Introduction to Optimization Greedy Algorithms

October 5, 2015
École Centrale Paris, Châtenay-Malabry, France

Dimo Brockhoff
INRIA Lille - Nord Europe

Course Overview

Date	Topic	
Mon, 21.9.2015	Introduction	
Mon, 28.9.2015	D	Basic Flavors of Complexity Theory
Mon, 5.10.2015	D	Greedy algorithms
Mon, 12.10.2015	D	Dynamic programming
Mon, 2.11.2015	D	Branch and bound/divide\&conquer
Fri, 6.11.2015	D	Approximation algorithms and heuristics
Fri, 9.11.2015	C	Introduction to Continuous Optimization I
Fri, 13.11.2015	C	Introduction to Continuous Optimization II
Fri, 20.11.2015	C	Gradient-based Algorithms
Fri, 27.11.2015	C	End of Gradient-based Algorithms + Linear Programming
Fri, 4.12.2015	C	Stochastic Optimization and Derivative Free Optimization
Tue, 15.12.2015		Exam

$$
\text { all classes + exam last } 3 \text { hours (incl. a 15min break) }
$$

Greedy Algorithms

From Wikipedia:
"A greedy algorithm is an algorithm that follows the problem solving heuristic of making the locally optimal choice at each stage with the hope of finding a global optimum."

- Note: typically greedy algorithms do not find the global optimum
- We will see later when this is the case

Greedy Algorithms: Lecture Overview

- Example 1: Money Change
- Example 2: Packing Circles in Triangles
- Example 3: Minimal Spanning Trees (MST) and the algorithm of Kruskal
- The theory behind greedy algorithms: a brief introduction to matroids
- Exercise: A Greedy Algorithm for the Knapsack Problem

Example 1: Money Change

Change-making problem

- Given n coins of distinct values $w_{1}=1, w_{2}, \ldots, w_{n}$ and a total change W (where $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}$, and W are integers).
- Minimize the total amount of coins Σx_{i} such that $\Sigma w_{i} x_{i}=W$ and where x_{i} is the number of times, coin i is given back as change.

Greedy Algorithm

Unless total change not reached:
add the largest coin which is not larger than the remaining amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:
finishing darts (from 501 to 0 with 9 darts)

Example 2: Packing Circles in Triangles

G. F. Malfatti posed the following problem in 1803:

- how to cut three cylindrical columns out of a triangular prism of marble such that their total volume is maximized?
- his best solutions were so-called Malfatti circles in the triangular cross-section:
- all circles are tangent to each other
- two of them are tangent to each side of the triangle

Example 2: Packing Circles in Triangles

What would a greedy algorithm do?

Example 2: Packing Circles in Triangles

What would a greedy algorithm do?

Note that Zalgaller and Los' showed in 1994 that the greedy algorithm is optimal [1]
[1] Zalgaller, V.A.; Los', G.A. (1994), "The solution of Malfatti's problem", Journal of Mathematical Sciences 72 (4): 3163-3177, doi:10.1007/BF01249514.

Example 3: Minimal Spanning Trees (MST)

Outline:

- reminder of problem definition
- Kruskal's algorithm
- including correctness proofs and analysis of running time

MST: Reminder of Problem Definition

A spanning tree of a connected graph G is a tree in G which contains all vertices of G

Minimum Spanning Tree Problem (MST):

Given a (connected) graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with edge weights w_{i} for each edge e_{i}. Find a spanning tree T that minimizes the weights of the contained edges, i.e. where

$$
\sum_{e_{i} \in T} w_{i}
$$

is minimized.

Kruskal's Algorithm

Algorithm, see [1]

- Create forest $F=(\mathrm{V},\{ \})$ with n components and no edge
- Put sorted edges (such that w.l.o.g. $\mathrm{w}_{1}<\mathrm{w}_{2}<\ldots<\mathrm{w}_{|\mathrm{E}|}$) into set S
- While S non-empty and F not spanning:
- delete cheapest edge from S
- add it to F if no cycle is introduced
[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the traveling salesman problem". Proceedings of the American Mathematical Society 7: 48-50. doi:10.1090/S0002-9939-1956-0078686-7

Kruskal's Algorithm: Example

Kruskal's Algorithm: Example

Kruskal's Algorithm: Runtime Considerations

First question: how to implement the algorithm?

- sorting of edges needs $\mathrm{O}(|\mathrm{E}| \log |\mathrm{E}|)$

Algorithm

Create forest $\mathrm{F}=(\mathrm{V},\{ \})$ with n components and no edge
Put sorted edges (such that wh $\mathrm{m}_{\mathrm{L}} \mathrm{w}_{1}<\mathrm{w}_{2}<\ldots<\mathrm{w}_{|\mathrm{E}|}$) into set S While S non-empty and not spanning.

forest implementation:
Disjoint-set data structure

Disjoint-set Data Structure ("Union\&Find")

Data structure: ground set $1 \ldots \mathrm{~N}$ grouped to disjoint sets
Operations:

- FIND(i): to which set ("tree") does i belong?
- UNION(i, j): union the sets of i and j ! ("join the two trees of i and j ")

都

Implemented as trees:

- UNION(T1, T2): hang root node of smaller tree under root node of larger tree (constant time), thus
- FIND(u): traverse tree from u to root (to return a representative of u's set) takes logarithmic time in total number of nodes

Implementation of Kruskal's Algorithm

Algorithm, rewritten with UNION-FIND:

- Create initial disjoint-set data structure, i.e. for each vertex v_{i}, store v_{i} as representative of its set
- Create empty forest $F=\{ \}$
- Sort edges such that w.l.o.g. $\mathrm{w}_{1}<\mathrm{w}_{2}<\ldots<\mathrm{w}_{|\mathrm{E}|}$
- for each edge $e_{i}=\{u, v\}$ starting from $i=1$:
- if FIND(u) \neq FIND(v): \# no cycle introduced
- $F=F \cup\{\{u, v\}\}$
- UNION(u,v)
- return F

Back to Runtime Considerations

- Sorting of edges needs $\mathrm{O}(|\mathrm{E}| \log |\mathrm{E}|)$
- forest: Disjoint-set data structure
- initialization: $\mathrm{O}(|\mathrm{V}|)$
- $\log |\mathrm{V}|$ to find out whether the minimum-cost edge $\{u, v\}$ connects two sets (no cycle induced) or is within a set (cycle would be induced)
- 2x FIND + potential UNION needs to be done O(|E|) times
- total $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$
- Overall: O(|E| $\log |E|)$

Kruskal's Algorithm: Proof of Correctness

Two parts needed:

(1) Algo always produces a spanning tree
final F contains no cycle and is connected by definition
2 Algo always produces a minimum spanning tree

- argument by induction
- P : If F is forest at a given stage of the algorithm, then there is some minimum spanning tree that contains F.
- clearly true for $\mathrm{F}=(\mathrm{V},\{ \})$
- assume that P holds when new edge e is added to F and be T a MST that contains F
- if e in T, fine
- if e not in T : $\mathrm{T}+\mathrm{e}$ has cycle C with edge f in C but not in F (otherwise e would have introduced a cycle in F)
- now $T-f+e$ is a tree with same weight as T (since T is a MST and f was not chosen to F)
- hence $T-f+e$ is MST including $T+e$ (i.e. P holds)

Another Greedy Algorithm for MST

- Another greedy approach to the MST problem is Prim's algorithm
- Somehow like the one of Kruskal but:
- always keeps a tree instead of a forest
- thus, take always the cheapest edge which connects to the current tree
- Runtime more or less the same for both algorithms, but analysis of Prim's algorithm a bit more involved because it needs (even) more complicated data structures to achieve it (hence not shown here)

Intermediate Conclusion

What we have seen so far:

- three problems where a greedy algorithm was optimal
- money change
- three circles in a triangle
- minimum spanning tree (Kruskal's and Prim's algorithms)
- but also: greedy not always optimal
- in particular for NP-hard problems

Obvious Question:

- when is greedy good?
- answer: matroids

Matroids

from Wikipedia:
"[...] a matroid is a structure that captures and generalizes the notion of linear independence in vector spaces."

Reminder: linear independence in vector spaces

again from Wikipedia:
"A set of vectors is said to be linearly dependent if one of the vectors in the set can be defined as a linear combination of the other vectors. If no vector in the set can be written in this way, then the vectors are said to be linearly independent."

Matroid: Definition

- Various equivalent definitions of matroids exist
- Here, we define a matroid via independent sets

Definition of a Matroid:

A matroid is a tuple $\mathrm{M}=(\mathrm{E}, \mathcal{I})$ with

- E being the finite ground set and
- I being a collection of (so-called) independent subsets of E satisfying these two axioms:
- (I_{1}) if $\mathrm{X} \subseteq \mathrm{Y}$ and $\mathrm{Y} \in \mathcal{I}$ then $\mathrm{X} \in \mathcal{I}$,
- (I_{2}) if $X \in \mathcal{I}$ and $Y \in \mathcal{I}$ and $|Y|>|X|$ then there exists an $\mathrm{e} \in \mathrm{Y} X$ such that $\mathrm{X} \cup\{\mathrm{e}\} \in \mathcal{I}$.

Note: $\left(\mathrm{I}_{2}\right)$ implies that all maximal independent sets have the same cardinality (maximal independent $=$ adding an item of E makes the set dependent)
Each maximal independent set is called a basis for M .

Example: Uniform Matroids

- A matroid $M=(E, \mathcal{I})$ in which $\mathcal{I}=\{X \subseteq E:|X| \leq k\}$ is called a uniform matroid.
- The bases of uniform matroids are the sets of cardinality k (in case $\mathrm{k} \leq|\mathrm{E}|)$.

Example: Graphic Matroids

- Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, its corresponding graphic matroid is defined by $\mathrm{M}=(\mathrm{E}, \mathcal{I})$ where \mathcal{I} contains all subsets of edges which are forests.
- If G is connected, the bases are the spanning trees of G .
- If G is unconnected, a basis contains a spanning tree in each connected component of G.

Matroid Optimization

Given a matroid $\mathrm{M}=(\mathrm{E}, \mathcal{I})$ and a cost function $\mathrm{c}: \mathrm{E} \rightarrow \mathbb{R}$, the matroid optimization problem asks for an independent set S with the maximal total cost $c(S)=\sum_{e \in S} c(e)$.

- If all costs are non-negative, we search for a maximal cost basis.
- In case of a graphic matroid, the above problem is equivalent to the Maximum Spanning Tree problem (use Kruskal's algorithm, where the costs are negated, to solve it).

Greedy Optimization of a Matroid

Greedy algorithm on $\mathbf{M}=(\mathrm{E}, \mathcal{I})$

- sort the elements by their cost s.t. w.l.o.g. $c\left(e_{1}\right) \geq c\left(e_{2}\right) \geq \ldots \geq e\left(e_{|M|}\right)$
- $\mathrm{S}_{0}=\{ \}, \mathrm{k}=0$
- for $j=1$ to |E| do
- if $S_{k} \cup e_{j} \in \mathcal{I}$ then
- $k=k+1$
- $S_{k}=S_{k-1} \cup e_{j}$
- output the sets $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}$ or $\max \left\{\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}\right\}$

Theorem: The greedy algorithm on the independence system $M=(E, \mathcal{I})$, which satisfies $\left(I_{1}\right)$, outputs the optimum for any cost function iff M is a matroid.
Proof not shown here.

Exercise:

A Greedy Algorithm for the Knapsack Problem

Conclusions

I hope it became clear...
...what a greedy algorithm is
...that it not always results in the optimal solution
...but that it does if and only if the problem is a matroid

