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Date Topic 

Mon, 21.9.2015 Introduction 

Mon, 28.9.2015  D Basic Flavors of Complexity Theory 

Mon, 5.10.2015 D Greedy algorithms 

Mon, 12.10.2015 D Dynamic programming 

Mon, 2.11.2015 D Branch and bound/divide&conquer 

Fri, 6.11.2015 D Approximation algorithms and heuristics 

Fri, 9.11.2015 C Introduction to Continuous Optimization I 

Fri, 13.11.2015 C Introduction to Continuous Optimization II 

Fri, 20.11.2015 C Gradient-based Algorithms 

Fri, 27.11.2015 C End of Gradient-based Algorithms + Linear Programming 

Fri, 4.12.2015 C Stochastic Optimization and Derivative Free Optimization 

Tue, 15.12.2015 Exam 

Course Overview 

all classes + exam last 3 hours (incl. a 15min break) 
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From Wikipedia: 

 “A greedy algorithm is an algorithm that follows the problem 

solving heuristic of making the locally optimal choice at each 

stage with the hope of finding a global optimum.” 

 

 

 

 Note: typically greedy algorithms do not find the global optimum 

 

 We will see later when this is the case 

Greedy Algorithms 
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 Example 1: Money Change 

 Example 2: Packing Circles in Triangles 

 Example 3: Minimal Spanning Trees (MST) and the algorithm of 

Kruskal 

 The theory behind greedy algorithms: a brief introduction to 

matroids 

 Exercise: A Greedy Algorithm for the Knapsack Problem 

 

Greedy Algorithms: Lecture Overview 
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Change-making problem 

 Given n coins of distinct values w1=1, w2, ..., wn and a total 

change W (where w1, ..., wn, and W are integers).  

 Minimize the total amount of coins Σxi such that Σwixi = W and 

where xi is the number of times, coin i is given back as change.  

 

Greedy Algorithm 

 Unless total change not reached: 

 add the largest coin which is not larger than the remaining 

amount to the change 

 

Note: only optimal for standard coin sets, not for arbitrary ones! 

 

Related Problem: 

finishing darts (from 501 to 0 with 9 darts) 

Example 1: Money Change 
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G. F. Malfatti posed the following problem in 1803: 

 how to cut three cylindrical columns out of a triangular prism of 

marble such that their total volume is maximized? 

 his best solutions were so-called Malfatti circles in the triangular 

cross-section: 

 all circles are tangent to each other 

 two of them are tangent to each side of the triangle  

 

 

 

 

 

Example 2: Packing Circles in Triangles 
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What would a greedy algorithm do? 

 

 

Example 2: Packing Circles in Triangles 
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What would a greedy algorithm do? 

 

 

Note that Zalgaller and Los' showed in 1994 that the greedy 

algorithm is optimal [1] 

 

[1] Zalgaller, V.A.; Los', G.A. (1994), "The solution of Malfatti's problem", Journal of 

Mathematical Sciences 72 (4): 3163–3177, doi:10.1007/BF01249514. 

Example 2: Packing Circles in Triangles 

https://en.wikipedia.org/wiki/Victor_Zalgaller
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Outline: 

 reminder of problem definition 

 Kruskal’s algorithm 

 including correctness proofs and analysis of running time 

 

Example 3: Minimal Spanning Trees (MST) 
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A spanning tree of a connected graph G is a tree in G which 

contains all vertices of G 

 

Minimum Spanning Tree Problem (MST): 

 Given a (connected) graph G=(V,E) with edge weights wi for 

each edge ei. Find a spanning tree T that minimizes the weights 

of the contained edges, i.e. where 

     Σ   wi 

ei  T 

is minimized. 

 

 

MST: Reminder of Problem Definition 
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Algorithm, see [1] 

 Create forest F = (V,{}) with n components and no edge 

 Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S 

 While S non-empty and F not spanning: 

 delete cheapest edge from S 

 add it to F if no cycle is introduced 

 

 

 

 

 

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the 

traveling salesman problem". Proceedings of the American Mathematical 

Society 7: 48–50. doi:10.1090/S0002-9939-1956-0078686-7 

Kruskal’s Algorithm 
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Kruskal’s Algorithm: Example 
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Kruskal’s Algorithm: Example 
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First question: how to implement the algorithm? 

 sorting of edges needs O(|E| log |E|) 

Kruskal’s Algorithm: Runtime Considerations 

Algorithm 

Create forest F = (V,{}) with n components and no edge 

Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S 

While S non-empty and F not spanning: 

delete cheapest edge from S 

add it to F if no cycle is introduced 

 

simple ? 
forest implementation: 

Disjoint-set 

data structure 
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Data structure: ground set 1...N grouped to disjoint sets 

Operations: 

 FIND(i): to which set (“tree”) does i belong? 

 UNION(i,j): union the sets of i and j! 

 (“join the two trees of i and j”) 
 

Implemented as trees: 

 UNION(T1, T2): hang root node of smaller tree under root node of 

larger tree (constant time), thus 

 FIND(u): traverse tree from u to root (to return a representative of 

u’s set) takes logarithmic time in total number of nodes 

 

 

 

 

Disjoint-set Data Structure (“Union&Find”) 
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Algorithm, rewritten with UNION-FIND: 

 Create initial disjoint-set data structure, i.e. for each vertex vi, 

store vi as representative of its set 

 Create empty forest F = {} 

 Sort edges such that w.l.o.g. w1 < w2 < ... < w|E| 

 for each edge ei={u,v} starting from i=1: 

 if FIND(u) ≠ FIND(v): # no cycle introduced 

 F = F È {{u,v}} 

 UNION(u,v) 

 return F 

Implementation of Kruskal’s Algorithm 
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 Sorting of edges needs O(|E| log |E|) 

 forest: Disjoint-set data structure 

 initialization: O(|V|) 

 log |V| to find out whether the minimum-cost edge {u,v} 

connects two sets (no cycle induced) or is within a set (cycle 

would be induced) 

 2x FIND + potential UNION needs to be done O(|E|) times 

 total O(|E| log |V|) 

 Overall: O(|E| log |E|) 

 

 

Back to Runtime Considerations 
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Two parts needed: 

 Algo always produces a spanning tree 

 final F contains no cycle and is connected by definition  

 Algo always produces a minimum spanning tree 

 argument by induction 

 P: If F is forest at a given stage of the algorithm, then there 

is some minimum spanning tree that contains F. 

 clearly true for F = (V, {}) 

 assume that P holds when new edge e is added to F and 

be T a MST that contains F 

 if e in T, fine 

 if e not in T: T + e has cycle C with edge f in C but not 

in F (otherwise e would have introduced a cycle in F) 

 now T – f + e is a tree with same weight as T (since 

T is a MST and f was not chosen to F) 

 hence T – f + e is MST including T + e (i.e. P holds) 

        

Kruskal’s Algorithm: Proof of Correctness 

 

 
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 Another greedy approach to the MST problem is Prim’s algorithm 

 Somehow like the one of Kruskal but: 

 always keeps a tree instead of a forest 

 thus, take always the cheapest edge which connects to the 

current tree 

 Runtime more or less the same for both algorithms, but analysis of 

Prim’s algorithm a bit more involved because it needs (even) more 

complicated data structures to achieve it (hence not shown here) 

Another Greedy Algorithm for MST 
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What we have seen so far: 

 three problems where a greedy algorithm was optimal 

 money change 

 three circles in a triangle 

 minimum spanning tree (Kruskal’s and Prim’s algorithms) 

 but also: greedy not always optimal 

 in particular for NP-hard problems 

 

Obvious Question: 

 when is greedy good? 

 answer: matroids 

Intermediate Conclusion 
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from Wikipedia: 

 “[...] a matroid is a structure that captures and generalizes the 

notion of linear independence in vector spaces.” 

 

 

Reminder: linear independence in vector spaces 

 again from Wikipedia: 

 “A set of vectors is said to be linearly dependent if one of the 

vectors in the set can be defined as a linear combination of the 

other vectors. If no vector in the set can be written in this way, 

then the vectors are said to be linearly independent.” 

Matroids 
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 Various equivalent definitions of matroids exist 

 Here, we define a matroid via independent sets 

 

Definition of a Matroid: 

 A matroid is a tuple M=(E, I) with 

 E being the finite ground set and 

 I being a collection of (so-called) independent subsets of E  

satisfying these two axioms: 

 (I1) if X Í Y and Y  I then X  I, 

 (I2) if X  I and Y  I and  |Y| > |X| then there exists an  

e  Y\X such that X È {e}  I. 
 

Note: (I2) implies that all maximal independent sets have the 

same cardinality (maximal independent = adding an item of E 

makes the set dependent) 

Each maximal independent set is called a basis for M. 

Matroid: Definition 
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 A matroid M=(E, I) in which I = {X Í E: |X| ≤ k} is called a 

uniform matroid. 

 

 The bases of uniform matroids are the sets of cardinality k (in 

case k ≤ |E|). 

 

Example: Uniform Matroids 
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 Given a graph G=(V,E), its corresponding graphic matroid is 
defined by M=(E, I) where I contains all subsets of edges which 

are forests. 

 

 If G is connected, the bases are the spanning trees of G. 

 If G is unconnected, a basis contains a spanning tree in each 

connected component of G. 

Example: Graphic Matroids 
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Given a matroid M=(E, I) and a cost function c: E ® , the matroid 

optimization problem asks for an independent set S with the 

maximal total cost c(S)= eS c(e). 

 

 If all costs are non-negative, we search for a maximal cost basis. 

 In case of a graphic matroid, the above problem is equivalent to 

the Maximum Spanning Tree problem (use Kruskal’s algorithm, 

where the costs are negated, to solve it). 

 

 

Matroid Optimization 
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Greedy algorithm on M =(E, I) 

 sort the elements by their cost s.t. w.l.o.g. c(e1)≥c(e2) ≥... ≥e(e|M|) 

 S0 = {}, k=0 

 for j=1 to |E| do 

 if Sk È ej  I then 

 k = k+1 

 Sk = Sk-1 È ej 

 output the sets S1, ..., Sk or max{S1, ..., Sk} 

 

 

Theorem: The greedy algorithm on the independence system  
M=(E, I), which satisfies (I1), outputs the optimum for any cost 

function iff M is a matroid. 

Proof not shown here. 

 

Greedy Optimization of a Matroid 
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Exercise: 

A Greedy Algorithm for the Knapsack Problem 
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I hope it became clear... 

 

 ...what a greedy algorithm is 

 ...that it not always results in the optimal solution 

 ...but that it does if and only if the problem is a matroid 

Conclusions 




