
Introduction to Optimization

Basic Flavors of Complexity Theory

Dimo Brockhoff

INRIA Lille – Nord Europe

September 28, 2015

École Centrale Paris, Châtenay-Malabry, France

2Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 2

Date Topic

Mon, 21.9.2015 Introduction

Mon, 28.9.2015 D Basic Flavors of Complexity Theory

Mon, 5.10.2015 D Greedy algorithms

Mon, 12.10.2015 D Dynamic programming

Mon, 2.11.2015 D Branch and bound/divide&conquer

Fri, 6.11.2015 D Approximation algorithms and heuristics

Fri, 9.11.2015 C Introduction to Continuous Optimization I

Fri, 13.11.2015 C Introduction to Continuous Optimization II

Fri, 20.11.2015 C Gradient-based Algorithms

Fri, 27.11.2015 C End of Gradient-based Algorithms + Linear Programming

Fri, 4.12.2015 C Stochastic Optimization and Derivative Free Optimization

Tue, 15.12.2015 Exam

Course Overview

all classes + exam last 3 hours (incl. a 15min break)

3Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 3

 we want to analyze algorithms for discrete problems

 to be more precise: want to know runtime to find the optimum

Not realistic:

 do this for any input sequence

 do this for any machine, programming language, compiler, ...

Instead:

 abstract from a real implementation to the algorithm run on an

abstract machine model

[use a model which makes useful predictions in the real world]

 analyze the algorithm runtime for all instances of a given input

size (worst case, average case, ...)

Motivation: Analyzing Algorithm Runtimes

4Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 4

 want to know how quick an optimal algorithm would run

 how much slower is my own one?

 want to know the general difficulty of problems

 why can’t I find an efficient algorithm for my problem?

Motivation: Analyzing the Optimal Algorithms

5Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 5

A part of theoretical computer science that is concerned about:

 comparison of (optimization) problems regarding their

difficulty

 classes of difficulties

 computability in general

Complexity Theory

6Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 6

 deterministic machine models

 computability

 an example of a problem which cannot be solved by a

computer

 non-determinism and the class NP

 difficult problems:

 the classes NP-complete, NP-hard, etc.

 polynomial reductions

 the complexity zoo

Complexity Theory: Lecture Overview

Note: complexity theory is often a full lecture by itself!

7Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 7

Algorithm runtimes depend on

 hardware (cpu, RAM, ...)

 the used programming language

 the used compiler/interpreter

 other load on the machine

 implementation “tricks” (running on GPU, compiler options, ...)

But still, we often make general statements like

 “Quicksort is a good sorting algorithm.”

 “My algorithm is quicker than yours.”

 “Algorithm A is the best possible algorithm for problem P.”

how comes? what does it mean?

Algorithm Runtimes in Reality

8Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 8

...because we abstract!

 for SORTING for example: number of comparisons as basic

operation (actual runtime will again depend on hard- and

software)

 often basic calculations as basic model (addition,

multiplication, division, ...)

 but what model is good?

 are addition and multiplication e.g. equally difficult?

Important Aspects:

 relation to our real-world computers

 optimally, the choice of the model does not matter!

Abstractions for Algorithm Runtime Considerations

9Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 9

The Random Access Machine (RAM)

registersprogram counter accumulator

b c(0) c(1)

c(2)

c(3)

c(4)

c(5)

c(6)

…

program

LOAD i

STORE i

ADD i

SUB i

MULT i

DIV i

GO TO j

IF c(0)?l GO TO j

END

c(0):=max{c(0)-c(i),0}, b:=b+1

similar to the von Neumann

architecture of our current computers

10Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 10

is similar to the von Neumann architecture of our current computers

But:

 simpler (no pipelining, caches, ...)

 registers can contain non-negative natural numbers!

Last point not too much of a restriction:

 general natural numbers simulated by 2 registers

 rational numbers simulated by 4 registers

But probably too optimistic for measuring performance:

operations on arbitrarily large numbers might cost much more on

an actual computer!

The Random Access Machine

11Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 11

Uniform Cost Measure:

 each operation costs 1

Logarithmic Cost Measure:

 each operation costs relative to the length of the arguments

 log(ARG) is cost measure if we assume binary

representations of the numbers

Cost Measures

12Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 12

 for example for Random Access Machine and a given cost

measure

Complexity of problem Π

= number of operations needed for an optimal algorithm to solve

each instance of Π

 important question: how much does this complexity depend on

the machine model and the cost measure?

 moreover, independent of the existance of actual computers?

Problem Complexity

13Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 13

 Alan Turing (1912—1954)

 simplest computer model

Formal definition:

The Turing Machine (TM)

computation

Brandon

Blinkenberg

14Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 14

… …B BB 1 0

15Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 15

… …B BB 1 0

16Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 16

… …B BB 1 0

17Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 17

… …B BB 1 0

input symbols blank

18Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 18

… …B BB 1 0

band alphabet

19Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 19

… …B BB 1 0

read/write head

band alphabet

20Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 20

… …B BB 1 0

state q program

read/write head

band alphabet

21Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 21

… …B BB 1 0

state q program

read/write head

band alphabet

22Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 22

… …B BB 1 0

state q program

read/write head

band alphabet

23Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 23

… …B BB 1 0

state q program

read/write head

band alphabet

24Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 24

… …B BB 1 0

state q program

read/write head

25Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 25

… …B BB 1 0

state q program

read/write head

1

26Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 26

… …B BB 1 0

state q program

read/write head

1

q,1

27Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 27

… …B BB 1 0

state q program

read/write head

1

q,1

q',B,R

28Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 28

… …B BB 1 0

state q program

read/write head

1

state q'

q,1

q',B,R

29Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 29

… …B BB 1 0

state q program

read/write head

1

state q'

q,1

q',B,R

B,R

30Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 30

… …B BB 1 0

state q program

read/write head

1

state q'

q,1

q',B,R

B,R

B

31Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 31

… …B BB 1 0

state q program

read/write head

1

q,1

q',B,R

B,R

B

state q'

32Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 32

 instead of a RAM's random access computation is local

 Deterministic TM (DTM) as powerful as RAM

 except polynomial overhead

Universal Turing machines:

 get program and data as input

 simulate of the program with general transition function

Interesting Facts

33Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 33

 Every function which would naturally be regarded as computable

can be computed by a Turing machine.

 not provable

 most surprising: there are functions that are not computable

(undecidable)

 halting problem: given a program P, does the universal TM

halts on P?

 related to

 incompleteness theorem

 Entscheidungsproblem

now from undecidable to decidable problems

Church-Turing Thesis

Kurt Gödel (1906-78)

34Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 34

 Every function which would naturally be regarded as computable

can be computed by a Turing machine.

 not provable

 most surprising: there are functions that are not computable

(undecidable)

 halting problem: given a program P, does the universal TM

halts on P?

 related to

 incompleteness theorem

 Entscheidungsproblem

now from undecidable to decidable problems

Church-Turing Thesis

Kurt Gödel (1906-78)

35Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 35

 complexity classes (in particular the famous P and NP)

 polynomial and Turing reductions

 hardness and completeness

Remains for today...

36Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 36

 Complexity classes

 Set of problems with similar complexity

 Complexity = asymptotic running time of the best algorithm wrt. a

given computation model (for the worst-case instance)

 Decision problems vs search problems vs optimization problems

 Example: KP

What is P and NP?

Dake

37Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 37

Optimization problem:

find the best solution among all

feasible ones!

 KP: “find packing with maximal value”

Search problem:

output a solution with a given structure!

 KP: “give a packing with value V”

Decision problem:

is there a solution with a certain property?

 KP: “is there a packing with value ≥V”

A decision problem is solved by a TM when it halts in an “accepting

state” iff the given instance has the desired property

Different Problem Types

Dake

38Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 38

 Why is P defined like that? And why is P important?

 Independent of computation model

 Also independent of whether the TM has

 one or more tracks

 one or more tapes

The Classes DTIME(t(n)) and P

39Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 39

 P is the set of all problems which have polynomial time

(deterministic) algorithms

 i.e., for a given problem p2P, there exists a DTM which

 always halts in polynomial time and

 ends in an accepting state iff the instance belongs to p, i.e.,

the answer to the problem p is "yes"

 P is the set of all "efficiently solvable" or "tractable" problems

 This set is robust against changes of the computing model

 But also not all problems in P are practically solvable, e.g., if

the running time is

Intuition about P

PRIMES

MAXIMUM MATCHINGLP

GREATEST COMMON DIVISOR

…

P

MST

40Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 40

Deterministic TM (DTM) have a deterministic transition function:

Nondeterministic TM (NTM) have only a transition relation:

Which transitions will be actually performed?

 “lucky guesser”: nondet. TM guesses the right transition

 “parallel computation”: nondet. TM branches into many copies

and accepts if one of the branches reaches an accepting state

Nondeterministic Turing Machines

41Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 41

NP is the set of all problems which have polynomial time

nondeterministic (!) algorithms

Intuition:

 If I know a solution I can proof in deterministic polynomial

time whether it belongs to the answer "yes" or "no"

 "Guess" the right solution and proof it in polynomial time

Nondeterminism and the Class NP

NO!

DTM

42Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 42

NTM

NP is the set of all problems which have polynomial time

nondeterministic (!) algorithms

Intuition:

 If I know a solution I can proof in deterministic polynomial

time whether it belongs to the answer "yes" or "no"

 "Guess" the right solution and proof it in polynomial time

Nondeterminism and the Class NP

YES!

43Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 43

KP

 Guess which items to choose, check that the knapsack

constraint is fulfilled, and sum up all profits

TSP

 Guess a tour and sum up all edge weights

SAT

 Guess an assignment of variables and compute boolean

value of the DNF

SCP

 Guess the subset, check that all items are covered, and

count the number of selected sets

Bin Packing

 Guess the assignment of items to bins, check that the size

restrictions are fulfilled, and count the number of bins used

Problems in NP

44Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 44

 Clear: PµNP

 Not clear: P½NP

 What is the difference between, e.g., KP and PRIMES?

 For PRIMES, we know a polynomial time algorithm*, for KP, we

don't

 Is KP "harder to solve" than PRIMES?

 Idea: classify the hardest problems in NP

 NP-complete problems (NPCµ NP)

 Cook (1971), Levin (1973): SAT 2 NPC

 Reductions

Facts about P=NP Hypothesis

*Agrawal, Kayal, Saxena (2004): "Primes is in P", Annals of Mathematics, 160 (2004), 781–793

S. Cook (1971): "The Complexity of Theorem Proving Procedures", Proc. ACM symp. on Theory of computing, 151–158.

L. Levin (1973): "Universal'nye perebornye zadachi". Problemy Peredachi Informatsii 9 (3): 265–266.

45Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 45

Idea:

if problem A can be solved by using an algorithm for problem B,

then A is not harder than B (except for a polynomial overhead)

Polynomial Reduction (Cook, 1971)

 Transform instance of A into one for B within polynomial time

by a function

 Use oracle for B once which computes the solution for

transformed instance as solution for A

Turing Reduction (Karp, 1972)

 Use oracle for problem B polynomially often to compute the

solution of A

Reductions

Important: both reductions are transitive!

s
e

e
 h

tt
p
:/
/g

ro
u
p
s
.c

s
a
il.

m
it
.e

d
u
/t
d
s
/p

a
p
e
rs

/L
y
n
c
h
/s

to
c
7
4
.p

d
f

46Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 46

Hamiltonian Cycle

= A cycle in a graph which visits each vertex exactly once.

Hamiltonian Cycle Problem (HC), decision version

 given an undirected graph, is there a Hamiltonian cycle?

Directed Hamiltonian Cycle Problem (DHC)

 same for directed graphs

Example: DHC ≤p HC

47Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 47

Example: DHC ≤p HC

 Transformation in polynomial time O(nm) possible

 Directed hamiltonian cycle in instance of DHC

Hamiltonian cycle in HC

 Hamiltonian cycle in instance of HC

order of HC is always ..., vi,1, vi,2, vi,3, vj,1, vj,2, vj,3, ... or

..., vi,3, vi,2, vi,1, vj,3, vj,2, vj,1, ...

take either HC or the inverted HC as solution for DHC

DHC HC

E
x
a
m

p
le

 fro
m

 I. W
e
g
e
n
e
r (2

0
0
3
):

"K
o
m

p
le

x
itä

ts
th

e
o
rie

", S
p
rin

g
e
r

48Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 48

 The last example was a reduction from a special case to a

general case

 Now: one slightly more complicated example (reduction from 3-

SAT to DHC)

 In the exercises, we will see two more reductions

Different Types of Polynomial Reductions

49Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 49

Given a 3-SAT instance with n variables xi and k clauses.

Construction of DHC instance:

 basic graph with 2n many Hamilton circuits (n rows, 3k+3 columns)

 intuition: set xi to TRUE iff its row is traversed from left to right

Example: 3-SAT ≤p DHC

x1

x2

x3

xn

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08IntractabilityI.pdf

50Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 50

Given a 3-SAT instance with n variables xi and k clauses.

Construction of DHC instance:

 for each clause add 1 vertex and 6 edges

Example: 3-SAT ≤p DHC

x1

x2

x3

xn

(x1 OR x2 OR x3) (x1 OR x2 OR xn)

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08IntractabilityI.pdf

51Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 51

Given a 3-SAT instance with n variables xi and k clauses.

Construction of DHC instance:

 for each clause add 1 vertex and 6 edges

Example: 3-SAT ≤p DHC

x1

x2

x3

xn

(x1 OR x2 OR x3) (x1 OR x2 OR xn)

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08IntractabilityI.pdf

obviously computable in polynomial time

52Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 52

3-SAT instance is satisfiable iff corresponding graph G has

Hamilton cycle!

 let’s show “” first

 assume that the 3-SAT instance has satisfying assignment x*

 construct Hamiltonian cycle in G as follows:

 if x*i = 1, traverse row i from left to right

 if x*i = 0, traverse row i from right to left

 for each clause Cj, there is at least one row i in which we are

going in "correct" direction to insert the corresponding Cj

vertex into the tour (we do this only once per clause vertex)

Proof of Correctness

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08IntractabilityI.pdf

53Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 53

3-SAT instance is satisfiable iff corresponding graph G has

Hamilton cycle!

 now, let us see “”

 assume a Hamiltonian cycle H in G

 by construction, it has to visit node Cj from and to the same row

 replacing the part of H through Cj by the edge in between its

neighbors defines a Hamilton cycle on G\Cj

 doing this for all Cj allows to assign x*i = 1 if row i is traversed

fully from left to right and x*i = 0 otherwise

 now since H traverses the clause vertex Cj originally, at least

one of the paths through it is traversed in “correct” order and

each clause is satisfied

Proof of Correctness

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08IntractabilityI.pdf

54Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 54

 NPC: set of all NP-complete problems

 The "hardest problems in NP"

 A is NP-complete if

 A2NP

 All problems ANP2NP can be polynomially reduced to A:

 NP-complete problems are the hardest of the ones in NP in the

sense that if I can solve them in polynomial time, I can solve all

problems in NP in polynomial time

The Class NPC

55Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 55

How to prove that a problem A is NP-complete?

 Two possibilities:

 Either prove A2NP and for all problems in NP that they
can be reduced to A (complex, see Cook (1971)) or

 Prove A2NP (simple) and a reduction from a problem B

that is already known as NP-complete to A (!)

Proving NP-completeness

caveat: be careful of the order in the reduction!

56Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 56

Theorem: 3-SAT NPC

 proven by Cook in 1971 and independently (with a slightly

different proof) by Levin in 1973

 not enough time here for the detailed proof

But idea easy to understand:

 3-SAT NP trivial

 Given any problem p NPC and an instance i to that problem,

construct a Boolean formula which is satisfiable iff the non-

deterministic TM for p accepts instance i

 Variables for states of the TM, e.g. Ti,j,k = true if tape cell i

contains symbol j at step k of the computation

 Polynomially many variables and Boolean statements enough

because the TM runs in polynomial time

The Cook-Levin Theorem

57Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 57

Exercise:

Two Example Reductions

http://researchers.lille.inria.fr/

~brockhof/introoptimization/

58Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 58

Observation: Hamilton Cycle Problem is a subproblem of TSP

Transformation:

Simulate same graph for TSP as the one given for HC

 Full graph actually, but weight 1 for each edge in HC graph

and weight 2 for each „non-edge“ in HC

 Asking the TSP oracle whether a weight |V| tour exists

Correctness:

 If H is a Hamilton cycle in original graph, it is also a cycle

through all cities but with weight ≤|V|

 Let T be a tour in the (transformed) TSP instance with weight

≤|V|. It cannot contain an edge with weight 2. Hence, the

cycle T is also a cycle in the original HC problem.

Example: HC ≤p TSP

59Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 59

Observation: vertex cover in G=(V,E) of size k = clique in

complementary graph GC=(V, ExE \ E) of size |V|-k

Transformation:

 change each edge in „non-edge“ and vice versa

 use |V|-k as threshold for CLIQUE if VERTEX COVER of size k

is asked

 obviously polynomial time

Correctness: first „ “

 let V′ be a vertex cover of size k, i.e. for each edge (u,v) either u

or v (or both) is in V′

 by definition, then for each pair u,v which are both not in V′ (and

thus in V\V′): the edge (u,v) is not contained in G

(„contraposition“)

 but then all those edges are contained in GC and V\V′ is a clique

Example: VERTEX COVER ≤p CLIQUE

60Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 60

Observation: vertex cover in G=(V,E) of size k = clique in

complementary graph GC=(V, ExE \ E) of size |V|-k

Transformation:

 change each edge in „non-edge“ and vice versa

 use |V|-k as threshold for CLIQUE if VERTEX COVER of size k

is asked

 obviously polynomial time

Correctness: now „“

 let V′ be a clique of size n-k in GC

 if (u,v) is an edge in G, then both u and v can‘t be in V′ at the

same time because V′ is clique in GC

 but then either u or v is in V\V′ which means that V\V′ is a vertex

cover

Example: VERTEX COVER ≤p CLIQUE

61Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 61

A is NP-complete if

A is NP-hard if

Implications:

 An NP-hard problem is not necessarily a decision problem

 The search and optimization versions of an NP-complete

problem are NP-hard

Difference between NP-complete and NP-hard

62Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 62

The proof of NP-completeness is typically seen as a proof of difficulty:

“I did not find an efficient algorithm for my problem, maybe I am

dumb?”

vs.

“I cannot find an efficient algorithm for my problem because there is

none”

vs.

“I did not find an efficient algorithm for my problem but neither all of

those famous people”

Practical Implications of Reductions

63Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 63

Having a proof of NP-completeness or NP-hardness, does not

mean that a problem is not manageable in practice:

 the average-case complexity might be reasonable

 randomized algorithms might work well

 maybe, the difficult instances are not observed

Example of success: SAT solvers

But...

64Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 64

Is P=NP?

 One of the 7 Millennium Prize problems selected by the Clay

Mathematics Institute (worth 106 $)

 first mentioned in 1956 in letter from K. Gödel to J. von

Neumann

 formalized by J. Cook in his 1971 seminal paper

 solving this problem might have significant practical implications

(or not)

what do you think?

The Famous P versus NP Problem

65Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 65

The „Complexity Zoo"

PRIMES

MAXIMUM MATCHINGLP

GREATEST COMMON DIVISOR

P

KP

SAT

3-SAT

TSPCLIQUE
KP

NPC

NPI=NP-P-NPC

GRAPH ISOMORPHY ?

VC

…

NP=PCP(log n,1)

…
BPP

2=NP(NP)

…
MST

?

66Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 66

I hope it became clear...

...what complexity theory is about

...what is a Random Access Machine and a Turing Machine

... how a decision and an optimization problem differ

...what are the classes P, NP, and NPC

...and that complexity theory is more involved than what we

could see today

Conclusions

