
Introduction to Optimization

 Greedy Algorithms

Dimo Brockhoff

INRIA Lille – Nord Europe

October 5, 2015

École Centrale Paris, Châtenay-Malabry, France

2 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 2

Date Topic

Mon, 21.9.2015 Introduction

Mon, 28.9.2015 D Basic Flavors of Complexity Theory

Mon, 5.10.2015 D Greedy algorithms

Mon, 12.10.2015 D Dynamic programming

Mon, 2.11.2015 D Branch and bound/divide&conquer

Fri, 6.11.2015 D Approximation algorithms and heuristics

Fri, 9.11.2015 C Introduction to Continuous Optimization I

Fri, 13.11.2015 C Introduction to Continuous Optimization II

Fri, 20.11.2015 C Gradient-based Algorithms

Fri, 27.11.2015 C End of Gradient-based Algorithms + Linear Programming

Fri, 4.12.2015 C Stochastic Optimization and Derivative Free Optimization

Tue, 15.12.2015 Exam

Course Overview

all classes + exam last 3 hours (incl. a 15min break)

3 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 3

From Wikipedia:

 “A greedy algorithm is an algorithm that follows the problem

solving heuristic of making the locally optimal choice at each

stage with the hope of finding a global optimum.”

 Note: typically greedy algorithms do not find the global optimum

 We will see later when this is the case

Greedy Algorithms

4 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 4

 Example 1: Money Change

 Example 2: Packing Circles in Triangles

 Example 3: Minimal Spanning Trees (MST) and the algorithm of

Kruskal

 The theory behind greedy algorithms: a brief introduction to

matroids

 Exercise: A Greedy Algorithm for the Knapsack Problem

Greedy Algorithms: Lecture Overview

5 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 5

Change-making problem

 Given n coins of distinct values w1=1, w2, ..., wn and a total

change W (where w1, ..., wn, and W are integers).

 Minimize the total amount of coins Σxi such that Σwixi = W and

where xi is the number of times, coin i is given back as change.

Greedy Algorithm

 Unless total change not reached:

 add the largest coin which is not larger than the remaining

amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:

finishing darts (from 501 to 0 with 9 darts)

Example 1: Money Change

6 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 6

G. F. Malfatti posed the following problem in 1803:

 how to cut three cylindrical columns out of a triangular prism of

marble such that their total volume is maximized?

 his best solutions were so-called Malfatti circles in the triangular

cross-section:

 all circles are tangent to each other

 two of them are tangent to each side of the triangle

Example 2: Packing Circles in Triangles

7 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 7

What would a greedy algorithm do?

Example 2: Packing Circles in Triangles

8 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 8

What would a greedy algorithm do?

Note that Zalgaller and Los' showed in 1994 that the greedy

algorithm is optimal [1]

[1] Zalgaller, V.A.; Los', G.A. (1994), "The solution of Malfatti's problem", Journal of

Mathematical Sciences 72 (4): 3163–3177, doi:10.1007/BF01249514.

Example 2: Packing Circles in Triangles

https://en.wikipedia.org/wiki/Victor_Zalgaller

9 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 9

Outline:

 reminder of problem definition

 Kruskal’s algorithm

 including correctness proofs and analysis of running time

Example 3: Minimal Spanning Trees (MST)

10 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 10

A spanning tree of a connected graph G is a tree in G which

contains all vertices of G

Minimum Spanning Tree Problem (MST):

 Given a (connected) graph G=(V,E) with edge weights wi for

each edge ei. Find a spanning tree T that minimizes the weights

of the contained edges, i.e. where

 Σ wi

ei T

is minimized.

MST: Reminder of Problem Definition

11 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 11

Algorithm, see [1]

 Create forest F = (V,{}) with n components and no edge

 Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

 While S non-empty and F not spanning:

 delete cheapest edge from S

 add it to F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the

traveling salesman problem". Proceedings of the American Mathematical

Society 7: 48–50. doi:10.1090/S0002-9939-1956-0078686-7

Kruskal’s Algorithm

12 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 12

Kruskal’s Algorithm: Example

E

B

G

L

F H

C

K

D

I M J

A
4 12

7

22
2

21
17

16

3 6

11

20 8

10 19

9

1

18

13

15 14 5

13 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 13

Kruskal’s Algorithm: Example

E

B

G

L

F H

C

K

D

I M J

A
4 12

7

22
2

21
17

16

3 6

11

20 8

10 19

9

1

18

13

15 14 5

14 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 14

First question: how to implement the algorithm?

 sorting of edges needs O(|E| log |E|)

Kruskal’s Algorithm: Runtime Considerations

Algorithm

Create forest F = (V,{}) with n components and no edge

Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

While S non-empty and F not spanning:

delete cheapest edge from S

add it to F if no cycle is introduced

simple ?
forest implementation:

Disjoint-set

data structure

15 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 15

Data structure: ground set 1...N grouped to disjoint sets

Operations:

 FIND(i): to which set (“tree”) does i belong?

 UNION(i,j): union the sets of i and j!

 (“join the two trees of i and j”)

Implemented as trees:

 UNION(T1, T2): hang root node of smaller tree under root node of

larger tree (constant time), thus

 FIND(u): traverse tree from u to root (to return a representative of

u’s set) takes logarithmic time in total number of nodes

Disjoint-set Data Structure (“Union&Find”)

1 2 3 4

1 2 3 4

1

2

3

4

5

6

16 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 16

Algorithm, rewritten with UNION-FIND:

 Create initial disjoint-set data structure, i.e. for each vertex vi,

store vi as representative of its set

 Create empty forest F = {}

 Sort edges such that w.l.o.g. w1 < w2 < ... < w|E|

 for each edge ei={u,v} starting from i=1:

 if FIND(u) ≠ FIND(v): # no cycle introduced

 F = F È {{u,v}}

 UNION(u,v)

 return F

Implementation of Kruskal’s Algorithm

17 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 17

 Sorting of edges needs O(|E| log |E|)

 forest: Disjoint-set data structure

 initialization: O(|V|)

 log |V| to find out whether the minimum-cost edge {u,v}

connects two sets (no cycle induced) or is within a set (cycle

would be induced)

 2x FIND + potential UNION needs to be done O(|E|) times

 total O(|E| log |V|)

 Overall: O(|E| log |E|)

Back to Runtime Considerations

18 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 18

Two parts needed:

 Algo always produces a spanning tree

 final F contains no cycle and is connected by definition

 Algo always produces a minimum spanning tree

 argument by induction

 P: If F is forest at a given stage of the algorithm, then there

is some minimum spanning tree that contains F.

 clearly true for F = (V, {})

 assume that P holds when new edge e is added to F and

be T a MST that contains F

 if e in T, fine

 if e not in T: T + e has cycle C with edge f in C but not

in F (otherwise e would have introduced a cycle in F)

 now T – f + e is a tree with same weight as T (since

T is a MST and f was not chosen to F)

 hence T – f + e is MST including T + e (i.e. P holds)

Kruskal’s Algorithm: Proof of Correctness

19 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 19

 Another greedy approach to the MST problem is Prim’s algorithm

 Somehow like the one of Kruskal but:

 always keeps a tree instead of a forest

 thus, take always the cheapest edge which connects to the

current tree

 Runtime more or less the same for both algorithms, but analysis of

Prim’s algorithm a bit more involved because it needs (even) more

complicated data structures to achieve it (hence not shown here)

Another Greedy Algorithm for MST

20 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 20

What we have seen so far:

 three problems where a greedy algorithm was optimal

 money change

 three circles in a triangle

 minimum spanning tree (Kruskal’s and Prim’s algorithms)

 but also: greedy not always optimal

 in particular for NP-hard problems

Obvious Question:

 when is greedy good?

 answer: matroids

Intermediate Conclusion

21 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 21

from Wikipedia:

 “[...] a matroid is a structure that captures and generalizes the

notion of linear independence in vector spaces.”

Reminder: linear independence in vector spaces

 again from Wikipedia:

 “A set of vectors is said to be linearly dependent if one of the

vectors in the set can be defined as a linear combination of the

other vectors. If no vector in the set can be written in this way,

then the vectors are said to be linearly independent.”

Matroids

22 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 22

 Various equivalent definitions of matroids exist

 Here, we define a matroid via independent sets

Definition of a Matroid:

 A matroid is a tuple M=(E, I) with

 E being the finite ground set and

 I being a collection of (so-called) independent subsets of E

satisfying these two axioms:

 (I1) if X Í Y and Y I then X I,

 (I2) if X I and Y I and |Y| > |X| then there exists an

e Y\X such that X È {e} I.

Note: (I2) implies that all maximal independent sets have the

same cardinality (maximal independent = adding an item of E

makes the set dependent)

Each maximal independent set is called a basis for M.

Matroid: Definition

23 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 23

 A matroid M=(E, I) in which I = {X Í E: |X| ≤ k} is called a

uniform matroid.

 The bases of uniform matroids are the sets of cardinality k (in

case k ≤ |E|).

Example: Uniform Matroids

24 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 24

 Given a graph G=(V,E), its corresponding graphic matroid is
defined by M=(E, I) where I contains all subsets of edges which

are forests.

 If G is connected, the bases are the spanning trees of G.

 If G is unconnected, a basis contains a spanning tree in each

connected component of G.

Example: Graphic Matroids

25 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 25

Given a matroid M=(E, I) and a cost function c: E ® , the matroid

optimization problem asks for an independent set S with the

maximal total cost c(S)= eS c(e).

 If all costs are non-negative, we search for a maximal cost basis.

 In case of a graphic matroid, the above problem is equivalent to

the Maximum Spanning Tree problem (use Kruskal’s algorithm,

where the costs are negated, to solve it).

Matroid Optimization

26 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 26

Greedy algorithm on M =(E, I)

 sort the elements by their cost s.t. w.l.o.g. c(e1)≥c(e2) ≥... ≥e(e|M|)

 S0 = {}, k=0

 for j=1 to |E| do

 if Sk È ej I then

 k = k+1

 Sk = Sk-1 È ej

 output the sets S1, ..., Sk or max{S1, ..., Sk}

Theorem: The greedy algorithm on the independence system
M=(E, I), which satisfies (I1), outputs the optimum for any cost

function iff M is a matroid.

Proof not shown here.

Greedy Optimization of a Matroid

27 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 27

Exercise:

A Greedy Algorithm for the Knapsack Problem

29 Introduction to Optimization @ ECP, Oct. 5, 2015 © Dimo Brockhoff, INRIA 29

I hope it became clear...

 ...what a greedy algorithm is

 ...that it not always results in the optimal solution

 ...but that it does if and only if the problem is a matroid

Conclusions

