Algorithms & Complexity
Lecture 4: Recursive and Greedy
Algorithms

October 12, 2020
CentraleSupélec / ESSEC Business School

g - Dimo Brockhoff

RRRRRRRRRRRRRRRRRRRRRRRRRRR Inria Sac|ay — lle-de-France

@y, INSTITUT

'0 POLYTECHNIQUE T ——
&9 DE PARIS

Corona Update

Taux d'incidence ACTIONS {

Chiffres-clés 2020-09-11-2020-09-17

Statistique France
minimum 14,6 (Creuse - 23)
maximum 292.9 (Guadeloupe - 971)
médiane 66.4
observations valides 104 sur 104

Graphiques et comparaisons
Evolution temporelle comparée -
Comparaison e
200,0
180,0
160,0
140,0
120,0
100,0
80,0
50,0
40,0

20,0
—

— T
0,0

2020-05-18-2020-05-25 2020-08-03-2020-06-09 2020-08-18-2020-06-24 2020-07-03-2020-07-09 2020-07-18-2020-07-24 2020-08-02-2020-08-08 2020-08-17-2020-08-23 2020-08-01-2020-08-07 2020-09-168-2020-08-22 2020-10-01-2020-10-07
m—— E5sonne s France

https://geodes.santepubliquefrance.fr/#bbox=38985,6323608,423056,255910&c=indicator&i=sp _ti
tp_7j.tx_pe_gliss&s=2020-09-11-2020-09-17&selcodgeo=91&t=a01&view=map2

© Dimo Brockhoff, Inria i ity @ CentraleSupelec/ESSEC, Oct. 12, 2020

Course Overview

Th __Topic

Mon, 21.09.2020 PM
Mon, 28.09.2020 AM
Mon, 5.10.2020 AM
» Mon, 12.10.2020 PM
Mon, 19.10.2020 PM
Mon, 2.11.2020 PM
Mon, 16.11.2020 AM
Mon, 23.11.2020 AM

Mon, 14.12.2019 PM

Introduction, Combinatorics, O-notation, data structures
Data structures Il

Sorting algorithms, recursive algorithms

Greedy algorithms

Dynamic programming

Randomized Algorithms and Blackbox Optimization
Complexity theory |

Complexity theory Il

Exam

© Dimo Brockhoff, Inria

Discussion of Home Exercises

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 12, 2020

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

Two choices when n > 1:
= search/split array either at [gj

= orat [g]

?/\8
512 -2512

?

512

Here, we choose the former

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, O

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

503| 87 |512| 61 [908|170|897|275/654({426|154|509|612(653|765|703

512| 61 |908|170(897|275|654|426(154|509|612|653|765|703

"

2 |
>12 61 |908/170(897|275|654|426|154/509/612|653|765|703
? | +1
512

61 |908|170({897|275|654|426|154|509|612|653|765|703

| +11

61 |908|170(897|275|/654|426/154|509|612|653|765|703

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

908|170(897|275|654|426(154|509(612|653|765|7/03

| +1] +1

908|170|897|275|654|426|154|509(612|653|7/65|703
| +11 +1]

908|170(897|275|654|426|154(509|612|653| 765|703

|+ + 11+

908|170(897|275|654|426|154(509|612(653| 765|703

[+11+1]+1
908|170(897|275|654|426|154(509|612(653| 765|703
| +11+ 11+l

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

?

170

897

275

654

426

154

509

612

653

765

703

|+ 10+ 11+ 11+

170]g97

275

654

426

154

509

612

653

765

703

|+ 11+ 11+ 11+ 11

897

275

654

426

154

509

612

653

765

703

897

|+ 10+ 1T+ 11+

275

654

426

154

509

612

653

765

703

|+ 10+ 1+ T+ T+ 1

© Dimo Brockhoff, Inria

@ CentraleSupelec/ESSEC

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

2

275

654/426|154|509|612|653|765|703
|+ 10+ 10+ 1+ T+ T+

654|106|154/500(612|653|765/703
[+ +1+1H+THT+ 1+ 1+

426

1541509|612|653|765|703
[+ 10+ 10+ 1+ T+ T+ T+ T+ IV

. a1

154/500/612/653]765/703

|+ 10+ 0+ T+ TE+ T+ T+ T+ IV +

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

509/612/653|765|703

[+ 10+ 1+ T+ T+ T+ T+ T+ + T+ TV
m

612

653|765|703

0+ 00+ T+ T+ T+ T+ TH+ IV + T+ IV + IV

l, — 2 T

653)765/703

1+ 1+ T+ T+ T+ T+ T+ IV +TH+ IV + IV + 1V

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, O

Discussion Home Exercise

Exercise 1: Insertion Sort with binary search

e

703
L0+ 0+ T+ T+ T+ T+ T+ I+ T+ IV + IV + IV + IV

—fm/ 703

[+ T+ T+ T+ T+ T+ IV T+ IV + IV + IV + IV IV

In total: 47 comparisons

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oc

Discussion Home Exercise

Exercise 2. Mergesort

510| 57 |51

2

38 1909

241|897

250

653

499|154

511

612|677/865

777

510| 57 |512

3

8 1909

241

897|250

653

499

154|511

612|677|865

i

510(57 (512

38

909

241

897|250

653

499

154|511

612|677|86

Q1717

510| 57 ||512

38

909

241

897

250

653

499

154|511

612|677|/865

i

510|| 57 ||512

38

909

241

897

250

653

499

154

511

612||677

865

77

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 2. Mergesort

510

57

512|| 38 |[909

241

897

250

653

499(1154||511||612||677

865|777

L, Lol el A

57

510

38 |512| |241

909

250

897

499(653||112|511

612677

777|865

6

N,

~_ 5

N\

8 comparisons so far

8+11 comparisons

250

897

909

112

499(511 /653

‘612 677

777|865

~_ 57"

9

8+11+11
comparisons

499(511|612

653|677

77

865

14

38

57

112|241

512

612|653|677

777|865

897

909

8+11+11+14 = 44 comparisons in total

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 3: Implementing Merge-sort and Comparison w/ Timsort

see Jupyter notebook

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct.

Recursive Algorithms (recap)

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 12, 2020

Recursive Algorithms

recursive algorithm/data structure/...
= algorithm/data structure/... that calls/contains a self-reference

Examples:

= Mergesort

= Binary Search

= computingn! (=n-(n—1)!)

= there are also recursive data structures:

= alinked list is defined as an element with data and pointer to
another linked list

= atree: the root has other trees as children
= fractals are also recursive

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 12, 2

Greedy Algorithms

© Dimo Brockhoff, Inria Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12, 2020

Greedy Algorithms

From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem
solving heuristic of making the locally optimal choice at each
stage with the hope of finding a global optimum.”

= Note: typically greedy algorithms do not find the global optimum

= \We will see later when this is the case

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 12, 20

Greedy Algorithms: Lecture Overview

= Example 1. Money Change
= Example 2: Packing Circles in Triangles

= Example 3: Minimal Spanning Trees (MST) and the algorithm of
Kruskal

= Example 4: Bin Packing

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 12, 2020

Example 1. Money Change

Change-making problem

= Given n coins of distinct values w,=1, w,, ..., w, and a total
change W (where wy, ..., w,, and W are integers).

= Minimize the total amount of coins 2x; such that 2wx = W and
where Xx; is the number of times, coin i is given back as change.

Greedy Algorithm
Unless total change not reached:

add the largest coin which is not larger than the remaining
amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:
finishing darts (from 501 to O with 9 darts)

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 12

Example 2: Packing Circles in Triangles

G. F. Malfatti posed the following problem in 1803:

= how to cut three cylindrical columns out of a triangular prism of
marble such that their total volume is maximized?

» his best solutions were so-called Malfatti circles in the triangular
cross-section:

= all circles are tangent to each other
= two of them are tangent to each side of the triangle

PUBLIC
DOMAIN

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 12

Example 2: Packing Circles in Triangles

PUBLIC
DOMAIN

What would a greedy algorithm do?

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 12, 2020

Example 2: Packing Circles in Triangles

PUBLIC
DOMAIN

What would a greedy algorithm do?

Note that Zalgaller and Los' showed in 1994 that the greedy
algorithm is optimal [1]

[1] Zalgaller, V.A.; Los', G.A. (1994), "The solution of Malfatti's problem", Journal of
Mathematical Sciences 72 (4): 3163-3177, doi:10.1007/BF01249514.

© Dimo Brockhoff, Inria

Example 3: Minimal Spanning Trees (MST)

QOutline:
= problem definition
= Kruskal's algorithm
* Including correctness proofs and analysis of running time

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 12, 2020

MST: Problem Definition

A spanning tree of a connected graph G is a tree in G which
contains all vertices of G

Minimum Spanning Tree Problem (MST):

Given a (connected) graph G=(V,E) with edge weights w; for
each edge e,. Find a spanning tree T that minimizes the weights
of the contained edges, i.e. where

ZeiET Wi
IS minimized.

© Dimo Brockhoff, Inria qori plexity @ CentraleSupelec/ESSEC, Oct. 12, 20

Kruskal’s Algorithm

Algorithm, see [1]

= Create forest F = (V,{}) with n components and no edge
Put sorted edges (such that w.l.o.g. w; S w, < ... S W) Int0 S
= While S non-empty and F not spanning:

= delete cheapest edge from S

= additto F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the
traveling salesman problem". Proceedings of the American Mathematical
Society 7: 48-50. doi:10.1090/S0002-9939-1956-0078686-7

© Dimo Brockhoff, Inria

o CentraleSupelec/ESSEC, Oct. 12

Kruskal’s Algorithm: Example

© Dimo Brockhoff, Inria Algorithms&Complexity @ CentraleSupelec/ESSEC, Oct. 12

Kruskal’s Algorithm: Runtime Consideratio

First question: how to implement the algorithm?
= sorting of edges needs O(|E]| log |E|)

Algorithm
Create forest F = (V,{}) with n components and no edge

Put sorted edges (SUCM W, < ... SWpg)into S
While S non-empty and\&_not spanning-

delete\cheapest

add it t @(ﬁ%

simple P,
forest implementation:
Disjoint-set
data structure

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 12

Disjoint-set Data Structure (“Union&Find”)

Data structure: ground set 1...N grouped to disjoint sets

Operations: @ @ @ @
= FIND(I): to which set (“tree”) does | belong?
= UNION(l,j): union the sets of i and |!

(“join the two trees of i and |”) @ @ @

Implemented as trees:

= UNION(T1, T2): hang root node of smaller tree under root node of
larger tree (constant time), thus

= FIND(u): traverse tree from u to root (to return a representative of
u’s set) takes logarithmic time in total number of nodes

© Dimo Brockhoff, Inria

Implementation of Kruskal’s Algorithm

Algorithm, rewritten with UNION-FIND:

Create initial disjoint-set data structure, i.e. for each vertex v;,
store v; as representative of its set

Create empty forest F = {}
Sort edges such that w.l.o.g. wy <w, < ... <Wg,
for each edge e={u,v} starting from i=1:
= if FIND(u) # FIND(v): # no cycle introduced
» F=FuU{{uv}}
= UNION(u,v)
return F

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 12, 20

Back to Runtime Considerations

= Sorting of edges needs O(|E| log |E|)
» forest: Disjoint-set data structure
= |nitialization: O(|V|)
= |og |V| to find out whether the minimum-cost edge {u,v}

connects two sets (no cycle induced) or is within a set (cycle
would be induced)

= 2X FIND + potential UNION needs to be done O(|E]|) times
= total O(|E| log |V])
= Qverall: O(|E| log |E|)

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 12, 2

Kruskal’s Algorithm: Proof of Correctness

Two parts needed:
© Algo always produces a spanning tree

final F contains no cycle and is connected by definition v

® Algo always produces a minimum spanning tree

argument by induction

P: If F is forest at a given stage of the algorithm, then there is
some minimum spanning tree that contains F.

clearly true for F = (V, {})

assume that P holds when new edge e isaddedto Fand be T a
MST that contains F

= jfeinT,fine
= jfenotinT: T+ e has cycle C with edge fin C butnotin F
(otherwise e would have introduced a cycle in F)

= nowT—f+eisatree with same weightas T (since T is
a MST and f was not chosen to F)

= henceT-f+eis MST including T + e (i.e. P holds)
v

© Dimo Brockhoff, Inria

o CentraleSupelec/ESSEC, Oct

Example 3: Bin Packing (BP)

Bin Packing Problem

Given a set of n items with sizes a,, a,, ..., a,. Find an
assignment of the a;'s to bins of size V such that the number of
bins is minimal and the sum of the sizes of all items assigned to
each binis s V.

|

Applications
similar to multiprocessor scheduling of n jobs to m processors

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 12, 20

Example 3: Bin Packing (BP)

Bin Packing Problem

Given a set of n items with sizes a,, a,, ..., a,. Find an
assignment of the a;'s to bins of size V such that the number of
bins is minimal and the sum of the sizes of all items assigned to
each binis s V.

|

Known Facts

* no optimization algorithm reaches a better than 3/2
approximation in polynomial time (not shown here)

= greedy first-fit approach already yields an approximation
algorithm with approximation ratio of 2

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 12

First-Fit Approach

First-Fit Algorithm

= without sorting the items do:
* put each item into the first bin where it fits
= |f it does not fit anywhere, open a new bin

—>

0.8 0.2]10.2]0.2

ihoz 0.2

‘ means: algo always finds
a solution with f-value of < 20PT

| 0.8

Theorem: First-Fit algorithm is a 2-approximation algorithm
Proof: Assume First Fit uses m bins. Then, at least m-1 bins are more
than half full (otherwise, move items).

OPT > = «= 20PT >m 1= 20PT >m
because m and OPT are integer

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct

Conclusion Greedy Algorithms |

What we have seen so far:

= three problems where a greedy algorithm was optimal
= money change
= circle packing
= minimum spanning tree (Kruskal’s algorithm)

= but also: greedy not always optimal
= see the example of bin packing
= this is true in particular for so-called NP-hard problems

Obvious Question: when is greedy good?
Answer: If the problem is a matroid (not covered here)

From Wikipedia: [...] @ matroid is a structure that captures and
generalizes the notion of linear independence in vector spaces.
There are many equivalent ways to define a matroid, the most
significant being in terms of independent sets, bases, circuits,
closed sets or flats, closure operators, and rank functions.

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oc

Conclusions Greedy Algorithms |l

| hope it became clear...

...what a greedy algorithm is
...that it not always results in the optimal solution
...but that it does if and only if the problem is a matroid

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 12, 2020

