Algorithms & Complexity
Lecture 5: Dynamic Programming

October 19, 2020
CentraleSupélec / ESSEC Business School

Dimo Brockhoff
Inria Saclay — lle-de-France

@ INSTITUT

@ POLYTECHNIQUE
TTTTTTTTTTTTTTTTTTTTTTTTTTT '«;,/“qy DE PARIS

© Dimo Brockhoff, Inria

Corona Update

Taux d'incidence - semaine glissante ACTIONS 4
Chiffres-clés 2020-09-11-2020-09-17

France : 107,9

pour 100 000 Statistique France
hab. minimum 14,6 (Creuse - 23)
maximum 293.2 (Guadeloupe - 971)

Essonne : médiane 66.4
106,1 pour 100 observations valides 104 sur 104

000 hab.

Graphiques et comparaisons

Evolution temporelle comparée -

Comparaison e

250,0

200,0

150,0

100,0

50,0

0,0
2020-05-26-2020-08-01 2020-08-10-2020-08-16 2020-08-25-2020-07-01 2020-07-10-2020-07-16 2020-07-25-2020-07-31 2020-08-08-2020-08-15 2020-08-24-2020-08-30 2020-05-08-2020-05-14 2020-08-23-2020-09-2% 2020-10-08-2020-10-14
— Essonne m— France

https://geodes.santepubliquefrance.fr/#bbox=38985,6323608,423056,255910&c=indicator&i=sp _ti
tp_7j.tx_pe_gliss&s=2020-09-11-2020-09-17&selcodgeo=91&t=a01&view=map2

© Dimo Brockhoff, Inria i ity @ CentraleSupelec/ESSEC, Oct. 19

Course Overview

Thu
Mon, 21.09.2020
Mon, 28.09.2020
Mon, 5.10.2020
Mon, 12.10.2020
=» Mon, 19.10.2020
Mon, 2.11.2020
Mon, 16.11.2020
Mon, 23.11.2020

Mon, 14.12.2019

__Topic

PM
AM
AM
PM
PM
PM
AM
AM

PM

Introduction, Combinatorics, O-notation, data structures
Data structures Il

Sorting algorithms, recursive algorithms

Greedy algorithms

Dynamic programming

Randomized Algorithms and Blackbox Optimization
Complexity theory |

Complexity theory Il

Exam

© Dimo Brockhoff, Inria

o CentraleSupelec/ESSEC, Oct. 19, 2020

Discussion Home Exercise

Exercise 1: Little Slopy Village

— |
> |JJ ngiﬂmbmﬁ ﬁ 09 B RIS SIY AN
5 <y QQ R 060 DD
q %Q% < ~30 %, . —oF ©
N 8——% Pl R
o [DOD D o [SDOD g
hma 0070 Tl hﬂﬂm A0y Tlos

© Dimo Brockhoff, Inria

Algorithms&Complexity @ CentraleSup

Discussion Home Exercise

Exercise 1: Little Slopy Village

Algorithm of Kruskal:
take always the shortest edge that does not produce a cycle

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oc

Discussion Home Exercise

Exercise 1: Little Slopy Village

Algorithm of Kruskal:
take always the shortest edge that does not produce a cycle

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oc

Discussion Home Exercise

Exercise 1: Little Slopy Village

Algorithm of Kruskal:
take always the shortest edge that does not produce a cycle

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oc

Discussion Home Exercise

Exercise 1: Little Slopy Village

Algorithm of Kruskal:
take always the shortest edge that does not produce a cycle

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oc

Discussion Home Exercise

Exercise 1: Little Slopy Village

Algorithm of Kruskal:
take always the shortest edge that does not produce a cycle

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oc

Discussion Home Exercise

Exercise 1: Little Slopy Village

o
O

Algorithm of Kruskal:
take always the shortest edge that does not produce a cycle

Here: total weight of 4+5+5+6+8 = 28

Note: solution not always unique, but always optimal

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 2: Bin Packing
= jtemsofsizel,4,2,5,6,3,2,3,3,1,4
* Din size: 6, first fit strategy

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 2: Bin Packing
= jtemsofsizel,4,2,5,6,3,2,3,3,1,4
* Din size: 6, first fit strategy

Optimal?

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 3: Assisting in a Robbery

= nitems with weights wy, ... ,w,, and values vy, ... ,v,, max. load W
= calls for the knapsack problem

a) Potential Greedy Algorithm:

= take items according to their value-per-weight ratio v; /w; until
total weight W is reached

b) Implementation: see .ipynb file

© Dimo Brockhoff, Inria

Discussion Home Exercise

Exercise 3: Assisting in a Robbery

= nitems with weights wy, ... ,w,, and values vy, ... ,v,, max. load W
= calls for the knapsack problem

c) Is the greedy algorithm optimal?
no (see also complexity theory lectures in the end)
proof by counter example:

Greedy algorithm chooses item 1, although 2+3 is better

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oc

Dynamic Programming

© Dimo Brockhoff, Inria i ity @ CentraleSupelec/ESSEC, Oct. 19

Dynamic Programming

Wikipedia:
“[...] dynamic programming is a method for solving a complex

problem by breaking it down into a collection of simpler
subproblems.”

But that’s not all:

= dynamic programming also makes sure that the subproblems
are not solved too often but only once by keeping the solutions
of simpler subproblems in memory (“trading space vs. time”)

= jtis an exact method, i.e. in comparison to the greedy approach,
it always solves a problem to optimality

© Dimo Brockhoff, Inria

@ CentraleSupelec/ESSEC, Oct. 19

Two Properties Needed

Optimal Substructure

A solution can be constructed efficiently from optimal solutions of
sub-problems

Overlapping Subproblems

Wikipedia: “[...] a problem is said to have overlapping
subproblems if the problem can be broken down into
subproblems which are reused several times or [if] a recursive
algorithm for the problem solves the same subproblem over and
over rather than always generating new subproblems.”

Note: in case of optimal substructure but independent subproblems,
often greedy algorithms are a good choice; in this case, dynamic
programming is often called “divide and conquer” instead

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct

Main Idea Behind Dynamic Programming

Main idea: solve larger subproblems by breaking them down to
smaller, easier subproblems in a recursive manner

Typical Algorithm Design:

© decompose the problem into subproblems and think about how
to solve a larger problem with the solutions of its subproblems

® specify how you compute the value of a larger problem
recursively with the help of the optimal values of its subproblems
(“Bellman equation”)

©® Dbottom-up solving of the subproblems (i.e. computing their
optimal value), starting from the smallest by using a table
structure to store the optimal values and the Bellman equality

(top-down approach also possible, but less common)

® eventually construct the final solution (can be omitted if only the
value of an optimal solution is sought)

© Dimo Brockhoff, Inria

Bellman Equation (aka “Principle of Opti

» introduced by R. Bellman as “Principle of Optimality” in 1957
» the basic equation underlying dynamic programming
= necessary condition for optimality

citing Wikipedia:
“Richard Bellman showed that a dynamic optimization problem in
discrete time can be stated in a recursive, step-by-step form
known as backward induction by writing down the relationship
between the value function in one period and the value function

In the next period. The relationship between these two value
functions is called the "Bellman equation".”

= The value function here is the objective function.

= The Bellman equation exactly formalizes how to compute the
optimal function value for a larger subproblem from the
optimal function value of smaller subproblems.

we will see examples later today...

© Dimo Brockhoff, Inria

Historical Note

Why is it called “dynamic” and why “programming”?
= R. Bellman worked at the time, when he “invented” the idea, at the
RAND Corporation who were strongly connected with the Air Force

= In order to avoid conflicts with the head of the Air Force at this
time, R. Bellman decided against using terms like “mathematical”
and he liked the word dynamic because it “has an absolutely
precise meaning” and cannot be used “in a pejorative sense”

* |n addition, it had the right meaning: “| wanted to get across the
Idea that this was dynamic, this was multistage, this was time-
varying.”

= Citing Wikipedia: “The word programming referred to the use of the
method to find an optimal program, in the sense of a military
schedule for training or logistics.”

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oc

A First Example: Shortest Path Problem

Shortest Path problem:
Given a graph G=(V,E) with edge weights w, for each edge e;.
Find the shortest path from a vertex v to a vertex u, i.e., the path

(v, e,={v, vV}, Vq, -onh Vi €,={V,, U}, U) Such that wy + ... + w, IS
minimized. 7 1

Note:
We can often assume that
the edge weights are stored
In a distance matrix D of
dimension |V|x|V| where
an entry D;; gives the weight between nodes | and j and "non-
edges” are assigned a value of «

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct.

Opt. Substructure and Overlapping Subprok

Optimal Substructure

The optimal path from u to v, if it contains another vertex p can
be constructed by simply joining the optimal path from u to p with
the optimal path from p to v.

Overlapping Subproblems
Optimal shortest
sub-paths can be reused 1
when computing longer paths: 3 L O
e.g. the optimal path from u to p
IS contained in the optimal path from
u to g and in the optimal path from u to v.

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct.

The Algorithm of E. Dijkstra (1956)

Basic Idea:
= distinguish between visited and unvisited nodes
* in each step visit only one new node

= How?
= choose the one with smallest distance to the current set of
nodes

» update all shortest path lengths of the new point’s neighbors
= keep track of second-to-last node on those shortest paths

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 19, 20

The Algorithm of E. Dijkstra (1956)

ShortestPathDijkstra(G, D, source, target):
Initialization:
= dist(source) = 0 and for all v € V: dist(v)= D

= forallveV:
If Dgource v fiNIte: prev(v) = source # predecessors on opt. path
else: prev(v) = None

= U=V\{source} # U: unexplored vertices
Unless U empty do:
= newNode = argmin,,_, {dist(u)}
= remove newNode from U
» for each neighbor v of newNode do:
= alternativeDist = dist(hewNode) + D
= |f alternativeDist < dist(v):
= dist(v) = alternativeDist
= prev(v) = newNode

source,v

newNode,v

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 19

The Algorithm of R. Floyd (1962)

ldea:
= if we knew that the shortest path between source and target
goes through node v, we would be able to construct the
optimal path from the shorter paths “source->v” and “v->target”

= subproblem P(k): compute all shortest paths where the
Intermediate nodes can be chosen from v, ..., v,

ShortestPathFloyd(G, D, source, target) [= AllPairsShortestPath(G)]
= Init: forall 1 =i,j = |V[: dist(i,)) = D;;
* Fork=1to |V| # solve subproblems P(k)
= for all pairs of nodes (i.e. 1 <1,) < |V]):
= dist(i,)) = min { dist(i,)), dist(i,k) + dist(k,)) }

Note: This algorithm has the advantage that it can handle negative
weights as long as no cycle with negative total weight exists

Note 2: distance D;; could also be set to zero

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oc

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 19, 2020

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 19, 2020

o 9 -1

>0 (> >0)

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 19, 2

allow 1 as intermediate node

—_— —
oo 1

(> o0

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 19

allow 1 as intermediate node

—_— —
oo 1

(> o0

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 19

allow 1 as intermediate node

—_— —
oo 1

(> o0

© Dimo Brockhoff, Inria

allow 1 as intermediate node
—_— To——
00 1 00 2 00 0 00

) 9] -1)

© Dimo Brockhoff, Inria

© Dimo Brockhoff, Inria

© Dimo Brockhoff, Inria

© Dimo Brockhoff, Inria

allow {1,2,3} as intermediate nodes
/

—
1 00 1 1 00 1 ©0 2 11 1 e

Bl - 2 ¢
0w w0 9 1 o« o 9 -1 o
9 18 8 9 18 8
1 10 0 3 1 10 0 3
w 5 o o © 5

© Dimo Brockhoff, Inria

allow {1,2,3} as intermediate nodes
— T—

1 o0 1 1 00 1 11 £

Bl - 2
©© o 9 -] 9 00
9 18 8 9 18 8
1 10 O 10 3
00 5)

© Dimo Brockhoff, Inria

allow {1,2,3} as intermediate nodes
/

T—
1 °0 1 1 °0 = 18 2 11 1 °0

1 R
© o 9 1 16 18 9 1 =
9 18 8 = 18 8
1 10 0 3 10 0 3
© 5 = 5 13

© Dimo Brockhoff, Inria

© Dimo Brockhoff, Inria

allow {1,2,3,4} as intermediate nodes

_—
18 2 11
16 18 9 -1

/ 9 18 8

© Dimo Brockhoff, Inria

allow {1,2,3,4} as intermediate nodes

_—
18 2 11
16 18 9 -1

/ 9 18 8

g 11
0O 3
13 16

© Dimo Brockhoff, Inria

allow all nodes as intermediate nodes
—_— To——
&= 0 2 11 1 4 e O 2 11 1 4

2 0 9 -1 2 2 0 9 -1 2
7 9 18 8 1 7 9 18 8 1
1 1 10 0 3 1 1 10 0 3

12 14 5 13 16 PEM 12 14 5 13 16

© Dimo Brockhoff, Inria

allow all nodes as intermediate nodes
—_— To—
1 0 2 11 1 4 1 0 2 9 1 4

2 0 9 -1 2 SN -
7 9 18 8 1 7 9 16 8 1
1 1 10 0 3 1 1 8 0 3

12 14 5 13 16 PEM 12 14 5 13 16

© Dimo Brockhoff, Inria

Runtime Considerations and Correctness

O(]V]?) easy to show
= O(|V|?) many distances need to be updated O(|V|) times

Correctness
= given by the Bellman equation
dist(i,}) = min { dist(i,)), dist(i,k) + dist(k,j) }
= only correct if cycles do not have negative total weight (can

be checked in final distance matrix if diagonal elements are
negative)

© Dimo Brockhoff, Inria qori plexity @ CentraleSupelec/ESSEC, Oct. 19, 20

But How Can We Actually Construct the Path

= Construct matrix of predecessors P alongside distance matrix
= P; (k) = predecessor of node | on path from i to | (at algo. step k)

= no extra costs (asymptotically)

0y [0 1=l ordy =

I in all other cases

p; (k) = P j(k —1) ifdist(i,j) < dist(i, k) + dist(k, j)
AT Py (k= 1) ifdist(i, j) > dist(i, k) + dist(k,)

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 19, 20

A Second Example: The 0-1 Knapsack P

0-1 Knapsack Problem (KP)

max. ijacj with z; € {0,1}

j=1

n
S.1. Z ’wj.ZCj S %74

j=1

Dake

Goal: a dynamic programming algorithm for KP

Questions:
a) what could be subproblems?
b) how to solve subproblems with the help of smaller ones?
c) how to solve the smallest subproblems exactly?

© Dimo Brockhoff, Inria

Opt. Substructure and Overlapping Subproble

Possible subproblem:

P(i): optimal profit when we allow to pack only i items into a
knapsack

But how to construct solutions to the larger problems?

What about this possible subproblem?

P(i,j): optimal profit when we allow to pack only i items into a
knapsack of size j

Look like it’s not possible to construct solutions to the larger
problems from smaller ones either!

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 19

Opt. Substructure and Overlapping Subproblem

Consider now the following subproblem:

P(i, j): optimal profit when allowed to pack only the first i items
Into a knapsack of size j

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 19, 2020

Opt. Substructure and Overlapping Subprob

Consider now the following subproblem:

P(i, j): optimal profit when allowed to pack only the first i items
Into a knapsack of size j

Optimal Substructure

The optimal choice of whether taking item i or not can be made
easily for a knapsack of weight j if we know the optimal choice
foritems1..i—1:

0 ifi=00rj=0
P(i,j)) = P(i—1,)) ifw; >j
max{P(i —1,/),p; + P((—1,j—wy)} ifw; <j

Overlapping Subproblems

a recursive implementation of the Bellman equation is simple,
but the P(i,j) might need to be computed more than once!

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 19

Dynamic Programming Approach to the KP

To circumvent computing the subproblems more than once, we can
store their results (in a matrix for example)...

knapsack weight

ﬂ---_---

P(1.))

+— [tems

best achievable
profit with items 1...i
and a knapsack of
size |

o CentraleSupelec/ESSEC, Oct. 19, 2020

© Dimo Brockhoff, Inria

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

knapsack weight

n-----n-nn

+— |tems

initialization:
P(i,j)=0ifi=0o0rj=0

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 19, 2020

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

knapsack weight

n-----n-nn

+— |tems

o O O O O

initialization:
P(i,j)=0ifi=0o0rj=0

© Dimo Brockhoff, Inria gori plexity @ CentraleSupelec/ESSEC, Oct. 19, 2020

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

e
O - —)
1 S e
O ——— e —
O = — >
fori =1 ton:
forj=1to W:
P(i—1,)) ifw; >j

P(@,j) =
J max{P(i — 1,j), pl+P(l—1]—W)}lle<]

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct.

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

=
9 0O ©
0
| BN
0
0
fori =1 ton:
forj=1to W:
PG,) = P(i—1,)) ifw; >j

max{P(i — 1,j), pl +P@{—1,j—w)}itw <

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 19, 202

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

=
g O 0 O
0
| BN
0
0
fori =1 ton:
forj=1to W:
PG,) = P(i—1,)) ifw; >j

max{P(i — 1,j), pl +P@{—1,j—w)}itw <

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 19, 202

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

v

-

9 0 0 0 0 0
0

| BN
0
0

fori =1ton:
forj=1to W:

PG,) = P(i—1,)) ifw; >j
' max{P(i — 1,j), pl+P(l—1]—w)}1sz<J

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 19, 202

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

g 0_0 0 TO 0 0
[0 0 0 0 8
T +p1(=4)
0
1 ,
0
0
fori =1 ton:
forj=1to W:
P(,j) = P(i—1,)) Lw;p > J

max{P(i —1,)), pl +P>—1,j —w)Yitwi <

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 19, 2020

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

2 0
= 2 |
2 0 0 0 0 0—d— 4
- +p1(=4)

0
1 ,

0

0
fori =1 ton:

forj=1to W:

P(,j) = P(i—1,)) Lw;p > J

max{P(i —1,)), pl +P>—1,j —w)Yitwi <

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 19, 2020

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

(7))
_E 0 0 0 0 0 4 4 4 4 4 4 4
0
| BN
0
0
fori =1 ton:
forj=1to W:

PG,) = P(i—1,)) ifw; >j
' max{P(i —1,)), pl +P>—1,j —w)Yitwi <

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 19, 202

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

(7))
_E 0 0 0 0 0 4 4 4 4 4 4 4
0 0 0 0 0 4 4
| BN
0
0
fori =1 ton:
forj=1to W:

P(i—1,)) ifw; >j

P(i,j) =
J max{P(i —1,)), pl-l-P(l—l]—Wl)}lle <)

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 19, 202

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

(7))}
=
2 Oﬁo 0 0 0 14 4 4 4 4
0 0 0 0 0
l +p, (= 10)
0
0
0
fori =1 ton:
forj=1to W:
1 ifw;, >j

max{P(i —1,)), pl + P(l —1,j —w)}twi =

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 19, 2020

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

(7))
_E 0 0 0 0 0 4 4 4 4 4 4 4
o O O O o0 4 4 10 10 10 10 10
| BN
0
0
fori =1 ton:
forj=1to W:

P(i—1,)) ifw; >j

P(i,j) =
J max{P(i —1,)), pl-l-P(l—l]—Wl)}lle <)

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 19, 202

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

4 4 4 4 4 4 4
4 4 10 10 10 10 10

o O
o O
o O
o O

+— |tems

o O O O O
o
w
w
w

fori =1 ton:
forj=1to W:

. — 1.7 iftw; > j
P(,j) = P(i—1,)) i =]

max{P(i —1,)), pl +P>—1,j —w)Yitwi <

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 19, 202

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

(7))
-
g 0 0 0 0 0 4 4 4 4 4 4 4
O O O O0_. 0 44 4 10 10 10 10 10
l o o0 3 3'\14
+p3(=3
0
0
fori =1 ton:
forj=1to W:
A ifw: >j

max{P(i —1,)), pl + P(l —1,j —w)}twi =

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 19, 202

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

0 4 4 4 4 4 4 4
0 4 4 10 10 10 10 10

3'4\14

+p3(= 3)

o O
o O
o O

+— |tems

o O O O O
o
w
w

fori =1 ton:
forj=1to W:

. — 1.7 iftw; > j
P(,j) = P(i—1,)) i =]

max{P(i —1,)), pl +P>—1,j —w)Yitwi <

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 19, 202

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

n-----n-nn

4 4 4 4 4 4 4
4 4 10 10 10 10 10

4 '4\110 etc.

+p3(= 3)

o O
o O
o O
o O

+— |tems

o O O O O
o
w
w
w

fori =1 ton:
forj=1to W:

. — 1.7 iftw; > j
P(,j) = P(i—1,)) i =]

max{P(i —1,)), pl +P>—1,j —w)Yitwi <

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 19, 202

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

=
g 0O 0 © 0 0 4 4 4
0O 0 © 0 O 4 4 10
l O 0 3 3 3 4 4 10
O 0 3 3 5 5 8 10
O 0 3 3 5 6 8 10

fori =1 ton:
forj=1to W:

P(i,j) = P(i—1,))

4
10
10
10
10

4
10
13
13
13

4 4
10 10
13 13
13 15
13 15
ifw; >j

n-----n-nn

max{P(i —1,)), pl +P>—1,j —w)Yitwi <

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 19, 20

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restrictionis W = 11.

knapsack weight

=
g 0O 0 © 0 0 4 4 4
0O 0 © 0 O 4 4 10
l O 0 3 3 3 4 4 10
O 0 3 3 5 5 8 10
O 0 3 3 5 6 8 10

fori =1 ton:
forj=1to W:

P(i,j) = P(i—1,))

4
10
10
10
10

4
10
13
13
13

4 4
10 10
13 13
13 15
1
ifw; >j

n-----n-nn

max{P(i —1,)), pl +P>—1,j —w)Yitwi <

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 19, 20

Dynamic Programming Approach to the KP

Question: How to obtain the actual packing?
Answer: we just need to remember where the max came from!

knapsack weight

n-----n-nn
gn 0. _ 9

o [N nooox2:41444444
BEl c o o o 0 10_,0 10 10 10
lo 0o 3 3 3 4 10 13, 13 13
W o o 3 3 5 8 10 10 13T T35
BN o o 3 3 5 6 8 10 10 13 13 15

X5 =
fori =1 ton:
forj=1to W:

PG, j) = P(i—1,)) ifw; >j
' max{P(i —1,)), pl-l-P(l—l]—Wl)}lle <)

© Dimo Brockhoff, Inria gori ity @ CentraleSupelec/ESSEC, Oct. 19, 202

Runtime Considerations

= |f we try all possible combinations, we can solve the KP in time
0(2™)

= With the dynamic programming approach, we can do it in O(nW)

= For small enough weights (of the knapsack), this is quicker

= We might come back to this in the lectures on computational
complexity...

© Dimo Brockhoff, Inria qori plexity @ CentraleSupelec/ESSEC, Oct. 19, 20

Conclusions

| hope it became clear...

...what the algorithm design idea of dynamic programming is
...for which problem types it is supposed to be suitable
...and how to apply the idea to the knapsack problem

© Dimo Brockhoff, Inria gori Dlexity @ CentraleSupelec/ESSEC, Oct. 19

