# Algorithms & Complexity Lecture 4: Recursive and Greedy Algorithms

#### October 12, 2020 CentraleSupélec / ESSEC Business School



Dimo Brockhoff

Inria Saclay – Ile-de-France



NSTITUT POLYTECHNIQUE DE PARIS





# **Corona Update**



https://geodes.santepubliquefrance.fr/#bbox=38985,6323608,423056,255910&c=indicator&i=sp\_ti\_ tp\_7j.tx\_pe\_gliss&s=2020-09-11-2020-09-17&selcodgeo=91&t=a01&view=map2

## **Course Overview**

| Thu             |    | Торіс                                                    |
|-----------------|----|----------------------------------------------------------|
| Mon, 21.09.2020 | PM | Introduction, Combinatorics, O-notation, data structures |
| Mon, 28.09.2020 | AM | Data structures II                                       |
| Mon, 5.10.2020  | AM | Sorting algorithms, recursive algorithms                 |
| Mon, 12.10.2020 | PM | Greedy algorithms                                        |
| Mon, 19.10.2020 | PM | Dynamic programming                                      |
| Mon, 2.11.2020  | PM | Randomized Algorithms and Blackbox Optimization          |
| Mon, 16.11.2020 | AM | Complexity theory I                                      |
| Mon, 23.11.2020 | AM | Complexity theory II                                     |
|                 |    |                                                          |
| Mon, 14.12.2019 | PM | Exam                                                     |

#### **Exercise 1: Insertion Sort with binary search**

Two choices when n > 1:

- search/split array either at  $\lfloor \frac{n}{2} \rfloor$
- or at  $\lceil \frac{n}{2} \rceil$





#### Here, we choose the former











#### **Exercise 1: Insertion Sort with binary search**





61 87 154 170 275 426 503 509 512 612 653 654 703 765 897 908

In total: 47 comparisons

#### **Exercise 2: Mergesort**

510 57 512 38 909 241 897 250 653 499 154 511 612 677 865 777



#### **Exercise 2: Mergesort**



8+11+11+14 = 44 comparisons in total

**Exercise 3: Implementing Merge-sort and Comparison w/ Timsort** 

see Jupyter notebook

# **Recursive Algorithms (recap)**

recursive algorithm/data structure/...

= algorithm/data structure/... that calls/contains a self-reference

#### Examples:

- Mergesort
- Binary Search
- computing  $n! (= n \cdot (n-1)!)$
- there are also recursive data structures:
  - a linked list is defined as an element with data and pointer to another linked list
  - a tree: the root has other trees as children
- fractals are also recursive

# **Greedy Algorithms**

## **Greedy Algorithms**

From Wikipedia:

"A greedy algorithm is an algorithm that follows the problem solving *heuristic* of making the locally optimal choice at each stage with the hope of finding a global optimum."

- Note: typically greedy algorithms do not find the global optimum
- We will see later when this is the case

## **Greedy Algorithms: Lecture Overview**

- Example 1: Money Change
- Example 2: Packing Circles in Triangles
- Example 3: Minimal Spanning Trees (MST) and the algorithm of Kruskal
- Example 4: Bin Packing

#### **Change-making problem**

- Given n coins of distinct values w<sub>1</sub>=1, w<sub>2</sub>, ..., w<sub>n</sub> and a total change W (where w<sub>1</sub>, ..., w<sub>n</sub>, and W are integers).
- Minimize the total amount of coins  $\Sigma x_i$  such that  $\Sigma w_i x_i = W$  and where  $x_i$  is the number of times, coin i is given back as change.

#### **Greedy Algorithm**

Unless total change not reached:

add the largest coin which is not larger than the remaining amount to the change

*Note:* only optimal for standard coin sets, not for arbitrary ones!

#### **Related Problem:**

finishing darts (from 501 to 0 with 9 darts)

# **Example 2: Packing Circles in Triangles**

- G. F. Malfatti posed the following problem in 1803:
- how to cut three cylindrical columns out of a triangular prism of marble such that their total volume is maximized?
- his best solutions were so-called Malfatti circles in the triangular cross-section:
  - all circles are tangent to each other
  - two of them are tangent to each side of the triangle



## **Example 2: Packing Circles in Triangles**



What would a greedy algorithm do?

## **Example 2: Packing Circles in Triangles**





What would a greedy algorithm do?

Note that Zalgaller and Los' showed in 1994 that the greedy algorithm is optimal [1]

[1] Zalgaller, V.A.; Los', G.A. (1994), "The solution of Malfatti's problem", *Journal of Mathematical Sciences* 72 (4): 3163–3177, doi:10.1007/BF01249514.

# Example 3: Minimal Spanning Trees (MST)

#### **Outline:**

- problem definition
- Kruskal's algorithm
  - including correctness proofs and analysis of running time

## **MST: Problem Definition**

A spanning tree of a connected graph G is a tree in G which contains all vertices of G

#### Minimum Spanning Tree Problem (MST):

Given a (connected) graph G=(V,E) with edge weights  $w_i$  for each edge  $e_i$ . Find a spanning tree *T* that minimizes the weights of the contained edges, i.e. where

$$\sum_{e_i \in T} w_i$$

is minimized.

# **Kruskal's Algorithm**

#### Algorithm, see [1]

- Create forest F = (V,{}) with n components and no edge
- Put sorted edges (such that w.l.o.g.  $w_1 \le w_2 \le ... \le w_{|E|}$ ) into S
- While S non-empty and F not spanning:
  - delete cheapest edge from S
  - add it to F if no cycle is introduced

 Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the traveling salesman problem". *Proceedings of the American Mathematical Society* 7: 48–50. doi:10.1090/S0002-9939-1956-0078686-7

## Kruskal's Algorithm: Example



## **Kruskal's Algorithm: Runtime Considerations**

First question: how to implement the algorithm?



# **Disjoint-set Data Structure ("Union&Find")**

# Data structure: ground set 1...N grouped to disjoint sets

- FIND(i): to which set ("tree") does i belong?
- UNION(i,j): union the sets of i and j!
   ("join the two trees of i and j")

#### **Implemented as trees:**

- UNION(T1, T2): hang root node of smaller tree under root node of larger tree (constant time), thus
- FIND(u): traverse tree from u to root (to return a representative of u's set) takes logarithmic time in total number of nodes



2

## Implementation of Kruskal's Algorithm

#### Algorithm, rewritten with UNION-FIND:

- Create initial disjoint-set data structure, i.e. for each vertex v<sub>i</sub>, store v<sub>i</sub> as representative of its set
- Create empty forest F = {}
- Sort edges such that w.l.o.g.  $w_1 < w_2 < ... < w_{|E|}$
- for each edge e<sub>i</sub>={u,v} starting from i=1:
  - if  $FIND(u) \neq FIND(v)$ : # no cycle introduced
    - $F = F \cup \{\{u,v\}\}$
    - UNION(u,v)
- return F

## **Back to Runtime Considerations**

- Sorting of edges needs O(|E| log |E|)
- forest: Disjoint-set data structure
  - initialization: O(|V|)
  - log |V| to find out whether the minimum-cost edge {u,v} connects two sets (no cycle induced) or is within a set (cycle would be induced)
  - 2x FIND + potential UNION needs to be done O(|E|) times
  - total O(|E| log |V|)
- Overall: O(|E| log |E|)

## Kruskal's Algorithm: Proof of Correctness

#### **Two parts needed:**

- Algo always produces a spanning tree final F contains no cycle and is connected by definition
- Algo always produces a *minimum* spanning tree
  - argument by induction
  - P: If F is forest at a given stage of the algorithm, then there is some minimum spanning tree that contains F.
  - clearly true for F = (V, {})
  - assume that P holds when new edge e is added to F and be T a MST that contains F
    - if e in T, fine
    - if e not in T: T + e has cycle C with edge f in C but not in F (otherwise e would have introduced a cycle in F)
      - now T f + e is a tree with same weight as T (since T is a MST and f was not chosen to F)
      - hence T f + e is MST including T + e (i.e. P holds)

#### **Bin Packing Problem**

Given a set of n items with sizes  $a_1, a_2, ..., a_n$ . Find an assignment of the  $a_i$ 's to bins of size V such that the number of bins is minimal and the sum of the sizes of all items assigned to each bin is  $\leq V$ .



#### **Applications**

similar to multiprocessor scheduling of n jobs to m processors

#### **Bin Packing Problem**

Given a set of n items with sizes  $a_1, a_2, ..., a_n$ . Find an assignment of the  $a_i$ 's to bins of size V such that the number of bins is minimal and the sum of the sizes of all items assigned to each bin is  $\leq V$ .



#### Known Facts

- no optimization algorithm reaches a better than 3/2 approximation in polynomial time (not shown here)
- greedy first-fit approach already yields an approximation algorithm with approximation ratio of 2

# **First-Fit Approach**

#### **First-Fit Algorithm**

- without sorting the items do:
  - put each item into the first bin where it fits
  - if it does not fit anywhere, open a new bin



**Theorem:** First-Fit algorithm is a 2-approximation algorithm

*Proof:* Assume First Fit uses m bins. Then, at least m-1 bins are more than half full (otherwise, move items).

OPT 
$$> \frac{m-1}{2} \iff 2\text{OPT} > m-1 \Longrightarrow 2\text{OPT} \ge m$$
  
the because m and OPT are integer

# **Conclusion Greedy Algorithms I**

#### What we have seen so far:

- three problems where a greedy algorithm was optimal
  - money change
  - circle packing
  - minimum spanning tree (Kruskal's algorithm)
- but also: greedy not always optimal
  - see the example of bin packing
  - this is true in particular for so-called NP-hard problems

#### Obvious Question: when is greedy good? Answer: if the problem is a matroid (not covered here)

From Wikipedia: [...] a matroid is a structure that captures and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid, the most significant being in terms of independent sets, bases, circuits, closed sets or flats, closure operators, and rank functions. I hope it became clear...

...what a greedy algorithm is ...that it not always results in the optimal solution ...but that it does if and only if the problem is a matroid