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Motivation: Analyzing Algorithm Runtimes

= we want to analyze algorithms for discrete problems
»= to be more precise: want to know runtime to find the optimum

Not realistic:
= do this for any input sequence
» do this for any machine, programming language, compiler, ...

Instead:

= abstract from a real implementation to the algorithm run on an
abstract machine model

[use a model which makes useful predictions in the real world]

= analyze the algorithm runtime for all instances of a given input
size (worst case, average case, ...)
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Motivation: Analyzing the Optimal Algorithms

= want to know how quick an optimal algorithm would run
= how much slower is my own one?
= want to know the general difficulty of problems
= why can’t | find an efficient algorithm for my problem?
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Complexity Theory

A part of theoretical computer science that is concerned about:

= comparison of (optimization) problems regarding their
difficulty

= classes of difficulties
= computability in general

© Dimo Brockhoff, INRIA Introduction to Optimization, ECP, Sep. 28, 2015



Complexity Theory: Lecture Overview

deterministic machine models
computability

= an example of a problem which cannot be solved by a
computer

non-determinism and the class NP

difficult problems:

» the classes NP-complete, NP-hard, etc.
= polynomial reductions

the complexity zoo

Note: complexity theory is often a full lecture by itself!
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Algorithm Runtimes in Reality

Algorithm runtimes depend on
= hardware (cpu, RAM, ...)
» the used programming language
= the used compiler/interpreter
= other load on the machine
* implementation “tricks” (running on GPU, compiler options, ...)

But still, we often make general statements like

= “Quicksort is a good sorting algorithm.”

= "My algorithm is quicker than yours.”

= “Algorithm A is the best possible algorithm for problem P.”

how comes? what does it mean?
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Abstractions for Algorithm Runtime Conside

...because we abstract!

= for SORTING for example: number of comparisons as basic

operation (actual runtime will again depend on hard- and
software)

= often basic calculations as basic model (addition,
multiplication, division, ...)

= but what model is good?
= are addition and multiplication e.g. equally difficult?

Important Aspects:
= relation to our real-world computers
= optimally, the choice of the model does not matter!
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The Random Access Machine (RAM)

program counter  accumulator registers
b c(0) = % > c(1)
A
c(2)
c(3)
: 1 c4)
program 5
C
LOAD i
STORE i c(6)
ADD i
SUB i c(0):=max{c(0)-c(i),0}, b:=b+1
MULT i
DIV i
IC;%(B?,){ COTO! similar to the von Neumann
END | architecture of our current computers

J

© Dimo Brockhoff, INRIA Introduction to Optimization, ECP, Sep. 28, 2015



The Random Access Machine

IS similar to the von Neumann architecture of our current computers

But:
= simpler (no pipelining, caches, ...)
* registers can contain non-negative natural numbers!

Last point not too much of a restriction:
= general natural numbers simulated by 2 registers
= rational numbers simulated by 4 registers

But probably too optimistic for measuring performance:

operations on arbitrarily large numbers might cost much more on
an actual computer!
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Cost Measures

Uniform Cost Measure:
= each operation costs 1

Logarithmic Cost Measure:
= each operation costs relative to the length of the arguments

* |og(ARG) is cost measure if we assume binary
representations of the numbers
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Problem Complexity

» for example for Random Access Machine and a given cost
measure

Complexity of problem N

= number of operations needed for an optimal algorithm to solve
each instance of I

= mportant question: how much does this complexity depend on
the machine model and the cost measure?

= moreover, independent of the existance of actual computers?
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The Turing Machine (TM)

= Alan Turing (1912—1954)

= simplest comptier model
computation

Formal definition:

(@, 5T DX, Bel'\X,q €Q,6,F CQ)
0:QxI'->QxI'x{R,L,N}

o

Brandon
Blinkenberg

© Dimo Brockhoff, INRIA Introduction to Optimization, ECP, Sep. 28, 2015



© Dimo Brockhoff, INRIA Introduction to Opti



(@Q,2,I'D>¥,Bel'\X,q €Q,,F CQ)
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(X, B

| |

input symbols blank
¥ =1{0,1}
& B B 1 0 B
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( ,I'>X%,Bel\x,

|

band alphabet
I'={0,1, B}
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( ,I'>X%,Bel\x,

|

band alphabet
I'={0,1, B}

read/write head
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( ,I'>X%,Bel\x,

|

band alphabet
I'={0,1, B}

state g program ¢

read/write head
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(Q,2,T>X,BeTl\x,

band alphabet
I'={0,1, B}

state g program ¢

read/write head
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(Q, X, I'DX,Bel'\ X, q € Q,

band alphabet
I'={0,1, B}

state g program ¢

read/write head
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(Q,X,I' DX, Bel'\¥,¢0€Q, FCQ)

band alphabet
I'={0,1, B}

state g program ¢

read/write head
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(@Q,2,I'D>¥,Bel'\X,q €Q,,F CQ)

6:QxI'=>QxI'x{R,L,N}

read/write head
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(@Q,2,I'D>¥,Bel'\X,q €Q,,F CQ)

6:QxI'=>QxI'x{R,L,N}

read/write head
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(@Q,2,I'D>¥,Bel'\X,q €Q,,F CQ)

6:QxI'=>QxI'x{R,L,N}

q,1

read/write head
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(@Q,2,I'D>¥,Bel'\X,q €Q,,F CQ)

6:QxI'=>QxI'x{R,L,N}

q,1
ql’B’R

1

read/write head
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(@Q,2,I'D>¥,Bel'\X,q €Q,,F CQ)

6:QxI'=>QxI'x{R,L,N}

q,1
ql’B’R

1

read/write head
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(@Q,2,I'D>¥,Bel'\X,q €Q,,F CQ)

6:QxI'=>QxI'x{R,L,N}

q,1
ql’B’R

1| | BR

read/write head
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(@Q,2,I'D>¥,Bel'\X,q €Q,,F CQ)

6:QxI'=>QxI'x{R,L,N}

q,1
ql’B’R

1| | BR

read/write head
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(@Q,2,I'D>¥,Bel'\X,q €Q,,F CQ)

6:QxI'=>QxI'x{R,L,N}

q,1
ql’B’R

1| | BR

read/write head
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Interesting Facts

» |nstead of a RAM's random access computation is local
= Deterministic TM (DTM) as powerful as RAM
= except polynomial overhead

Universal Turing machines:
= get program and data as input
= simulate 0’ of the program with general transition function

© Dimo Brockhoff, INRIA Introduction to Optimization, ECP, Sep. 28, 2015



Church-Turing Thesis

= Every function which would naturally be regarded as computable
can be computed by a Turing machine.

= not provable

* most surprising: there are functions that are not computable
(undecidable)

= halting problem: given a program P, does the universal TM
halts on P?

= related to
= incompleteness theorem
= Entscheidungsproblem

now from undecidable to decidable problems

N e

Kurt Godel (1906-78)
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Church-Turing Thesis

= Every function whichgy arded as computable

can be computed by
= not provable
"= most surprising: ther
(undecidable)

= halting problem: ¢
halts on P?

= related to
= ncompleteness t
= Entscheidungspr

not computable

s the universal TM

now from undecidable tg

4 PUBLIC
DOMAIN

Kurt Godel (1906-78)
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Remains for today...

= complexity classes (in particular the famous P and NP)
= polynomial and Turing reductions
= hardness and completeness
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What is P and NP?

= Complexity classes
=  Set of problems with similar complexity

= Complexity = asymptotic running time of the best algorithm wrt. a
given computation model (for the worst-case instance)

= Decision problems vs search problems vs optimization problems
= Example: KP

Dake
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Different Problem Types

Optimization problem: h‘ﬂ
find the best solution among all

feasible ones!

= KP: “find packing with maximal value”

Search problem:
output a solution with a given structure!
= KP: “give a packing with value V”

Decision problem:
IS there a solution with a certain property?
= KP: “is there a packing with value 2V~

A decision problem is solved by a TM when it halts in an "accepting
state” iff the given instance has the desired property
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The Classes DTIME(t(n)) and P

DTIME(t(n)) := {P|P is a (decision) problem
s.t. there exist an algorithm A
that solves P in time O(t(n))}

P = J,», DTIME(n")

= Why is P defined like that? And why is P important?
= Independent of computation model
Pry=Pram = Pu—recursive functions — -
= Also independent of whether the TM has
= Oone or more tracks
= 0ne or more tapes
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Intuition about P

= P isthe set of all problems which have polynomial time
(deterministic) algorithms

= |.e., for a given problem p2P, there exists a DTM which
= always halts in polynomial time and

= ends in an accepting state iff the instance belongs to p, i.e.,
the answer to the problem p is "yes"

= P isthe set of all "efficiently solvable" or "tractable" problems
» This set is robust against changes of the computing model

= But also not all problems in P are practically solvable, e.qg., if
the running time is n'00%:0%

LP MAXIMUM MATCHING P

GREATEST COMMON DIVISOR
PRIMES
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Nondeterministic Turing Machines

Deterministic TM (DTM) have a deterministic transition function:

Odet : @ XTI = Q@ xI'x{R,L,N}

Nondeterministic TM (NTM) have only a transition relation:

5non—det. g (Q X F) X (Q X 1" X {RaLaN})

Which transitions will be actually performed?
» “lucky guesser” nondet. TM guesses the right transition

» “parallel computation”. nondet. TM branches into many copies
and accepts if one of the branches reaches an accepting state
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Nondeterminism and the Class NP

NP is the set of all problems which have polynomial time
nondeterministic (!) algorithms NP =J,>; NDTIME(n*)
Intuition:

= If | know a solution | can proof in deterministic polynomial
time whether it belongs to the answer "yes" or "no"

= "Guess" the right solution and proof it in polynomial time
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Nondeterminism and the Class NP

NP is the set of all problems which have polynomial time
nondeterministic (!) algorithms NP =J,>; NDTIME(n*)
Intuition:

= If | know a solution | can proof in deterministic polynomial
time whether it belongs to the answer "yes" or "no"

= "Guess" the right solution and proof it in polynomial time

/"’\ NTM

N
p

o N> K

/ \

3O

/ \
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Problems in NP

KP

= (Guess which items to choose, check that the knapsack
constraint is fulfilled, and sum up all profits

TSP
= Guess atour and sum up all edge weights
SAT

= Guess an assignment of variables and compute boolean
value of the DNF

SCP

= Guess the subset, check that all items are covered, and
count the number of selected sets

Bin Packing

» (Guess the assignment of items to bins, check that the size
restrictions are fulfilled, and count the number of bins used
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Facts about P=NP Hypothesis

= Clear: PUNP
= Not clear: P¥2NP
= What is the difference between, e.g., KP and PRIMES?
* For PRIMES, we know a polynomial time algorithm?*, for KP, we
don't
= |s KP "harder to solve" than PRIMES?
» |dea: classify the hardest problems in NP
= NP-complete problems (NPCu NP)
= Cook (1971), Levin (1973): SAT 2 NPC
» Reductions

*Agrawal, Kayal, Saxena (2004): "Primes is in P", Annals of Mathematics, 160 (2004), 781-793
S. Cook (1971): "The Complexity of Theorem Proving Procedures”, Proc. ACM symp. on Theory of computing, 151-158.
L. Levin (1973): "Universal'nye perebornye zadachi". Problemy Peredachi Informatsii 9 (3): 265-266.
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ldea:

If problem A can be solved by using an algorithm for problem B,
then A is not harder than B (except for a polynomial overhead)

Polynomial Reduction A <, B (Cook, 1971)

= Transform instance of A into one for B within polynomial time
by a function f

= Use oracle for B once which computes the solution for
transformed instance as solution for A
n» ac€ A< f(a)eB

Turing Reduction A <r B (Karp, 1972)

» Use oracle for problem B polynomially often to compute the
solution of A
m ac A< f(a)€eB

Important: both reductions are transitive!
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Example: DHC s, HC

Hamiltonian Cycle
= A cycle in a graph which visits each vertex exactly once.

Hamiltonian Cycle Problem (HC), decision version
= given an undirected graph, is there a Hamiltonian cycle?

Directed Hamiltonian Cycle Problem (DHC)
= same for directed graphs
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Example: DHC s, HC

's QKQQK:

HC %
z
» Transformation in polynomial time O(nm) possible %
= Directed hamiltonian cycle in instance of DHC ]
= Hamiltonian cycle in HC P
= Hamiltonian cycle in instance of HC El
= order of HC is always ..., Vi1, Vi, Vi3, Vi1, Vj2, Vj3, ... O )

o Vigs Vios Vit Vigs Vios Vs -
— take either HC or the inverted HC as solution for DHC O
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Different Types of Polynomial Reductions

» The last example was a reduction from a special case to a
general case

= Now: one slightly more complicated example (reduction from 3-
SAT to DHC)

= |n the exercises, we will see two more reductions
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Example: 3-SAT s, DHC

Given a 3-SAT instance with n variables x; and k clauses.
Construction of DHC instance:

» basic graph with 2n many Hamilton circuits (n rows, 3k+3 columns)
= intuition: set x; to TRUE Iff its row Is traversed from left to right

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08Intractabilityl.pdf
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Example: 3-SAT s, DHC

Given a 3-SAT instance with n variables x; and k clauses.
Construction of DHC instance:
= for each clause add 1 vertex and 6 edges

@ (x; OR X, OR x;) (X, OR X, OR x,,) @B

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08Intractabilityl.pdf
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Example: 3-SAT s, DHC

Given a 3-SAT instance with n variables x; and k clauses.
Construction of DHC instance:
= for each clause add 1 vertex and 6 edges

@ (x; OR X, OR x;) (X, OR X, OR x,,) @B

_L‘A_L‘A_L‘A_ﬂ \/

obviously computable in polynomial time

following http://vvvvw.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08lntractabilityl.pdfx
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Proof of Correctness

3-SAT instance is satisfiable iff corresponding graph G has
Hamilton cycle!

» |et's show “=7 first
= assume that the 3-SAT instance has satisfying assignment x*
= construct Hamiltonian cycle in G as follows:

= if x* =1, traverse row I from left to right

= if x*, =0, traverse row i from right to left

= for each clause C;, there Is at least one row I in which we are
going in "correct” direction to insert the corresponding C,
vertex into the tour (we do this only once per clause vertex)

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08Intractabilityl.pdf
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Proof of Correctness

3-SAT instance is satisfiable iff corresponding graph G has
Hamilton cycle!

= now, let us see “&”
= assume a Hamiltonian cycle H in G
= Dby construction, it has to visit node C; from and to the same row

= replacing the part of H through C; by the edge in between its
neighbors defines a Hamilton cycle on G\C,

= doing this for all C; allows to assign x*; = 1 if row i is traversed
fully from left to right and x*; = O otherwise

= now since H traverses the clause vertex C; originally, at least
one of the paths through it is traversed in “correct” order and
each clause is satisfied

following http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/08Intractabilityl.pdf
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The Class NPC

= NPC: set of all NP-complete problems
= The "hardest problems in NP"
= Ais NP-complete if
= A2NP
= All problems Az2NP can be polynomially reduced to A:

VANp 1 Axvp <p A

= NP-complete problems are the hardest of the ones in NP in the
sense that if | can solve them in polynomial time, | can solve all
problems in NP in polynomial time
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Proving NP-completeness

How to prove that a problem A is NP-complete?
= Two possibilities:

Either prove A2NP and for all problems in NP that they
can be reduced to A (complex, see Cook (1971)) or

Prove A2NP (simple) and a reduction from a problem B
that is already known as NP-complete to A (!)

caveat: be careful of the order in the reduction!

.~

Introduction to Optimization, ECP, Sep. 28, 2015
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The Cook-Levin Theorem

Theorem: 3-SAT € NPC

= proven by Cook in 1971 and independently (with a slightly
different proof) by Levin in 1973

= not enough time here for the detailed proof

But idea easy to understand:
= 3-SAT € NP trivial

= Given any problem p € NPC and an instance i to that problem,
construct a Boolean formula which is satisfiable iff the non-
deterministic TM for p accepts instance |

= Variables for states of the TM, e.g. T;; , = true if tape cell |
contains symbol | at step k of the computation

= Polynomially many variables and Boolean statements enough
because the TM runs in polynomial time
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Exercise:
Two Example Reductions

http://researchers.lille.inria.fr/
~brockhof/introoptimization/
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Example: HC <, TSP

Observation: Hamilton Cycle Problem is a subproblem of TSP

Transformation:
Simulate same graph for TSP as the one given for HC
= Full graph actually, but weight 1 for each edge in HC graph
and weight 2 for each ,non-edge” in HC
= Asking the TSP oracle whether a weight |V| tour exists

Correctness:

= If His a Hamilton cycle in original graph, it is also a cycle
through all cities but with weight <|V/|

= Let T be atour in the (transformed) TSP instance with weight
<|V|. It cannot contain an edge with weight 2. Hence, the
cycle T is also a cycle in the original HC problem.
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Example: VERTEX COVER =, CLIQUE

Observation: vertex cover in G=(V,E) of size k = clique In
complementary graph G.=(V, EXE \ E) of size |V|-k

Transformation:
» change each edge in ,non-edge” and vice versa

= use |V|-k as threshold for CLIQUE if VERTEX COVER of size k
IS asked

= obviously polynomial time

Correctness: first ,=

= |et V' be a vertex cover of size k, i.e. for each edge (u,v) either u
or v (or both) is in V'

» by definition, then for each pair u,v which are both not in V' (and
thus in V\V'): the edge (u,v) is not contained in G
(,contraposition®)

= Dut then all those edges are contained in G- and V\V'is a clique
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Example: VERTEX COVER =, CLIQUE

Observation: vertex cover in G=(V,E) of size k = clique in
complementary graph G.=(V, EXE \ E) of size |V|-k

Transformation:
» change each edge in ,non-edge” and vice versa

= use |V|-k as threshold for CLIQUE if VERTEX COVER of size k
IS asked

= obviously polynomial time

Correctness: now <"
= et V' be a clique of size n-k in G,

= if (u,v) is an edge in G, then both u and v can‘t be in V' at the
same time because V' is clique in G

= put then either u or v is in V\V' which means that V\V' is a vertex
cover
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Difference between NP-complete and NP-hard

A is NP-complete if

" Ac NP
= YVBeENP:B<, A

A is NP-hard if
= VBGNPBSTA

Implications:

= An NP-hard problem is not necessarily a decision problem

= The search and optimization versions of an NP-complete
problem are NP-hard

© Dimo Brockhoff, INRIA

Introduction to Optimization, ECP, Sep. 28, 2015



Practical Implications of Reductions

The proof of NP-completeness is typically seen as a proof of difficulty:

“I did not find an efficient algorithm for my problem, maybe | am
dumb?”

VS.

“I cannot find an efficient algorithm for my problem because there is
none”

VS.

“I did not find an efficient algorithm for my problem but neither all of
those famous people”
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Having a proof of NP-completeness or NP-hardness, does not
mean that a problem is not manageable in practice:

= the average-case complexity might be reasonable
= randomized algorithms might work well
= maybe, the difficult instances are not observed

Example of success: SAT solvers
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The Famous P versus NP Problem

Is P=NP?
= One of the 7 Millennium Prize problems selected by the Clay
Mathematics Institute (worth 106 $)

= first mentioned in 1956 in letter from K. Gddel to J. von
Neumann

= formalized by J. Cook in his 1971 seminal paper

= solving this problem might have significant practical implications
(or not)

what do you think?
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The ,,Complexity Zoo"

3-SAT

KPP CLIQUE TSP
KP

NPC

SAT C

P Lp  MAXIMUM MATCHING

GREATEST COMMON DIVISOR
PRIMES
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Conclusions

| hope it became clear...

...what complexity theory is about

...what is a Random Access Machine and a Turing Machine

... how a decision and an optimization problem differ

...what are the classes P, NP, and NPC

...and that complexity theory is more involved than what we
could see today
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