Algorithms \& Complexity

September 13, 2021
CentraleSupélec / ESSEC Business School

Dimo Brockhoff
Inria Saclay - Ile-de-France

Algorithms \& Complexity

September 13, 2021
CentraleSupélec / ESSEC Business School

Dimo Brockhoff
Inria Saclay - Ile-de-France

Weekly Covid-19 Update: We had it worse...

number per 100,000 people per week

http://www.cmap.polytechnique.fr/~nikolaus.hansen/covid-19.html

Why Algorithms \& Complexity?

Algorithm (noun.)
 Word used by programmers when they do not want to explain what they did.

Why Algorithms \& Complexity?

[...] an algorithm is a set of instructions, typically to solve a class of problems or perform a computation.
[from wikipedia]

Algorithms widespread in almost every aspect of the "real-world"

- (automatic) problem solving
- sorting
- accessing data in data structures

Mnemonic: Algorithm = Recipe

Recipe:

- Cook cooks a meal

(c) (1) (2) Peng

Algorithm:

- A computer solves a problem

Mnemonic: Algorithm = Recipe

Recipe:

- Cook cooks a meal
- Independent of cook, type of pan, type of stove/oven/...

Algorithm:

- A computer solves a problem
- Independent of programmer, computer, programming language, ...
- Actually, a computer is running an implementation of an algorithm

Mnemonic: Algorithm = Recipe

Recipe:

- Cook cooks a meal
- Independent of cook, type of pan, type of stove/oven/...

Algorithm:

- A computer solves a problem
- Independent of programmer, computer, programming language, ...
- Actually, a computer is running an implementation of an algorithm
...similarly like a cook is following a recipe on a concrete stove with a certain pan, etc.

Example: Sorting

Aim: Sort a set of cards/words/data

[Google, for example, has to sort all webpages according to the relevance of your search]

Re-formulation: minimize the "unsortedness"

EFCADB
 BACFDE ABCDEF \downarrow
 sortedness increases

Classical Questions:

- What is the underlying algorithm?
(How do I solve a problem?)
- How long does it run to solve the problem?
(How long does it take? Which guarantees can I give? How fast is the algorithm progressing?)
- Is there a better algorithm or did I find the optimal one?
related to the complexity part of the lecture

Be Aware

Caution:

This is not an "algorithms for data scientists" lecture (!)

- we do not cover algorithms for regression, regularization, dimensionality reduction, clustering, deep learning, ...
- ...but cover much more basic things:
- data structures
- data sorting
- fundamental algorithm design ideas
- how to analyze an algorithm
- how to prove lower runtime bounds for hard problems
- the actual data science related topics are taught in later lectures
"Algorithms" is a very wide topic, maybe as wide as "vegetables" © we can only touch the surface of "algorithms"
- I am here to guide you a bit
- and to give some hints of what might be useful later in your job

What we plan to do in the A\&C lecture

Learning Goals:

(1) know basic design principles behind good algorithms ("building blocks to help solving "your own" problems")
(2) be able to analyze theoretically some algorithms

- give strong bounds on their "effectiveness"
- understand the ideas of (worst case) algo complexity ("Am I too dumb to find a quick algorithm or can nobody do better?")
(3) be able to use and understand existing algorithms ("practice, practice, practice!")

What we plan to do in the A\&C lecture

How are we going to do that?

- look at a lot of examples of algorithms
- mixture of lectures and small exercises
- practice and theory
- additionally 3 graded home exercises until mid November

Please ask questions
 if things are unclear throughout the course!

Course Overview

Thu		Topic
Mon, 13.09.2021	AM	Introduction, Combinatorics, O-notation, data structures
Mon, 20.09.2021	AM	Data structures II, Sorting algorithms I
Mon, 27.09.2021	AM	Sorting algorithms II, recursive algorithms
Mon, 11.10.2021	AM	Greedy algorithms
Mon, 18.10.2021	AM	Dynamic programming
Mon, 25.10.2021	AM	Randomized Algorithms and Blackbox Optimization
Mon, 08.11.2021	AM	Complexity theory I
Mon, 15.11.2021	AM	Complexity theory II
Mon, 13.12.2021	PM	Exam

Remarks on Exercises I

- expected to be done on paper or in python
- hence, please make sure you have python installed on your laptop until the second lecture
- Anaconda is the recommended way to get there:
https://www.anaconda.com/distribution/
- (basic) example solutions will be made available afterwards

Remarks on Exercises II

In addition:

- 3 home exercises with 20 points each
- Counts $1 / 3$ to overall grade (exam is the other $2 / 3$)

| In addition: | $59 \leq p \leq 60$ | 20 | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| - 3 home exerc | $58 \leq p<59$ | 19 | 2 | |
| - Counts 1/3 to | $56 \leq p<58$ | 18 | 2 | |
| - Graded as: | $54 \leq p<56$ | 17 | 3 | |
| | $51 \leq p<54$ | 16 | 3 | |
| | $48 \leq p<51$ | 15 | 3 | |
| | $45 \leq p<48$ | 14 | 3 | |
| | $42 \leq p<45$ | 13 | 4 | |
| | $38 \leq p<42$ | 12 | 4 | |
| | $34 \leq p<38$ | 11 | 4 | |
| | $20 \leq p<34$ | 10 | 4 | |
| | $22 \leq p<26$ | 9 | 4 | |
| | $18 \leq p<22$ | 8 | 4 | |
| | $15 \leq p \leq 18$ | 7 | 3 | 3 |
| | $0 \leq p<3$ | 2.5 | $3,3,3,3$ | |

Remarks on Exercises II

In addition:

- 3 home exercises with 20 points each
- Counts $1 / 3$ to overall grade (exam is the other $2 / 3$)
- Graded as explained before
- Group submissions of 5 students allowed (and highly encouraged!)
- But: always with different students
= two students should be together on one solution max!

Remarks on Exercises III

Abstract

Please send your solutions by email to Dimo Brockhoff in PDF format (with a clear indication of your full name(s) in the email and the PDF file name, see below) until the submission deadline on October 4, 2021 (a Monday). Groups of 5 students are explicitly allowed and encouraged. In the case of group submissions, please make sure that you submit only once with the same student!
Important: Please name your PDF file according to your last names (sorted in alphabetical order and separated by an underscore), for example like Monet_Renoir_Toulouse-Lautrec.pdf.

A kind request for Taolue and Yaqi: please also add your firstname

Remarks on Exercises IV

Exercises will be available on Mondays

- 20.9., 11.10. and 25.10.

Deadline for submission by email two weeks later

- 4.10., 25.10. and 8.11. (tight = 23h59 Paris time)
- I will try to have them corrected by the next lecture
- such that solutions can be discussed during the lecture

Course Overview

Thu		Topic
Mon, 13.09.2021	AM	Introduction, Combinatorics, O-notation, data structures
Mon, 20.09.2021	AM	Data structures II, Sorting algorithms I 1st exercise out
Mon, 27.09.2021	AM	Sorting algorithms II, recursive algorithms
Mon, 04.10.2021	-	Deadline 1st exercise
Mon, 11.10.2021	AM	Greedy algorithms 2nd exercise out
Mon, 18.10.2021	AM	Dynamic programming
Mon, 25.10.2021	AM	Randomized Algorithms and Blackbox Optimization 3rd exercise out Deadline 2nd exercise
Mon, 01.11.2021	-	-
Mon, 08.11.2021	AM	Complexity theory I Deadline 3rd exercise
Mon, 15.11.2021	AM	Complexity theory II
Mon, 13.12.2021	PM	Exam

The Exam

- Monday, $13^{\text {th }}$ December 2021 in the afternoon (3 hours)
- (most likely) multiple-choice with 20-30 questions
- (most likely) on-site + online [details to be shared later]
- open book: use as much material as you want
- in previous years: no electronic devices allowed that connect to the internet [we'll also see for this one © -]

All information available at

http://www.cmap.polytechnique.fr/~dimo.brockhoff/
algorithmsandcomplexity/2021/
and also on EDUNAO
(exercise sheets, lecture slides, additional information, links, ...)

any questions?

Overview of Today's Lecture

Basics

- Fundamental combinatorics
- notations such as the O-notation
- algorithms on basic data structures
- arrays
- lists
- trees

Basics I: Combinatorics

For this and the next parts, a nice-to-read reference is https://www.math.upenn.edu/~wilf/AlgoComp.pdf

Combinatorics = Counting

counting combinations and counting permutations

Why combinatorics?

- In order to compute probabilities

$$
P(\text { event })=\frac{\text { \#favorable outcomes }}{\text { \#possible outcomes }}
$$

- Related to graph theory (later)
- Related to combinatorial optimization (later)

Number of Permutations

Permutation: a sequence/order of members of a set

How many different orders exist on $[n]:=1, \ldots, n$?

- First integer: choice among n
- Second integer: choice among n-1
- Last integer: no choice among 1
- In total: $n \cdot(n-1) \cdot \ldots \cdot 1=: n$!

How to Generate a Random Permutation?

Idea: generate a random vector, sort it and use the generated sorting order as the permutation

```
import numpy as np
n = 4
random_array = np.random.rand(n)
random_perm = np.argsort(random_array)
```

More elegant way:

$$
\text { random_perm }=\text { np.random.permutation (n) }
$$

Combinations Without Replacement (k-combination)

How many combinations of set members of a given size k exist?

Example: number of different poker hands

- $52^{*} 51^{*} 50 * 49^{*} 48=311,875,200$ ways to hand 5 cards out of 52
- but: order does not matter here!
- There are 5 ! = 120 orders of 5 cards
- Hence, there are

(0) ${ }^{\text {PUBLIC }}$ DOMAIN
$311,875,200 / 120=2,598,960$ distinct pokers hands in total

In general, the number of k-combinations of n items (without replacements) is

$$
\binom{n}{k}:=\frac{n!}{k!(n-k)!}
$$

Combinations with replacement

What if we want to allow duplicates?

- combinations with replacement
- also known as k-combination with repetitions or k-multicombination

Example:

Combinations with replacement

Ex

Combinations with replacement

What if we want to allow duplicates?

- combinations with replacement
- also known as k-combination with repetitions or k-multicombination

Example:

eat 3 donuts from a choice of 4 different ones

Combinations with replacement

What if we want to allow duplicates?

- combinations with replacement
- also known as k-combination with repetitions or k-multicombination

Example:

eat 3 donuts from a choice of 4 different ones

Number of k-combinations with replacement:

$$
\binom{n+k-1}{k}\left[=\binom{n+k-1}{n-1}\right]
$$

Here with $n=4, k=3:\binom{4+3-1}{3}=\binom{6}{3}=20$ combinations

Why That? The Stars and Bars Method

Stars and Bars: A useful counting method popularized by W. Feller*

How many combinations to put k objects into n bins?

- objects: stars
- bins: separated by bars
- Example of $n=5$ bins and $k=7$ objects: $\boldsymbol{*} \boldsymbol{*}|\boldsymbol{*} \| \boldsymbol{*} \boldsymbol{*} \boldsymbol{*}| \boldsymbol{*}$
- Donut example: $n=4$ bins/donut types, $k=3$ objects

Number of combinations to put k objects into n bins
$=$ number of combinations to place k objects on $n+k-1$ places $\Rightarrow\binom{n+k-1}{k}$
$=$ number of combinations to place $n-1$ bars on $n+k-1$ places $\Rightarrow\binom{n+k-1}{n-1}$

* Feller, William (1950). An Introduction to Probability Theory and Its Applications (2nd ed.). Wiley.

How to Generate a Random k-Combination?

Naïve way:

from itertools import combinations
import numpy as np
$\mathrm{n}=4$
$\mathrm{k}=2$
\# all k-combinations of [0, 1, ..., n-1]:
comb $=$ list(combinations (np.arange (n), k))
\# pick one at random
random_k_combination $=$
comb [np.random. randint (len (comb))]

Works only for small enough n and k :
len (comb) is $15,890,700$ for $n=50$ and $k=6$ and $99,884,400$ for $n=50$ and $k=7$

How to Generate a Random k-Combination?

More efficient way:

- iterate across each element of $\{1, \ldots, n\}$
- pick each element with a dynamically changing probability of

$$
\frac{k-\# \text { samples chosen }}{n-\# \text { samples visited }}
$$

until k elements are picked.

Exercise

a) In how many different ways can the 15 balls of a pool billiard be placed (on a line)?

b) How many different combinations of five coins (Euros) can you have in your pocket?
c) How likely is it to get your bike stolen with the lock on the right?

Solutions

a) 15 ! (we look for the number of permutations of 15 distinct balls)
b) $(8+5-1)$ choose $5=792$ (8 different coins, choose 5 with repetition)
c) it's pretty safe: the probability to find the right number is $\frac{1}{10^{5}}=10^{-5}$, assuming that a random number out of all $10 \cdot 10 \cdot 10$. $10 \cdot 10=10^{5}$ lock numbers is tried. It takes $>10 \mathrm{~min}$ to try out 1% of all 10^{5} numbers if you try 2 lock combinations per second.

Basics II: The O-Notation

Excursion: The O-Notation

Motivation:

- we often want to characterize how quickly a function $f(x)$ grows asymptotically
- e.g. we might want to say that an algorithm takes quadratically many steps (in n) to find the optimum of a problem with n (binary) variables
even if it is never exactly n^{2}, but maybe $n^{2}+1$ or $(n+1)^{2}$

Big-O Notation

should be known, here mainly restating the definition:
Definition 1 We write $f(x)=O(g(x))$ iff there exists a constant $c>0$ and an $x_{0}>0$ such that $|f(x)| \leq c \cdot g(x)$ holds for all $x>x_{0}$
we also view $O(g(x))$ as the set of all functions growing at most as quickly as $g(x)$ and write $f(x) \in O(g(x))$

Big-O: Examples

- $f(x)+C=O(f(x)) \quad$ [as long as $f(x)$ does not converge to zero]
- $c \cdot f(x)=O(f(x))$
- $f(x) \cdot g(x)=O(f(x) \cdot g(x))$
- $3 n^{4}+n^{2}-7=O\left(n^{4}\right)$

Intuition of the Big-O:

- if $f(x)=O(g(x))$ then $g(x)$ gives an upper bound (asymptotically) for f
- constants don't play a role
- with Big-O, you should have ' \leq ' in mind

Excursion: The O-Notation

Further definitions to generalize from ' \leq ' to ' \geq ' and ' $=$ ':

- $f(x)=\Omega(g(x))$ if $g(x)=O(f(x))$
- $f(x)=\Theta(g(x))$ if $f(x)=O(g(x))$ and $g(x)=O(f(x))$

Note: Definitions equivalent to '<' and '>' exist as well, but are not needed in this course

Exercise O-Notation

Please order the following functions in terms of their asymptotic behavior (from smallest to largest):

- $\exp \left(\mathrm{n}^{2}\right)$
- $\log n$
- $\ln n / \ln \ln n$
- n
- $n \log n$
- $\exp (\mathrm{n})$
- $\ln (n!)$

Give for two of the relations a formal proof.

Exercise O-Notation (Solution)

Correct ordering:

$$
\begin{array}{cll}
\frac{\ln (n)}{\ln (\ln (n))}=O(\log n) & \log n=O(n) & n=O(n \log n) \\
n \log n=O(\ln (n!)) & \ln (n!)=O\left(e^{n}\right) & e^{n}=O\left(e^{n^{\wedge} 2}\right)
\end{array}
$$

but for example $\mathrm{e}^{n \wedge} \neq \mathrm{O}\left(\mathrm{e}^{\mathrm{n}}\right)$
One exemplary proof:
$\frac{\ln (n)}{\ln (\ln (n))}=O(\log n)$:

$$
\left|\frac{\ln (n)}{\ln (\ln (n))}\right|=\left|\frac{\log (n)}{\log (e) \ln (\ln (n))}\right| \prod_{\uparrow} \frac{3 \log (n)}{\ln (\ln (n))} \leq 3 \log (n)
$$

Exercise O-Notation (Solution)

One more proof: In n! = O(n logn)

- Stirling's approximation:

$$
\begin{aligned}
& n!\sim \sqrt{2 \pi n}(n / e)^{n} \quad \text { or even } \\
& \sqrt{2 \pi} n^{n+1 / 2} e^{-n} \leq n!\leq e n^{n+1 / 2} e^{-n}
\end{aligned}
$$

- $\ln n!\leq \ln \left(e n^{n+\frac{1}{2}} e^{-n}\right)=1+\left(n+\frac{1}{2}\right) \ln n-n$

$$
\leq\left(n+\frac{1}{2}\right) \ln n \leq 2 n \ln n=2 n \frac{\log n}{\log e}=c \cdot n \log n
$$ okay for $c=2 / \log e$ and all $n \in \mathbb{N}$

- $\mathrm{n} \ln \mathrm{n}=\mathrm{O}$ (In n !) proven in a similar vein

If it's not clear yet: Youtube

- https://www.youtube.com/watch?v=__vX2sjlpXU

basic data structures

Why Data Structures? What are those?

A data structure is a data organization, management, and storage format that enables efficient access and modification.
More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data.
from wikipedia

Why important to know?

- Only with knowledge of data structures can you program well
- Knowledge of them is important to design efficient algorithms

Data Structures and Algorithm Complexity

Depending on how data is stored, it is more or less efficient to

- Add data
- Remove data
- Search for data

Common Complexities

Complexity	Running Time	
constant	$O(1)$	independent of data size
logarithmic	$O(\log (n))$	often base 2 , grows relatively slowly with data size
linear	$O(n)$	nearly same amount of steps than data points
quadratic	$O(n \log (n))$	Common, still efficient in practice if n not huge
$O\left(n^{2}\right)$	Often not any more efficient with large data sets	

exponential $O\left(2^{n}\right), O(n!), \ldots \quad$ Should be avoided ©
see also: https://introprogramming.info/english-intro-csharp-book/read-online/chapter-19-data-structures-and-algorithm-complexity

Best, Worst and Average Cases

Algorithm complexity can be given as best, worst or average cases:

Worst case:

- Assumes the worst possible scenario
- Algorithm can never perform worse
- Corresponds to an upper bound (on runtime, space requirements, ...)
- Most common

Best case:

- Best possible scenario
- Algorithm is never quicker/better/more efficient/...

Average case:

- Complexity averaged over all possible scenarios
- Often difficult to analyze

Arrays

Array: a fixed chunk of memory of constant size that can contain a given number of n elements of a given type

- think of a vector or a table
- in python:
- import numpy as np
- a = np.array ([1, 2, 3])
- a [1] returns 2 [python counts from 0!]

Discuss with your neighbors:

1) How long does it take to access a given item at position i?
2) What about but removing the ith entry?
3) How long does it take to know for certain that a given value x is in the array (or not)?

Arrays

Array: a fixed chunk of memory of constant size that can contain a given number of n elements of a given type

- think of a vector or a table
- in python:
- import numpy as np
- a = np.array ([1, 2, 3])
- a [1] returns 2 [python counts from 0!]

Common operations and their complexity:

- Get(i) and Update(i) in constant time
- but Remove(i), Move j in between positions i and $i+1, \ldots$ are not possible in constant time, because necessary memory alterations not local
- To know whether a given item is in the array: linear time

Searching in Sorted Arrays

- Assume a sorted array $a[1]<a[2]<\ldots<a[n]$.
- How long will it take to find the smallest element $\geq k$? (Best case, worse case, average case)

Searching in Sorted Arrays

- Assume a sorted array $a[1]<a[2]<\ldots<a[n]$.
- How long will it take to find the smallest element $\geq k$? Or to decide whether a value a is in the array? (best case, worse case, average case)

Linear search

- go through array from $a[1]$ to $a[n]$ until entry found
- still $\Theta(n)$ in the worst case
- average case the same (if we assume that each item is queried with equal probability)

Searching in Sorted Arrays

Binary search

- Look at position [n/2] first
- Is it the sought after entry? If yes, stop
- If not: search recursively in left or right interval, depending on whether the middle entry is larger or smaller than the sought after entry

Runtimes

- Best case: 1
- Worst case:
- sought after entry not in array
- simple case: $n=2^{k}-1$ array elements
- array-part where entry could be located is of length $2^{k-1}-1$
- by induction: maximally k comparisons needed
- $k=\Theta(\log (n))$

Linked Lists

- Dynamic data structure of varying length
- Allows to add and remove entries (remember: arrays don't)
- However, also not stored in contiguous memory anymore

Idea of a Linear List

Linked Lists

- Dynamic data structure of varying length
- Allows to add and remove entries (remember: arrays don't)
- However, also not stored in contiguous memory anymore

Idea of a Linear List

Linked Lists

- Dynamic data structure of varying length
- Allows to add and remove entries (remember: arrays don't)
- However, also not stored in contiguous memory anymore

Idea of a Linear List

[$4,7,1, \ldots]$ in memory could be for example:

memory address	\ldots	87	88	89	90	91	92	93	\ldots
memory content	\ldots	4	90	\ldots	7	92	1	104	\ldots

Linked Lists

- Dynamic data structure of varying length
- Allows to add and remove entries (remember: arrays don't)
- However, also not stored in contiguous memory anymore

Idea of a Linear List

$[4, \ngtr ?$

memory address	\ldots	87	88	89	90	91	92	93	\ldots
memory content	\ldots	4	90	\ldots	7	92	1	104	\ldots

Linked Lists

- Dynamic data structure of varying length
- Allows to add and remove entries (remember: arrays don't)
- However, also not stored in contiguous memory anymore

Idea of a Linear List

$[4, \mathcal{Z}, 1, \ldots]$ in memory could be for example:

memory address	\ldots	87	88	89	90	91	92	93	\ldots
memory content	\ldots	4	90	\ldots	7	92	1	104	\ldots

- go through list until 7 is found
- always keep track of last pointer (the one finally to 7)
- move this pointer to the former pointer of entry 7

Linked Lists

- removal of element in constant time $O(1)$
- very similar for adding: $O(1)$
- adding into a sorted list: $O(n)$
- but now searching is more difficult, even if sorted
- reason: we don't have access to the "middle" element
- search for element $i: \Theta(i)$ if list is sorted
we need a different data structure if we want to search, insert, and delete efficiently

Trees

Trees

Trees are Special Graphs

For a more formal definition, we need to introduce the concept of graphs...

Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

Graphs

Definition 1 An undirected graph G is a tupel $G=(V, E)$ of edges $e=\{u, v\} \in$ E over the vertex set V (i.e., $u, v \in V$).

- vertices = nodes
- edges = lines

- Note: edges cover two unordered vertices (undirected graph)
- if they are ordered, we call G a directed graph

Graphs: Basic Definitions

- G is called empty if E empty
- u and v are end vertices of an edge $\{u, v\}$
- Edges are adjacent if they share an end vertex
- Vertices u and v are adjacent if $\{u, v\}$ is in E

a loop
- The degree of a vertex is the number of times it is an end vertex
- A complete graph contains all possible edges (once):

Walks, Paths, and Circuits

Definition $1 A$ walk in a graph $G=(V, E)$ is a sequence

$$
v_{i_{0}}, e_{i_{1}}=\left(v_{i_{0}}, v_{i_{1}}\right), v_{i_{1}}, e_{i_{2}}=\left(v_{i_{1}}, v_{i_{2}}\right), \ldots, e_{i_{k}}, v_{i_{k}}
$$

alternating vertices and adjacent edges of G.

A walk is

- closed if first and last node coincide
- a trail if each edge traversed at most once
- a path if each vertex is visited at most once
- a closed path is a circuit or cycle
- a closed path involving all vertices of G is a Hamiltonian cycle

Graphs: Connectedness

- Two vertices are called connected if there is a walk between them in G
- If all vertex pairs in G are connected, G is called connected
- The connected components of G are the (maximal) subgraphs which are connected.

Trees and Forests

- A forest is a cycle-free graph
- A tree is a connected forest

root children parent
A spanning tree of a connected graph G is a tree in G which contains all vertices of G

Depth-First Search (DFS)

Sometimes, we need to traverse a graph, e.g. to find certain vertices

Depth-first search and breadth-first search are two algorithms to do so

Depth-first Search (for undirected/acyclic and connected graphs)
(1) start at any node x ; set $\mathrm{i}=0$
(2) as long as there are unvisited edges $\{x, y\}$:

- choose the next unvisited edge $\{x, y\}$ to a vertex y and mark x as the parent of y
- if y has not been visited so far: $\mathrm{i}=\mathrm{i}+1$, give y the number i , and continue the search at $\mathrm{x}=\mathrm{y}$ in step 2
- else continue with next unvisited edge of x
(3) if all edges $\{x, y\}$ are visited, we continue with $x=\operatorname{parent}(x)$ at step 2 or stop if $\mathrm{x}==\mathrm{v} 0$

DFS: Stage Exercise

Exercise the DFS algorithm on the following graph!

Breadth-First Search (BFS)

Breadth-first Search (for undirected/acyclic and connected graphs)
(1) start at any node x, set $i=0$, and label x with value i
(2) as long as there are unvisited edges $\{x, y\}$ which are adjacent to a vertex x that is labeled with value i :

- label all vertices y with value $\mathrm{i}+1$
(3) set $\mathrm{i}=\mathrm{i}+1$ and go to step 2

Back to Trees as Data Structure

Binary Search Tree

- a tree with degree ≤ 2
- children sorted such that the left subtree always contains values smaller than the corresponding root and the right subtree only values larger

Class Exercise: Filling a Binary Search Tree

Round 1:
 give an integer to be filled into our tree

Round 2:
tell where the next integer inserts

Binary Search Tree: Complexities

Search

- similar to binary search in array (go left or right until found)
- $\quad O(\log (n))$ if tree is well balanced
- $\Theta(n)$ in worst case (linear list)

Insertion

- first like search to determine the parent of the new node
- then add in $O(1)$ [we are always at a leaf]

Remove (more tricky)

- if node has no child, remove it
- if node has a single child, replace node by its child
- if node has two children: find left-most tree entry L larger than the to-be-removed node, copy its value to the to-be-removed node, and remove L according to the two above rules
- cost: O (tree depth), in worst case: Θ (n)

Binary Trees: Can We Do Better?

Binary Search Tree

average case (random inserts)

worst case

search	insert	delete	search	insert	delete
$O(\log (n))$	$O(\log (n))$	$O(\log (n))$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$

Guarantee a balanced tree:

- AVL trees
- B trees
- Red-Black trees
average case (random inserts) worst case

search	insert	delete	search	insert	delete
$O(\log (n))$					

Can We Do Even Better on Average?

Balanced Trees

average case (random inserts)
worst case

search	insert	delete	search	insert	delete
$O(\log (n))$					

Dictionaries

In python:

my_dict $=$ \{'Joe': 113, 'Pete': 7, 'Alan': '110'\}
print("my_dict['Joe']: " + my_dict['Joe'])
gives my_dict['Joe']: 113 as output

- the immutables 'Joe', 'Pete', and 'Alan' are the keys
- 113, 7, and 110 are the values (or the stored data)

Next: Why dictionaries and how are they implemented?

Dictionaries

Where is Alan?

- Go through all offices one by one?
like in list and array
- No, you would ask the receptionist for the office number

Dictionaries Implemented as Hashtables

Names	Offices
Alan	7
Joe	
Pete	110
	111
	112

Dictionaries Implemented as Hashtables

Keys	Memory Address
Alan	7
Joe	...
Pete	110
...	111
	112

Possible hash function: $h=z \bmod n$

Hash Functions

...should be

- deterministic: find data again
- uniform: use allocated memory space well [more tricky with variable length keys such as strings]

Problems to address in practice:

- how to deal with collisions (e.g. via multiple hash functions)
- deleting needs to insert dummy keys when a collision appeared
- what if the hash table is full? \rightarrow resizing

All this gives a constant average performance in practice

Not more details here, but if you are interested:
For more details on python's dictionary: https://www.youtube.com/watch?v=C4Kc8xzcA68

What Have We Learned Today?

- Combinatorics: basic ways of counting things
- O-notation: how to formalize classes of asymptotic function growth
- Basic data structures and their operations
- arrays
- lists
- (binary search) trees
- dictionaries / hash tables
see also https://www.bigocheatsheet.com/
- And along the way: graph theory, DFS, and BFS

