
Exercise: Comparing Gradient-Based
Algorithms on Convex Quadratic Functions

Introduction to Optimization lecture
at Ecole Centrale Paris / ESSEC Business School

Dimo Brockhoff
firstname.lastname@inria.fr

November 13, 2015

Abstract

In the lecture, we have seen the general idea of numerical opti-
mization algorithms, following decent directions and a few concrete
examples of decent directions as well as line search variants. Here,
we will have a closer look on their performance on specific convex
quadratic functions of the form f(x) = xTAx.

1 Line Search in Descent Algorithms

The purpose of this first part is to understand the interest of implementing
a line search procedure in descent algorithms. Algorithm 1 (in Section 4)
reminds the general scheme for a descent algorithm in which the line search
is called in line 4.

We start by considering a gradient descent algorithm where at each it-
eration, the descent direction corresponds to the negative gradient of the
objective function f : Rn → R to be minimized, that is

dk = −∇f(xk) .

The result of the line-search procedure is called the step-size and is denoted
as σk, that is

σk = LineSearch(xk,dk)

1



such that the update of the current solution xk reads

xk+1 = xk + σkdk .

We consider first a degenerated line-search procedure that consists in taking
a constant step-size equal to σ > 0. In this first part of the exercise, we will
test the gradient descent algorithm with constant step-size on the functions

fα(x) = α
n∑
i=1

x2
i , α > 0 .

1. What is the optimum of fα?

2. Compute the gradient of fα.

3. Implement a function falpha that takes as input a vector x of Rn and
a scalar α ∈ R and outputs fα(x). Likewise, implement a function
gradientFalpha that takes as input x ∈ Rn and α ∈ R and outputs
the gradient of fα in x.

4. Plot a few level sets of your own choice for fα(x) and α = 1/2. Useful
python commands for plotting are contained in the pyplot module of
matplotlib which you can load as

from matplotlib import pyplot as plt

and which provides a MATLAB-like interface. Probably the best way
to plot level sets is via the contour command which you can evoke as

plt.contour(X,Y,Z)

and in which X and Y can be created for example by

delta = 0.025

x = np.arange(-2.0, 2.0, delta)

y = np.arange(-2.0, 2.0, delta)

X, Y = np.meshgrid(x, y)

2



and where Z is a two-dimensional numpy array with the f -values to
display (i.e. Z[i][j] should contain the function value to be displayed
in the point (X[i][j],Y[i][j])). Remember that adding a ’?’ after
a python command in ipython displays the corresponding help.

5. Implement the gradient descent algorithm with fixed step-size. Save the
sequence xk. Implement as stopping criteria: a maximum of iterations
equal to 106 and ‖∇f(xk)‖ ≤ 10−12. We advise to write a function that
takes as input the objective function, the gradient function, the initial
search point, and the step-size σ and returns the sequence xk (and
implicitly the number of iterations to reach the stopping criterion).

6. Consider α = 1/2 and σ = 0.1. For n = 2, plot the trajectory of the
algorithm, that is, plot the evolution of the vectors xk in the 2D-plane.
We will consider two runs, the first one initialized at (10, 10) and the
second one at (−5, 10). Comment what you observe and explain.

7. For n = 10, σ = 0.1, consider the functions fα for α = 1/2, α =
1/20 and α = 1/200. Initialize the algorithm at x0 = (10, . . . , 10).
Report the number of iterations needed to reach the stopping criterion
of ‖∇f(xk)‖ ≤ 10−12. Perform the same experiments for σ = 0.01.
Comment the results.

8. Explain the result theoretically. You can start by investigating what is
the optimal step-size for the function fα.

We will now compare the result of the gradient descent algorithm with
fixed step-size and with the Armijo rule.

9. Implement the Armijo line search procedure. The Armijo rule is re-
minded in Algorithm 2 (in Section 4). Take β = θ = 1/2. For the
implementation, we suggest to return the found step-size σ and the
number of calls to the function f .

10. Implement the gradient descent algorithm with Armijo rule as line
search procedure.

11. Using the same settings as in Question 6, report the number of gradient
calls and function calls needed to reach a gradient with norm smaller
than 10−12. Compare to the gradient descent with fixed step-size, con-
clude.

3



2 Gradient versus Newton direction in de-

scent algorithms

We now consider the function

f elli
α =

1

2

n∑
i=1

10α(
i−1
n−1

)x2
i .

12. Compute the gradient and Hessian matrix of f elli
α .

13. Compute the condition number of the Hessian matrix of f elli
α (We re-

mind that the condition number of a matrix corresponds to the ratio
between the largest and smallest eigenvalue).

14. Implement the descent algorithm with the Newton direction as descent
direction, that is

dk = −Hess(f)−1∇f .

We will use the Armijo rule as line-search procedure.

15. Report for f elli
α , α ∈ {1, 2, 3}, dimension n = 10, initial search point

x0 = (10, . . . , 10)and initial stepsize of σ = 10 the number of gradi-
ent calls and the number of function calls to reach ‖∇f‖ ≤ 10−12 for
the descent algorithm with gradient and Newton as descent directions.
Explain the results.

3 Optional

If you want to continue on the topic, you can for example

• Run any optimizer, already provided by pythons scipy.optimize li-
brary (to be imported with from scipy import optimize). One po-
tential candidate is the BFGS method for which the python command
is then scipy.optimize.fmin_bfgs.

• Investigate in addition the performance of all algorithms on the Rosen-
brock function

fRosen(x) =
n−1∑
i=1

100(xi − xi+1)
2 + (xi − 1)2 .

4



4 Algorithms

Algorithm 1 General framework for a descent algorithm to optimize f :
Rn → R. The descent direction and the LineSearch procedure depend on f .

Initialize x0 ∈ Rn, k = 0
while stopping criteria not met do

compute descent direction dk
xk+1 = xk + LineSearch(xk,dk)dk
k = k + 1

end while

Algorithm 2 Armijo rule

Input: descent direction d, point x, objective function f(x) and its gra-
dient ∇f(x), parameters σ0 = 10, θ ∈ [0, 1] and β ∈ (0, 1)
Output: step-size σ

Initialize σ: σ ← σ0
while f(x + σd) > f(x) + θσ∇f(x)Td do

σ ← βσ
end while

5


