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Corona Update

https://geodes.santepubliquefrance.fr/#bbox=38985,6323608,423056,255910&c=indicator&i=sp_ti_

tp_7j.tx_pe_gliss&s=2020-09-11-2020-09-17&selcodgeo=91&t=a01&view=map2
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Thu Topic

Mon, 21.09.2020 PM Introduction, Combinatorics, O-notation, data structures

Mon, 28.09.2020 AM Data structures II

Mon, 5.10.2020 AM Sorting algorithms, recursive algorithms

Mon, 12.10.2020 PM Greedy algorithms

Mon, 19.10.2020 PM Dynamic programming

Mon, 2.11.2020 PM Randomized Algorithms and Blackbox Optimization

Mon, 16.11.2020 AM Complexity theory I

Mon, 23.11.2020 AM Complexity theory II

Mon, 14.12.2019 PM Exam

Course Overview
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Discussion of Home Exercises
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Exercise 1: Insertion Sort with binary search

Two choices when 𝑛 > 1:

 search/split array either at ⌊
𝑛

2
⌋

 or at ⌈
𝑛

2
⌉

Here, we choose the former

Discussion Home Exercise

503
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512

50387
512

?

?

503
87

512

50387
512

?

?

50387
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?
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Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

503 87 512 61 908 170 897 275 654 426 154 509 612 653 765 703

503
87

512 61 908 170 897 275 654 426 154 509 612 653 765 703

50387
512

61 908 170 897 275 654 426 154 509 612 653 765 703

?

?

50387
512

61 908 170 897 275 654 426 154 509 612 653 765 703

?

50387 512 61 908 170 897 275 654 426 154 509 612 653 765 703

+

+
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Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

50387 512 61 908 170 897 275 654 426 154 509 612 653 765 703

?

+ +

87 61 908 170 897 275 654 426 154 509 612 653 765 703

?

+ +

8761 908 170 897 275 654 426 154 509 612 653 765 703

?

+ +

503 512

503 512

+

8761 908 170 897 275 654 426 154 509 612 653 765 703

?

503 512

8761 908 170 897 275 654 426 154 509 612 653 765 703

+ +

503 512

+

+ + +?
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Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

8761 908
170

897 275 654 426 154 509 612 653 765 703

+ +

503 512

+

?

+

8761 908
170

897 275 654 426 154 509 612 653 765 703

+ +

503 512

+

?

+

8761 908
170

897 275 654 426 154 509 612 653 765 703

+ +

503 512

+

?

+

8761 908170
897 275 654 426 154 509 612 653 765 703

+ +

503 512

+ + +
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Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

8761 908170 897
275

654 426 154 509 612 653 765 703

+ +

503 512

+ + +

12 3

+

8761 908170 897275 654 426 154 509 612 653 765 703

+ +

503 512

+ + +

1 2 3

+ +

8761 908170 897275 654
426

154 509 612 653 765 703

+ +

503 512

+ + +

12 3

+ +

4

+

8761 908170 897275 654426
154

509 612 653 765 703

+ +

503 512

+ + +

12 3

+ + + +
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Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

8761 908170 897275 654426154 509 612 653 765 703

+ +

503 512

+ + +

1 23

+ + + +

4

+

8761 908170 897275 654426154 509
612

653 765 703

+ +

503 512

+ + +

1 2 3

+ + + +

4

+ +

8761 908170 897275 654426154 509 612
653

765 703

+ +

503 512

+ + +

1 2 3

+ + + +

4

+ + +
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Exercise 1: Insertion Sort with binary search

Discussion Home Exercise

8761 908170 897275 653426154 509 612 654
765

703

+ +

503 512

+ + +

1 2 3

+ + + +

4

+ + + +

8761 908170 897275 653426154 509 612 654 765
703

+ +

503 512

+ + +

1 2 3

+ + + +

4

+ + + + +

In total: 47 comparisons

8761 908170 897275 653426154 509 612 654 765703503 512
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Exercise 2: Mergesort

Discussion Home Exercise

510 57 512 38 909 241 897 250 653 499 154 511 612 677 865 777

510 57 512 38 909 241 897 250 653 499 154 511 612 677 865 777

510 57 512 38 909 241 897 250 653 499 154 511 612 677 865 777

510 57 512 38 909 241 897 250 653 499 154 511 612 677 865 777

510 57 512 38 909 241 897 250 653 499 154 511 612 677 865 777
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Exercise 2: Mergesort

Discussion Home Exercise

510 57 512 38 909 241 897 250 653 499 154 511 612 677 865 777

38 57 241 250 510 512 897 909 112 499 511 612 653 677 777 865

38 57 510 512 241 250 897 909 112 499 511 653 612 677 777 865

57 510 38 512 241 909 250 897 499 653 112 511 612 677 777 865

38 57 112 241 250 499 510 511 512 612 653 677 777 865 897 909

8 comparisons so far

1

2

3 1 3

2 2

1 3 1 2

8+11 comparisons1

3

2 4

5

6 1 2
4

3

5 8+11+11

comparisons
1 2

4

63

5

7

8

9

10 11 12 13 14

8+11+11+14 = 44 comparisons in total
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Exercise 3: Implementing Merge-sort and Comparison w/ Timsort

see Jupyter notebook

Discussion Home Exercise
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Recursive Algorithms (recap)
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recursive algorithm/data structure/… 

= algorithm/data structure/… that calls/contains a self-reference

Examples:

 Mergesort

 Binary Search

 computing 𝑛! (= 𝑛 ⋅ (𝑛 − 1)!)

 there are also recursive data structures:

 a linked list is defined as an element with data and pointer to 

another linked list

 a tree: the root has other trees as children

 fractals are also recursive

Recursive Algorithms
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Greedy Algorithms
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From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem 

solving heuristic of making the locally optimal choice at each 

stage with the hope of finding a global optimum.”

 Note: typically greedy algorithms do not find the global optimum

 We will see later when this is the case

Greedy Algorithms
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 Example 1: Money Change

 Example 2: Packing Circles in Triangles

 Example 3: Minimal Spanning Trees (MST) and the algorithm of 

Kruskal

 Example 4: Bin Packing

Greedy Algorithms: Lecture Overview
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Change-making problem

 Given n coins of distinct values w1=1, w2, ..., wn and a total 

change W (where w1, ..., wn, and W are integers). 

 Minimize the total amount of coins Σxi such that Σwixi = W and 

where xi is the number of times, coin i is given back as change. 

Greedy Algorithm

Unless total change not reached:

add the largest coin which is not larger than the remaining 

amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:

finishing darts (from 501 to 0 with 9 darts)

Example 1: Money Change
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G. F. Malfatti posed the following problem in 1803:

 how to cut three cylindrical columns out of a triangular prism of 

marble such that their total volume is maximized?

 his best solutions were so-called Malfatti circles in the triangular 

cross-section:

 all circles are tangent to each other

 two of them are tangent to each side of the triangle 

Example 2: Packing Circles in Triangles
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What would a greedy algorithm do?

Example 2: Packing Circles in Triangles
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What would a greedy algorithm do?

Note that Zalgaller and Los' showed in 1994 that the greedy 

algorithm is optimal [1]

[1] Zalgaller, V.A.; Los', G.A. (1994), "The solution of Malfatti's problem", Journal of 

Mathematical Sciences 72 (4): 3163–3177, doi:10.1007/BF01249514.

Example 2: Packing Circles in Triangles
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Outline:

 problem definition

 Kruskal’s algorithm

 including correctness proofs and analysis of running time

Example 3: Minimal Spanning Trees (MST)
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A spanning tree of a connected graph G is a tree in G which 

contains all vertices of G

Minimum Spanning Tree Problem (MST):

Given a (connected) graph G=(V,E) with edge weights wi for 

each edge ei. Find a spanning tree 𝑇 that minimizes the weights 

of the contained edges, i.e. where

σ𝑒𝑖∈𝑇
𝑤𝑖

is minimized.

MST: Problem Definition
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Algorithm, see [1]

 Create forest F = (V,{}) with n components and no edge

 Put sorted edges (such that w.l.o.g. w1 ≤ w2 ≤ ... ≤ w|E|) into S

 While S non-empty and F not spanning:

 delete cheapest edge from S

 add it to F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the 

traveling salesman problem". Proceedings of the American Mathematical 

Society 7: 48–50. doi:10.1090/S0002-9939-1956-0078686-7

Kruskal’s Algorithm
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Kruskal’s Algorithm: Example

E

B

G

L

F H

C

K

D

I MJ

A
4 12

7
22

2
21 17

16

3 6

11

20 8

10 19

9

1

18

13

15 14 5
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First question: how to implement the algorithm?

 sorting of edges needs O(|E| log |E|)

Kruskal’s Algorithm: Runtime Considerations

Algorithm

Create forest F = (V,{}) with n components and no edge

Put sorted edges (such that w.l.o.g. w1 ≤ w2 ≤ ... ≤ w|E|) into S

While S non-empty and F not spanning:

delete cheapest edge from S

add it to F if no cycle is introduced

simple ?
forest implementation:

Disjoint-set

data structure
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Data structure: ground set 1...N grouped to disjoint sets

Operations:

 FIND(i): to which set (“tree”) does i belong?

 UNION(i,j): union the sets of i and j!

(“join the two trees of i and j”)

Implemented as trees:

 UNION(T1, T2): hang root node of smaller tree under root node of 

larger tree (constant time), thus

 FIND(u): traverse tree from u to root (to return a representative of 

u’s set) takes logarithmic time in total number of nodes

Disjoint-set Data Structure (“Union&Find”)

1 2 3 4

1      2 3 4

1

2

3

4

5

6
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Algorithm, rewritten with UNION-FIND:

 Create initial disjoint-set data structure, i.e. for each vertex vi, 

store vi as representative of its set

 Create empty forest F = {}

 Sort edges such that w.l.o.g. w1 < w2 < ... < w|E|

 for each edge ei={u,v} starting from i=1:

 if FIND(u) ≠ FIND(v): # no cycle introduced

 F = F ∪ {{u,v}}

 UNION(u,v)

 return F

Implementation of Kruskal’s Algorithm
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 Sorting of edges needs O(|E| log |E|)

 forest: Disjoint-set data structure

 initialization: O(|V|)

 log |V| to find out whether the minimum-cost edge {u,v} 

connects two sets (no cycle induced) or is within a set (cycle 

would be induced)

 2x FIND + potential UNION needs to be done O(|E|) times

 total O(|E| log |V|)

 Overall: O(|E| log |E|)

Back to Runtime Considerations
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Two parts needed:

 Algo always produces a spanning tree

final F contains no cycle and is connected by definition 

 Algo always produces a minimum spanning tree

 argument by induction

 P: If F is forest at a given stage of the algorithm, then there is 

some minimum spanning tree that contains F.

 clearly true for F = (V, {})

 assume that P holds when new edge e is added to F and be T a 

MST that contains F

 if e in T, fine

 if e not in T: T + e has cycle C with edge f in C but not in F 

(otherwise e would have introduced a cycle in F)

 now T – f + e is a tree with same weight as T (since T is 

a MST and f was not chosen to F)

 hence T – f + e is MST including T + e (i.e. P holds)

Kruskal’s Algorithm: Proof of Correctness
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Bin Packing Problem

Given a set of n items with sizes a1, a2, ..., an. Find an 

assignment of the ai’s to bins of size V such that the number of 

bins is minimal and the sum of the sizes of all items assigned to 

each bin is  ≤ V.

Applications

similar to multiprocessor scheduling of n jobs to m processors

Example 3: Bin Packing (BP)
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Bin Packing Problem

Given a set of n items with sizes a1, a2, ..., an. Find an 

assignment of the ai’s to bins of size V such that the number of 

bins is minimal and the sum of the sizes of all items assigned to 

each bin is  ≤ V.

Known Facts

 no optimization algorithm reaches a better than 3/2 

approximation in polynomial time (not shown here)

 greedy first-fit approach already yields an approximation 

algorithm with approximation ratio of 2

Example 3: Bin Packing (BP)
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First-Fit Algorithm

 without sorting the items do:

 put each item into the first bin where it fits

 if it does not fit anywhere, open a new bin

Theorem: First-Fit algorithm is a 2-approximation algorithm

Proof: Assume First Fit uses m bins. Then, at least m-1 bins are more 

than half full (otherwise, move items).

because m and OPT are integer

First-Fit Approach

0.5 0.8 0.20.40.3 0.2 0.2

0.5 0.3 0.4

0.8

0.2 0.2 0.2

means: algo always finds

a solution with f-value of ≤ 2OPT
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What we have seen so far:

 three problems where a greedy algorithm was optimal

 money change

 circle packing

 minimum spanning tree (Kruskal’s algorithm)

 but also: greedy not always optimal

 see the example of bin packing

 this is true in particular for so-called NP-hard problems

Obvious Question: when is greedy good?

Answer: if the problem is a matroid (not covered here)

From Wikipedia: [...] a matroid is a structure that captures and 

generalizes the notion of linear independence in vector spaces. 

There are many equivalent ways to define a matroid, the most 

significant being in terms of independent sets, bases, circuits, 

closed sets or flats, closure operators, and rank functions.

Conclusion Greedy Algorithms I
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I hope it became clear...

...what a greedy algorithm is

...that it not always results in the optimal solution

...but that it does if and only if the problem is a matroid

Conclusions Greedy Algorithms II


