Exercise

Exercise 2: Mergesort

510	57	512	38	909	241	897	250	653	499	154	511	612	677	865
777														

38	57	112	241	250	499	510	511	512	612	653	677	777	865	897	909

$8+11+11+14=44$ comparisons in total

Discussion Home Exercise

Exercise 3: Implementing Merge-sort and Comparison w/ Timsort

see Jupyter notebook

Recursive Algorithms (recap)

Recursive Algorithms

recursive algorithm/data structure/...
= algorithm/data structure/... that calls/contains a self-reference

Examples:

- Mergesort
- Binary Search
- computing $n!(=n \cdot(n-1)!)$
- there are also recursive data structures:
- a linked list is defined as an element with data and pointer to another linked list
- a tree: the root has other trees as children
- fractals are also recursive

Greedy Algorithms

Greedy Algorithms

From Wikipedia:
"A greedy algorithm is an algorithm that follows the problem solving heuristic of making the locally optimal choice at each stage with the hope of finding a global optimum."

- Note: typically greedy algorithms do not find the global optimum
- We will see later when this is the case

Greedy Algorithms: Lecture Overview

- Example 1: Money Change
- Example 2: Packing Circles in Triangles
- Example 3: Minimal Spanning Trees (MST) and the algorithm of Kruskal
- Example 4: Bin Packing

Example 1: Money Change

Change-making problem

- Given n coins of distinct values $w_{1}=1, w_{2}, \ldots, w_{n}$ and a total change W (where $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}$, and W are integers).
- Minimize the total amount of coins Σx_{i} such that $\Sigma w_{i} x_{i}=W$ and where x_{i} is the number of times, coin i is given back as change.

Greedy Algorithm

Unless total change not reached:
add the largest coin which is not larger than the remaining amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:

finishing darts (from 501 to 0 with 9 darts)

Example 2: Packing Circles in Triangles

G. F. Malfatti posed the following problem in 1803:

- how to cut three cylindrical columns out of a triangular prism of marble such that their total volume is maximized?
- his best solutions were so-called Malfatti circles in the triangular cross-section:
- all circles are tangent to each other
- two of them are tangent to each side of the triangle

Example 2: Packing Circles in Triangles

What would a greedy algorithm do?

Example 2: Packing Circles in Triangles

What would a greedy algorithm do?

Note that Zalgaller and Los' showed in 1994 that the greedy algorithm is optimal [1]
[1] Zalgaller, V.A.; Los', G.A. (1994), "The solution of Malfatti's problem", Journal of Mathematical Sciences 72 (4): 3163-3177, doi:10.1007/BF01249514.

Example 3: Minimal Spanning Trees (MST)

Outline:

- problem definition
- Kruskal's algorithm
- including correctness proofs and analysis of running time

MST: Problem Definition

A spanning tree of a connected graph G is a tree in G which contains all vertices of G

Minimum Spanning Tree Problem (MST):

Given a (connected) graph $G=(\mathrm{V}, \mathrm{E})$ with edge weights w_{i} for each edge e_{i}. Find a spanning tree T that minimizes the weights of the contained edges, i.e. where

$$
\sum_{e_{i} \in T} w_{i}
$$

is minimized.

Kruskal's Algorithm

Algorithm, see [1]

- Create forest $F=(\mathrm{V},\{ \})$ with n components and no edge
- Put sorted edges (such that w.l.o.g. $\mathrm{w}_{1} \leq \mathrm{w}_{2} \leq \ldots \leq \mathrm{w}_{|\mathrm{E}|}$) into S
- While S non-empty and F not spanning:
- delete cheapest edge from S
- add it to F if no cycle is introduced
[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the traveling salesman problem". Proceedings of the American Mathematical Society 7: 48-50. doi:10.1090/S0002-9939-1956-0078686-7

Kruskal's Algorithm: Example

Kruskal's Algorithm: Runtime Considerations

First question: how to implement the algorithm?

- sorting of edges needs $\mathrm{O}(|\mathrm{E}| \log |\mathrm{E}|)$

Algorithm

Create forest $\mathrm{F}=(\mathrm{V},\{ \})$ with n components and no edge
Put sorted edges (such that whown $w_{1} \leq w_{2} \leq \ldots \leq w_{\text {|E }}$) into S
While S non-empty and not spanning.
delete cheapest edge froms

forest implementation:
Disjoint-set data structure

Disjoint-set Data Structure ("Union\&Find")

Data structure: ground set $1 \ldots \mathrm{~N}$ grouped to disjoint sets
Operations:

- FIND(i): to which set ("tree") does i belong?
- UNION(i, j): union the sets of i and j ! ("join the two trees of i and j ")

Implemented as trees:

- UNION(T1, T2): hang root node of smaller tree under root node of larger tree (constant time), thus
- FIND(u): traverse tree from u to root (to return a representative of u's set) takes logarithmic time in total number of nodes

Implementation of Kruskal's Algorithm

Algorithm, rewritten with UNION-FIND:

- Create initial disjoint-set data structure, i.e. for each vertex v_{i}, store v_{i} as representative of its set
- Create empty forest $F=\{ \}$
- Sort edges such that w.l.o.g. $\mathrm{w}_{1}<\mathrm{w}_{2}<\ldots<\mathrm{w}_{|\mathrm{E}|}$
- for each edge $e_{i}=\{u, v\}$ starting from $i=1$:
- if FIND(u) \neq FIND(v): \# no cycle introduced
- $F=F \cup\{\{u, v\}\}$
- UNION(u,v)
- return F

Back to Runtime Considerations

- Sorting of edges needs $\mathrm{O}(|\mathrm{E}| \log |\mathrm{E}|)$
- forest: Disjoint-set data structure
- initialization: O(|V|)
- $\log |\mathrm{V}|$ to find out whether the minimum-cost edge $\{u, v\}$ connects two sets (no cycle induced) or is within a set (cycle would be induced)
- $2 x$ FIND + potential UNION needs to be done $\mathrm{O}(|\mathrm{E}|)$ times
- total $O(|E| \log |V|)$
- Overall: O(|E| $\log |E|)$

Kruskal's Algorithm: Proof of Correctness

Two parts needed:

(1) Algo always produces a spanning tree
final F contains no cycle and is connected by definition
(2) Algo always produces a minimum spanning tree

- argument by induction
- P : If F is forest at a given stage of the algorithm, then there is some minimum spanning tree that contains F.
- clearly true for $\mathrm{F}=(\mathrm{V},\{ \})$
- assume that P holds when new edge e is added to F and be T a MST that contains F
- if e in T, fine
- if e not in T: $T+e$ has cycle C with edge f in C but not in F (otherwise e would have introduced a cycle in F)
- now $T-f+e$ is a tree with same weight as T (since T is a MST and f was not chosen to F)
- hence $T-f+e$ is MST including $T+e$ (i.e. P holds)

Example 3: Bin Packing (BP)

Bin Packing Problem

Given a set of n items with sizes $a_{1}, a_{2}, \ldots, a_{n}$. Find an assignment of the a_{i} 's to bins of size V such that the number of bins is minimal and the sum of the sizes of all items assigned to each bin is $\leq \mathrm{V}$.

Applications

similar to multiprocessor scheduling of n jobs to m processors

Example 3: Bin Packing (BP)

Bin Packing Problem

Given a set of n items with sizes $a_{1}, a_{2}, \ldots, a_{n}$. Find an assignment of the a_{i} 's to bins of size V such that the number of bins is minimal and the sum of the sizes of all items assigned to each bin is $\leq \mathrm{V}$.

Known Facts

- no optimization algorithm reaches a better than 3/2 approximation in polynomial time (not shown here)
- greedy first-fit approach already yields an approximation algorithm with approximation ratio of 2

First-Fit Approach

First-Fit Algorithm

- without sorting the items do:
- put each item into the first bin where it fits
- if it does not fit anywhere, open a new bin

Theorem: First-Fit algorithm is a 2 -approximation algorithm
Proof: Assume First Fit uses m bins. Then, at least $\mathrm{m}-1$ bins are more than half full (otherwise, move items).

$$
\mathrm{OPT}>\frac{m-1}{2} \Longleftrightarrow 2 \mathrm{OPT}>m-1 \underset{\text { 个 because }^{\mathrm{m}} \text { an }}{\Longrightarrow} 2 \mathrm{OPT} \geq m
$$

because m and OPT are integer

Conclusion Greedy Algorithms I

What we have seen so far:

- three problems where a greedy algorithm was optimal
- money change
- circle packing
- minimum spanning tree (Kruskal's algorithm)
- but also: greedy not always optimal
- see the example of bin packing
- this is true in particular for so-called NP-hard problems

Obvious Question: when is greedy good?
Answer: if the problem is a matroid (not covered here)
From Wikipedia: [...] a matroid is a structure that captures and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid, the most significant being in terms of independent sets, bases, circuits, closed sets or flats, closure operators, and rank functions.

Conclusions Greedy Algorithms II

I hope it became clear...
...what a greedy algorithm is
...that it not always results in the optimal solution
...but that it does if and only if the problem is a matroid

