Introduction to Optimization
Greedy Algorithms

October 5, 2015
Ecole Centrale Paris, Chatenay-Malabry, France

4 Dimo Brockhoff
CLA— |NRIA Lille — Nord Europe

Course Overview

Mon, 21.9.2015
Mon, 28.9.2015
Mon, 5.10.2015
Mon, 12.10.2015

Mon, 2.11.2015
Fri, 6.11.2015
Fri, 9.11.2015
Fri, 13.11.2015
Fri, 20.11.2015
Fri, 27.11.2015
Fri, 4.12.2015
Tue, 15.12.2015

D
D

O 0O O 0O O OO0

Date | |Topic

Introduction

Basic Flavors of Complexity Theory
Greedy algorithms

Dynamic programming

Branch and bound/divide&conquer

Approximation algorithms and heuristics

Introduction to Continuous Optimization |

Introduction to Continuous Optimization Il
Gradient-based Algorithms

End of Gradient-based Algorithms + Linear Programming
Stochastic Optimization and Derivative Free Optimization
Exam

all classes + exam last 3 hours (incl. a 15min break)

© Dimo Brockhoff, INRIA

Introduction to Optimization @ ECP, Oct. 5, 2015

Greedy Algorithms

From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem
solving heuristic of making the locally optimal choice at each
stage with the hope of finding a global optimum.”

= Note: typically greedy algorithms do not find the global optimum

= \We will see later when this is the case

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

Greedy Algorithms: Lecture Overview

= Example 1. Money Change
= Example 2: Packing Circles in Triangles

= Example 3: Minimal Spanning Trees (MST) and the algorithm of
Kruskal

= The theory behind greedy algorithms: a brief introduction to
matroids

= Exercise: A Greedy Algorithm for the Knapsack Problem

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

Example 1. Money Change

Change-making problem

= Given n coins of distinct values w;=1, w,, ..., w,, and a total
change W (where wy, ..., w,, and W are integers).

= Minimize the total amount of coins 2x; such that 2wx, = W and
where Xx; is the number of times, coin i is given back as change.

Greedy Algorithm
Unless total change not reached:

add the largest coin which is not larger than the remaining
amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:
finishing darts (from 501 to O with 9 darts)

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

Example 2: Packing Circles in Triangles

G. F. Malfatti posed the following problem in 1803:

= how to cut three cylindrical columns out of a triangular prism of
marble such that their total volume is maximized?

» his best solutions were so-called Malfatti circles in the triangular
cross-section:

= all circles are tangent to each other
= two of them are tangent to each side of the triangle

PUBLIC
DOMAIN

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

Example 2: Packing Circles in Triangles

PUBLIC
DOMAIN

What would a greedy algorithm do?

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

Example 2: Packing Circles in Triangles

PUBLIC
DOMAIN

What would a greedy algorithm do?

Note that Zalgaller and Los' showed in 1994 that the greedy
algorithm is optimal [1]

[1] Zalgaller, V.A.; Los', G.A. (1994), "The solution of Malfatti's problem", Journal of
Mathematical Sciences 72 (4): 3163-3177, doi:10.1007/BF01249514.

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

https://en.wikipedia.org/wiki/Victor_Zalgaller

Example 3. Minimal Spanning Trees (MST)

Outline:
= reminder of problem definition
» Kruskal's algorithm
* including correctness proofs and analysis of running time

© Dimo Brockhoff, INRIA Introduction to Optimizati

MST: Reminder of Problem Definition

A spanning tree of a connected graph G is a tree in G which
contains all vertices of G

Minimum Spanning Tree Problem (MST):

Given a (connected) graph G=(V,E) with edge weights w; for
each edge e,. Find a spanning tree T that minimizes the weights
of the contained edges, i.e. where

> w
eeTl
IS minimized.

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

Kruskal’s Algorithm

Algorithm, see [1]

= Create forest F = (V,{}) with n components and no edge
Put sorted edges (such that w.l.o.g. w; <w, < ... <wg) into set S
= While S non-empty and F not spanning:

» delete cheapest edge from S

= additto F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the
traveling salesman problem". Proceedings of the American Mathematical
Society 7: 48-50. doi:10.1090/S0002-9939-1956-0078686-7

© Dimo Brockhoff, INRIA

Introduction to Optimization @ ECP, Oct. 5, 2015

Kruskal’s Algorithm: Example

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

Kruskal’s Algorithm: Example

o

A

7

3
20
11

E

© Dimo Brockhoff, INRIA

C

H

Introduction to Optimization @ ECP, Oct. 5, 2015

16

13

O (0

Kruskal’s Algorithm: Runtime Consideratio

First question: how to implement the algorithm?
= sorting of edges needs O(|E| log |E|)

Algorithm
Create forest F = (V,{}) with n components and no edge

Put sorted edges (suc%wz <..<Wwg)intosetS
While S non-empty an ot spanning-

delete\cheapest

add it tp &1f no cycle is introyjuce

simple P
forest implementation:
Disjoint-set
data structure

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015 \l

Disjoint-set Data Structure (“Union&Find™)

Data structure: ground set 1...N grouped to disjoint sets

Operations: @ @ @ @
= FIND(I): to which set (“tree”) does | belong?
= UNION(i,}): union the sets of i and |!

(“join the two trees of i and ") @ @ @

Implemented as trees:

= UNION(T1, T2): hang root node of smaller tree under root node of
larger tree (constant time), thus

= FIND(u): traverse tree from u to root (to return a representative of
u’s set) takes logarithmic time in total number of nodes

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

Implementation of Kruskal’s Algorithm

Algorithm, rewritten with UNION-FIND:

Create Initial disjoint-set data structure, i.e. for each vertex v;,
store v, as representative of its set

Create empty forest F = {}
Sort edges such that w.l.o.g. w; <w, < ... < W
for each edge e={u,v} starting from i=1:
= if FIND(u) # FIND(v): # no cycle introduced
» F=Fu{{uv}}
= UNION(u,v)
return F

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

Back to Runtime Considerations

= Sorting of edges needs O(|E]| log |E|)
= forest: Disjoint-set data structure

= |nitialization: O(|V|)

* |og |V] to find out whether the minimum-cost edge {u,v}
connects two sets (no cycle induced) or is within a set (cycle
would be induced)

= 2X FIND + potential UNION needs to be done O(|E|) times

= total O(|E| log |V])

= Qverall: O(|E| log |E|)

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

Kruskal’s Algorithm: Proof of Correctness

Two parts needed:
© Algo always produces a spanning tree
final F contains no cycle and is connected by definition v/
® Algo always produces a minimum spanning tree
= argument by induction

= P:If Fis forest at a given stage of the algorithm, then there
IS some minimum spanning tree that contains F.

= clearly true for F = (V, {})

= assume that P holds when new edge e is added to F and
be T a MST that contains F

= feinT, fine
= fenotinT: T+ e has cycle C with edge f in C but not
In F (otherwise e would have introduced a cycle in F)

= now T —f+ eisatree with same weight as T (since
Tis a MST and f was not chosen to F)

" henceT—-f+eisMSTincludingT +e (i.e. P hcz}ds)

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

Another Greedy Algorithm for MST

= Another greedy approach to the MST problem is Prim’s algorithm
= Somehow like the one of Kruskal but:
= always keeps a tree instead of a forest

= thus, take always the cheapest edge which connects to the
current tree

* Runtime more or less the same for both algorithms, but analysis of
Prim’s algorithm a bit more involved because it needs (even) more
complicated data structures to achieve it (hence not shown here)

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

Intermediate Conclusion

What we have seen so far:
= three problems where a greedy algorithm was optimal
= money change
= three circles in a triangle
* minimum spanning tree (Kruskal’s and Prim’s algorithms)
= but also: greedy not always optimal
* in particular for NP-hard problems

Obvious Question:
= when is greedy good?
= answer: matroids

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

from Wikipedia:

“[...] a matroid is a structure that captures and generalizes the
notion of linear independence in vector spaces.”

Reminder: linear independence in vector spaces
again from Wikipedia:
“A set of vectors is said to be linearly dependent if one of the
vectors in the set can be defined as a linear combination of the

other vectors. If no vector in the set can be written in this way,
then the vectors are said to be linearly independent.”

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

Matroid: Definition

» Various equivalent definitions of matroids exist
= Here, we define a matroid via independent sets

Definition of a Matroid:
A matroid is a tuple M=(E, Z) with
= E being the finite ground set and
= 7 being a collection of (so-called) independent subsets of E
satisfying these two axioms:
= (IpifXgcYandY e Zthen X e Z,

= (I)ifXeZandY e Zand |Y|> |X|then there exists an
e € Y\X such that X U {e} € Z.

Note: (I,) implies that all maximal independent sets have the
same cardinality (maximal independent = adding an item of E
makes the set dependent)

Each maximal independent set is called a basis for M.

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

Example: Uniform Matroids

» A matroid M=(E, Z) in which Z={X c E: |[X| £k} is called a
uniform matroid.

= The bases of uniform matroids are the sets of cardinality k (in
case k < |E)).

© Dimo Brockhoff, INRIA Introduction to Optimizati

Example: Graphic Matroids

» Given a graph G=(V,E), its corresponding graphic matroid is
defined by M=(E, Z) where Z contains all subsets of edges which
are forests.

= |f Gis connected, the bases are the spanning trees of G.

= If G is unconnected, a basis contains a spanning tree in each
connected component of G.

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

Matroid Optimization

Given a matroid M=(E, Z) and a cost function c: E — R, the matroid
optimization problem asks for an independent set S with the
maximal total cost c(S)= 2.5 c(e).

= If all costs are non-negative, we search for a maximal cost basis.

= In case of a graphic matroid, the above problem is equivalent to
the Maximum Spanning Tree problem (use Kruskal’s algorithm,
where the costs are negated, to solve it).

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

Greedy Optimization of a Matroid

Greedy algorithm on M =(E, Z)
= sort the elements by their cost s.t. w.l.0.g. c(e;)2c(e,) 2... 2e(e)y,)
= Sp={} k=0
» forj=1to|E|do
= ifSyue e Zthen

= k=k+1

" ST S VUE
= outputthe sets S, ..., S, or max{S,, ..., S;}

Theorem: The greedy algorithm on the independence system
M=(E, Z), which satisfies (l,), outputs the optimum for any cost

function iff M I1s a matroid.
Proof not shown here.

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

Exercise:
A Greedy Algorithm for the Knapsack Problem

© Dimo Brockhoff, INRIA Introduction to Optimizati e

Conclusions

| hope it became clear...

...what a greedy algorithm is
...that it not always results in the optimal solution
...but that it does if and only if the problem is a matroid

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 5, 2015

