Introduction to Optimization Branch and Bound

October 12, 2015 École Centrale Paris, Châtenay-Malabry, France

Dimo Brockhoff INRIA Lille – Nord Europe

Course Overview

Date		Торіс
Mon, 21.9.2015		Introduction
Mon, 28.9.2015	D	Basic Flavors of Complexity Theory
Mon, 5.10.2015	D	Greedy algorithms
Mon, 12.10.2015	D	Branch and bound (switched w/ dynamic programming)
Mon, 2.11.2015	D	Dynamic programming [salle Proto]
Fri, 6.11.2015	D	Approximation algorithms and heuristics [S205/S207]
Mon, 9.11.2015	С	Introduction to Continuous Optimization I [S118]
Fri, 13.11.2015	С	Introduction to Continuous Optimization II [from here onwards always: S205/S207]
Fri, 20.11.2015	С	Gradient-based Algorithms
Fri, 27.11.2015	С	End of Gradient-based Algorithms + Linear Programming
Fri, 4.12.2015	С	Stochastic Optimization and Derivative Free Optimization
Fri, 18.12.2015		Exam

all classes + exam last 3 hours (incl. a 15min break)

Branch and Bound: General Ideas

- Systematic enumeration of candidate solutions in terms of a rooted tree
- Each tree node corresponds to a set of solutions; the whole search space on the root
- At each tree node, the corresponding subset of the search space is split into (non-overlapping) sub-subsets:
 - the optimum of the larger problem must be contained in at least one of the subproblems
- If tree nodes correspond to small enough subproblems, they are solved exhaustively.
- The smart part of the algorithm is the estimation of upper and lower bounds on the optimal function value achieved by solutions in the tree nodes
 - the exploration of a tree node is stopped if a node's upper bound is already lower than the lower bound of an already explored node (assuming maximization)

Applying Branch and Bound

Needed for successful application of branch and bound:

- optimization problem
- finite set of solutions
- clear idea of how to split problem into smaller subproblems
- efficient calculation of the following modules:
 - upper bound calculation
 - lower bound calculation

Computing Bounds (Maximization Problems)

Assume w.l.o.g. maximization of f(x) here

Lower Bounds

- any actual feasible solution will give a lower bound (which will be exact if the solution is the optimal one for the subproblem)
- hence, sampling a (feasible) solution can be one strategy
- using a heuristic to solve the subproblem another one

Upper Bounds

 upper bounds can be achieved by solving a relaxed version of the problem formulations (i.e. by either loosening or removing constraints)

Note: the better/tighter the bounds, the quicker the branch and bound tree can be pruned

Properties of Branch and Bound Algorithms

- Exact, global solver
- Can be slow; only exponential worst-case runtime
 - due to the exhaustive search behavior if no pruning of the search tree is possible
- but might work well in some cases

Advantages:

- can be stopped if lower and upper bound are "close enough" in practice (not necessarily exact anymore then)
- can be combined with other techniques, e.g. "branch and cut" (not covered here)

Example Branching Decisions

0-1 problems:

- choose unfixed variable x_i
- one subproblem defined by setting x_i to 0
- one subproblem defined by setting x_i to 1

General integer problem:

- choose unfixed variable x_i
- choose a value c that x_i can take
- one subproblem defined by restricting $x_i \le c$
- one subproblem defined by restricting x_i > c

Combinatorial Problems:

 branching on certain discrete choices, e.g. an edge/vertex is chosen or not chosen

The branching decisions are then induced as additional constraints when defining the subproblems.

Which Tree Node to Branch on?

Several strategies (again assuming maximization):

- choose the subproblem with highest upper bound
 - gain the most in reducing overall upper bound
 - if upper bound not the optimal value, this problem needs to be branched upon anyway sooner or later
- choose the subproblem with lowest lower bound
- simple DFS or BFS
- problem-specific approach most likely to be a good choice

4 Steps Towards a Branch and Bound Algorithm

Concrete steps when designing a branch and bound algorithm:

- How to split a problem into subproblems ("branching")?
- How to compute upper bounds (assuming maximization)?
- Optional: how to compute lower bounds?
- How to decide which next tree node to split?

now: example of integer linear programming example of knapsack problem

Application to ILPs

 $\begin{array}{ll} \text{maximize} & c^T x\\ \text{subject to} & Ax \leq b\\ & x \geq 0\\ & \text{and} & x \in \mathbb{Z}^n \end{array}$

The ILP formalization covers many problems such as

- Traveling Salesperson Person (TSP)
- Vertex Cover and other covering problems
- Set packing and other packing problems
- Boolean satisfiability (SAT)

Ways of Solving an ILP

- Do not restrict the solutions to integers and round the solution found of the relaxed problem (=remove the integer constraints) by a continuous solver (i.e. solving the so-called *LP relaxation*)
 → no guarantee to be exact
- Exploiting the instance property of A being total unimodular:
 - feasible solutions are guaranteed to be integer in this case
 - algorithms for continuous relaxation can be used (e.g. the simplex algorithm)
- Using heuristic methods (typically without any quality guarantee)
 - we'll see these type of algorithms in next week's lecture
- Using exact algorithms such as branch and bound

Branch and Bound for ILPs

Here, we just give an idea instead of a concrete algorithm...

- How to split a problem into subproblems ("branching")?
- How to compute upper bounds (assuming maximization)?
- Optional: how to compute lower bounds?
- How to decide which next tree node to split?

Here, we just give an idea instead of a concrete algorithm...

- How to compute upper bounds (assuming maximization)?
- How to split a problem into subproblems ("branching")?
- Optional: how to compute lower bounds?
- How to decide which next tree node to split?

Branch and Bound for ILPs

How to compute upper bounds (assuming maximization)?

- drop the integer constraints and solve the so-called LPrelaxation
- can be done by standard LP algorithms such as scipy.optimize.linprog or Matlab's linprog

What's then?

- The LP has no feasible solution. Fine. Prune.
- We found an integer solution. Fine as well. Might give us a new lower bound to the overall problem.
- The LP problem has an optimal solution which is worse than the highest lower bound over all already explored subproblems. Fine. Prune.
- Otherwise: Branch on this subproblem: e.g. if optimal solution has x_i=2.7865, use x_i≤2 and x_i≥3 as new constraints

Branch and Bound for ILPs

How to split a problem into subproblems ("branching")?

- mainly needed if the solution of the LP-relaxation is not integer
- branch on a variable which is rational

Not discussed here in depth due to time:

- Optional: how to compute lower bounds?
- How to decide which next tree node to split?
 - seems to be good choice: subproblem with largest upper bound of LP-relaxation

Branch and Bound for the 0-1 Knapsack Problem

How would you implement a branch-and-bound algorithm for the 0-1 knapsack problem?

what are the subproblems?

how to compute upper bounds?

how to compute lower bounds?

I hope it became clear...

...what the basic algorithm design ideas of branch and bound are ...and for which problem types it is supposed to be suitable

back to the exercise: A Greedy Algorithm for the Knapsack Problem

http://researchers.lille.inria.fr/ ~brockhof/optimizationSaclay/