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Date Topic

Mon, 21.9.2015 Introduction

Mon, 28.9.2015 D Basic Flavors of Complexity Theory

Mon, 5.10.2015 D Greedy algorithms

Mon, 12.10.2015 D Dynamic programming

Mon, 2.11.2015 D Branch and bound/divide&conquer

Fri, 6.11.2015 D Approximation algorithms and heuristics

Fri, 9.11.2015 C Introduction to Continuous Optimization I

Fri, 13.11.2015 C Introduction to Continuous Optimization II

Fri, 20.11.2015 C Gradient-based Algorithms

Fri, 27.11.2015 C End of Gradient-based Algorithms + Linear Programming

Fri, 4.12.2015 C Stochastic Optimization and Derivative Free Optimization

Tue, 15.12.2015 Exam

Course Overview

all classes + exam last 3 hours (incl. a 15min break)
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 we want to analyze algorithms for discrete problems

 to be more precise: want to know runtime to find the optimum

Not realistic:

 do this for any input sequence

 do this for any machine, programming language, compiler, ...

Instead:

 abstract from a real implementation to the algorithm run on an 

abstract machine model

[use a model which makes useful predictions in the real world]

 analyze the algorithm runtime for all instances of a given input 

size (worst case, average case, ...)

Motivation: Analyzing Algorithm Runtimes
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 want to know how quick an optimal algorithm would run

 how much slower is my own one?

 want to know the general difficulty of problems

 why can’t I find an efficient algorithm for my problem?

Motivation: Analyzing the Optimal Algorithms 
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A part of theoretical computer science that is concerned about:

 comparison of (optimization) problems regarding their 

difficulty

 classes of difficulties

 computability in general

Complexity Theory
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 deterministic machine models

 computability

 an example of a problem which cannot be solved by a 

computer

 non-determinism and the class NP

 difficult problems:

 the classes NP-complete, NP-hard, etc.

 polynomial reductions

 the complexity zoo

Complexity Theory: Lecture Overview

Note: complexity theory is often a full lecture by itself!
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Algorithm runtimes depend on

 hardware (cpu, RAM, ...)

 the used programming language

 the used compiler/interpreter

 other load on the machine

 implementation “tricks” (running on GPU, compiler options, ...)

But still, we often make general statements like

 “Quicksort is a good sorting algorithm.”

 “My algorithm is quicker than yours.”

 “Algorithm A is the best possible algorithm for problem P.”

how comes? what does it mean?

Algorithm Runtimes in Reality
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...because we abstract!

 for SORTING for example: number of comparisons as basic 

operation (actual runtime will again depend on hard- and 

software)

 often basic calculations as basic model (addition, 

multiplication, division, ...)

 but what model is good?

 are addition and multiplication e.g. equally difficult?

Important Aspects:

 relation to our real-world computers

 optimally, the choice of the model does not matter!

Abstractions for Algorithm Runtime Considerations
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The Random Access Machine (RAM)

registersprogram counter accumulator

b c(0) c(1)

c(2)

c(3)

c(4)

c(5)

c(6)

…

program

LOAD i

STORE i

ADD i

SUB i

MULT i

DIV i

GO TO j

IF c(0)?l GO TO j

END

c(0):=max{c(0)-c(i),0}, b:=b+1

similar to the von Neumann

architecture of our current computers
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is similar to the von Neumann architecture of our current computers

But:

 simpler (no pipelining, caches, ...)

 registers can contain non-negative natural numbers!

Last point not too much of a restriction:

 general natural numbers simulated by 2 registers

 rational numbers simulated by 4 registers

But probably too optimistic for measuring performance:

operations on arbitrarily large numbers might cost much more on 

an actual computer!

The Random Access Machine
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Uniform Cost Measure:

 each operation costs 1

Logarithmic Cost Measure:

 each operation costs relative to the length of the arguments

 log(ARG) is cost measure if we assume binary 

representations of the numbers

Cost Measures
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 for example for Random Access Machine and a given cost 

measure

Complexity of problem Π

= number of operations needed for an optimal algorithm to solve 

each instance of Π

 important question: how much does this complexity depend on 

the machine model and the cost measure?

 moreover, independent of the existance of actual computers?

Problem Complexity
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 Alan Turing (1912—1954)

 simplest computer model

Formal definition:

The Turing Machine (TM)

computation

Brandon 

Blinkenberg
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… …B BB 1 0
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… …B BB 1 0
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… …B BB 1 0
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… …B BB 1 0

input symbols blank
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… …B BB 1 0

band alphabet
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… …B BB 1 0

read/write head

band alphabet
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… …B BB 1 0

state q program

read/write head

band alphabet
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… …B BB 1 0

state q program

read/write head
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… …B BB 1 0

state q program

read/write head

1
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… …B BB 1 0

state q program

read/write head

1

q,1
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… …B BB 1 0

state q program

read/write head

1

q,1

q',B,R
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… …B BB 1 0

state q program

read/write head

1

state q'

q,1

q',B,R
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… …B BB 1 0

state q program

read/write head

1

state q'

q,1

q',B,R

B,R
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… …B BB 1 0

state q program

read/write head

1

state q'

q,1

q',B,R

B,R

B
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… …B BB 1 0

state q program

read/write head

1

q,1

q',B,R

B,R

B

state q'
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 instead of a RAM's random access computation is local

 Deterministic TM (DTM) as powerful as RAM

 except polynomial overhead

Universal Turing machines:

 get program and data as input

 simulate     of the program with general transition function

Interesting Facts
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 Every function which would naturally be regarded as computable 

can be computed by a Turing machine.

 not provable

 most surprising: there are functions that are not computable 

(undecidable)

 halting problem: given a program P, does the universal TM 

halts on P?

 related to

 incompleteness theorem

 Entscheidungsproblem

now from undecidable to decidable problems

Church-Turing Thesis

Kurt Gödel (1906-78)
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 Every function which would naturally be regarded as computable 

can be computed by a Turing machine.

 not provable

 most surprising: there are functions that are not computable 

(undecidable)

 halting problem: given a program P, does the universal TM 

halts on P?

 related to

 incompleteness theorem

 Entscheidungsproblem

now from undecidable to decidable problems

Church-Turing Thesis

Kurt Gödel (1906-78)
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 complexity classes (in particular the famous P and NP)

 polynomial and Turing reductions

 hardness and completeness

Remains for today...



36Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 36

 Complexity classes

 Set of problems with similar complexity

 Complexity = asymptotic running time of the best algorithm wrt. a 

given computation model (for the worst-case instance)

 Decision problems vs search problems vs optimization problems

 Example: KP

What is P and NP?

Dake
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Optimization problem:

find the best solution among all

feasible ones!

 KP: “find packing with maximal value”

Search problem:

output a solution with a given structure!

 KP: “give a packing with value V”

Decision problem:

is there a solution with a certain property?

 KP: “is there a packing with value ≥V”

A decision problem is solved by a TM when it halts in an “accepting 

state” iff the given instance has the desired property

Different Problem Types

Dake
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 Why is P defined like that? And why is P important?

 Independent of computation model

 Also independent of whether the TM has

 one or more tracks

 one or more tapes

The Classes DTIME(t(n)) and P
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 P is the set of all problems which have polynomial time 

(deterministic) algorithms

 i.e., for a given problem p2P, there exists a DTM which

 always halts in polynomial time and

 ends in an accepting state iff the instance belongs to p, i.e., 

the answer to the problem p is "yes"

 P is the set of all "efficiently solvable" or "tractable" problems

 This set is robust against changes of the computing model

 But also not all problems in P are practically solvable, e.g., if 

the running time is

Intuition about P

PRIMES

MAXIMUM MATCHINGLP

GREATEST COMMON DIVISOR

…

P

MST
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Deterministic TM (DTM) have a deterministic transition function:

Nondeterministic TM (NTM) have only a transition relation:

Which transitions will be actually performed?

 “lucky guesser”: nondet. TM guesses the right transition

 “parallel computation”: nondet. TM branches into many copies 

and accepts if one of the branches reaches an accepting state

Nondeterministic Turing Machines
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NP is the set of all problems which have polynomial time 

nondeterministic (!) algorithms

Intuition:

 If I know a solution I can proof in deterministic polynomial 

time whether it belongs to the answer "yes" or "no"

 "Guess" the right solution and proof it in polynomial time

Nondeterminism and the Class NP

NO!

DTM
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NTM

NP is the set of all problems which have polynomial time 

nondeterministic (!) algorithms

Intuition:

 If I know a solution I can proof in deterministic polynomial 

time whether it belongs to the answer "yes" or "no"

 "Guess" the right solution and proof it in polynomial time

Nondeterminism and the Class NP

YES!
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KP

 Guess which items to choose, check that the knapsack 

constraint is fulfilled, and sum up all profits

TSP

 Guess a tour and sum up all edge weights

SAT

 Guess an assignment of variables and compute boolean 

value of the DNF

SCP

 Guess the subset, check that all items are covered, and 

count the number of selected sets

Bin Packing

 Guess the assignment of items to bins, check that the size 

restrictions are fulfilled, and count the number of bins used

Problems in NP
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 Clear: PµNP

 Not clear: P½NP

 What is the difference between, e.g., KP and PRIMES?

 For PRIMES, we know a polynomial time algorithm*, for KP, we 

don't

 Is KP "harder to solve" than PRIMES?

 Idea: classify the hardest problems in NP

 NP-complete problems (NPCµ NP)

 Cook (1971), Levin (1973): SAT 2 NPC

 Reductions

Facts about P=NP Hypothesis

*Agrawal, Kayal, Saxena (2004): "Primes is in P", Annals of Mathematics, 160 (2004), 781–793

S. Cook (1971): "The Complexity of Theorem Proving Procedures", Proc. ACM symp. on Theory of computing, 151–158. 

L. Levin (1973): "Universal'nye perebornye zadachi". Problemy Peredachi Informatsii 9 (3): 265–266.
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Idea:

if problem A can be solved by using an algorithm for problem B, 

then A is not harder than B (except for a polynomial overhead)

Polynomial Reduction (Cook, 1971)

 Transform instance of A into one for B within polynomial time 

by a function 

 Use oracle for B once which computes the solution for 

transformed instance as solution for A



Turing Reduction               (Karp, 1972)

 Use oracle for problem B polynomially often to compute the 

solution of A



Reductions

Important: both reductions are transitive!
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Hamiltonian Cycle

= A cycle in a graph which visits each vertex exactly once.

Hamiltonian Cycle Problem (HC), decision version

 given an undirected graph, is there a Hamiltonian cycle?

Directed Hamiltonian Cycle Problem (DHC)

 same for directed graphs

Example: DHC ≤p HC
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Example: DHC ≤p HC

 Transformation in polynomial time O(nm) possible

 Directed hamiltonian cycle in instance of DHC

Hamiltonian cycle in HC

 Hamiltonian cycle in instance of HC

order of HC is always ..., vi,1, vi,2, vi,3, vj,1, vj,2, vj,3, ... or

..., vi,3, vi,2, vi,1, vj,3, vj,2, vj,1, ...

take either HC or the inverted HC as solution for DHC

DHC HC

E
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 The last example was a reduction from a special case to a 

general case

 Now: one slightly more complicated example (reduction from 3-

SAT  to DHC)

 In the exercises, we will see two more reductions

Different Types of Polynomial Reductions
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Given a 3-SAT instance with n variables xi and k clauses.

Construction of DHC instance:

 basic graph with 2n many Hamilton circuits (n rows, 3k+3 columns)

 intuition: set xi to TRUE iff its row is traversed from left to right

Example: 3-SAT ≤p DHC

x1

x2

x3

xn

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08IntractabilityI.pdf
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Given a 3-SAT instance with n variables xi and k clauses.

Construction of DHC instance:

 for each clause add 1 vertex and 6 edges

Example: 3-SAT ≤p DHC

x1

x2

x3

xn

(x1 OR x2 OR x3) (x1 OR x2 OR xn)

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08IntractabilityI.pdf
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Given a 3-SAT instance with n variables xi and k clauses.

Construction of DHC instance:

 for each clause add 1 vertex and 6 edges

Example: 3-SAT ≤p DHC

x1

x2

x3

xn

(x1 OR x2 OR x3) (x1 OR x2 OR xn)

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08IntractabilityI.pdf

obviously computable in polynomial time
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3-SAT instance is satisfiable iff corresponding graph G has 

Hamilton cycle!

 let’s show “” first

 assume that the 3-SAT instance has satisfying assignment x*

 construct Hamiltonian cycle in G as follows:

 if x*i = 1, traverse row i from left to right

 if x*i = 0, traverse row i from right to left

 for each clause Cj, there is at least one row i in which we are 

going in "correct" direction to insert the corresponding Cj

vertex into the tour (we do this only once per clause vertex)

Proof of Correctness

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08IntractabilityI.pdf
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3-SAT instance is satisfiable iff corresponding graph G has 

Hamilton cycle!

 now, let us see “”

 assume a Hamiltonian cycle H in G

 by construction, it has to visit node Cj from and to the same row

 replacing the part of H through Cj by the edge in between its 

neighbors defines a Hamilton cycle on G\Cj

 doing this for all Cj allows to assign x*i = 1 if row i is traversed 

fully from left to right and x*i = 0 otherwise

 now since H traverses the clause vertex Cj originally, at least 

one of the paths through it is traversed in “correct” order and 

each clause is satisfied

Proof of Correctness

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08IntractabilityI.pdf
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 NPC: set of all NP-complete problems

 The "hardest problems in NP"

 A is NP-complete if

 A2NP

 All problems ANP2NP can be polynomially reduced to A:

 NP-complete problems are the hardest of the ones in NP in the 

sense that if I can solve them in polynomial time, I can solve all 

problems in NP in polynomial time

The Class NPC
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How to prove that a problem A is NP-complete?

 Two possibilities:

 Either prove A2NP and for all problems in NP that they 
can be reduced to A (complex, see Cook (1971)) or

 Prove A2NP (simple) and a reduction from a problem B 

that is already known as NP-complete to A (!)

Proving NP-completeness

caveat: be careful of the order in the reduction!



56Introduction to Optimization, ECP, Sep. 28, 2015© Dimo Brockhoff, INRIA 56

Theorem: 3-SAT  NPC

 proven by Cook in 1971 and independently (with a slightly 

different proof) by Levin in 1973

 not enough time here for the detailed proof

But idea easy to understand:

 3-SAT  NP trivial

 Given any problem p  NPC and an instance i to that problem, 

construct a Boolean formula which is satisfiable iff the non-

deterministic TM for p accepts instance i

 Variables for states of the TM, e.g. Ti,j,k = true if tape cell i

contains symbol j at step k of the computation

 Polynomially many variables and Boolean statements enough 

because the TM runs in polynomial time

The Cook-Levin Theorem
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Exercise:

Two Example Reductions

http://researchers.lille.inria.fr/

~brockhof/introoptimization/
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Observation: Hamilton Cycle Problem is a subproblem of TSP

Transformation:

Simulate same graph for TSP as the one given for HC

 Full graph actually, but weight 1 for each edge in HC graph 

and weight 2 for each „non-edge“ in HC

 Asking the TSP oracle whether a weight |V| tour exists

Correctness:

 If H is a Hamilton cycle in original graph, it is also a cycle 

through all cities but with weight ≤|V|

 Let T be a tour in the (transformed) TSP instance with weight 

≤|V|. It cannot contain an edge with weight 2. Hence, the 

cycle T is also a cycle in the original HC problem.

Example: HC ≤p TSP
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Observation: vertex cover in G=(V,E) of size k = clique in 

complementary graph GC=(V, ExE \ E) of size |V|-k

Transformation:

 change each edge in „non-edge“ and vice versa

 use |V|-k as threshold for CLIQUE if VERTEX COVER of size k 

is asked

 obviously polynomial time

Correctness: first „ “

 let V′ be a vertex cover of size k, i.e. for each edge (u,v) either u 

or v (or both) is in V′ 

 by definition, then for each pair u,v which are both not in V′ (and 

thus in V\V′): the edge (u,v) is not contained in G 

(„contraposition“)

 but then all those edges are contained in GC and V\V′ is a clique

Example: VERTEX COVER ≤p CLIQUE
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Observation: vertex cover in G=(V,E) of size k = clique in 

complementary graph GC=(V, ExE \ E) of size |V|-k

Transformation:

 change each edge in „non-edge“ and vice versa

 use |V|-k as threshold for CLIQUE if VERTEX COVER of size k 

is asked

 obviously polynomial time

Correctness: now „“

 let V′ be a clique of size n-k in GC

 if (u,v) is an edge in G, then both u and v can‘t be in V′ at the 

same time because V′ is clique in GC

 but then either u or v is in V\V′ which means that V\V′ is a vertex 

cover

Example: VERTEX COVER ≤p CLIQUE
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A is NP-complete if





A is NP-hard if 



Implications:

 An NP-hard problem is not necessarily a decision problem

 The search and optimization versions of an NP-complete 

problem are NP-hard

Difference between NP-complete and NP-hard
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The proof of NP-completeness is typically seen as a proof of difficulty:

“I did not find an efficient algorithm for my problem, maybe I am 

dumb?”

vs.

“I cannot find an efficient algorithm for my problem because there is 

none”

vs.

“I did not find an efficient algorithm for my problem but neither all of 

those famous people”

Practical Implications of Reductions
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Having a proof of NP-completeness or NP-hardness, does not 

mean that a problem is not manageable in practice:

 the average-case complexity might be reasonable

 randomized algorithms might work well

 maybe, the difficult instances are not observed

Example of success: SAT solvers

But...
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Is P=NP?

 One of the 7  Millennium Prize problems selected by the Clay 

Mathematics Institute (worth 106 $)

 first mentioned in 1956 in letter from K. Gödel to J. von 

Neumann

 formalized by J. Cook in his 1971 seminal paper

 solving this problem might have significant practical implications 

(or not)

what do you think?

The Famous P versus NP Problem
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The „Complexity Zoo"

PRIMES

MAXIMUM MATCHINGLP

GREATEST COMMON DIVISOR

P

KP

SAT

3-SAT

TSPCLIQUE
KP

NPC

NPI=NP-P-NPC

GRAPH ISOMORPHY ?

VC

…

NP=PCP(log n,1)

…
BPP

2=NP(NP)

…
MST

?
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I hope it became clear...

...what complexity theory is about

...what is a Random Access Machine and a Turing Machine

... how a decision and an optimization problem differ

...what are the classes P, NP, and NPC

...and that complexity theory is more involved than what we

could see today

Conclusions


