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Date Topic 

Mon, 21.9.2015 Introduction 

Mon, 28.9.2015  D Basic Flavors of Complexity Theory 

Mon, 5.10.2015 D Greedy algorithms 

Mon, 12.10.2015 D Branch and bound (switched w/ dynamic programming) 

Mon, 2.11.2015 D Dynamic programming [salle Proto] 

Fri, 6.11.2015 D Approximation algorithms and heuristics [S205/S207] 

Mon, 9.11.2015 C Introduction to Continuous Optimization I [S118] 

Fri, 13.11.2015 C Introduction to Continuous Optimization II 

[from here onwards always: S205/S207] 

Fri, 20.11.2015 C Gradient-based Algorithms 

Fri, 27.11.2015 C End of Gradient-based Algorithms + Linear Programming 

Fri, 4.12.2015 C Stochastic Optimization and Derivative Free Optimization 

Fri, 18.12.2015 Exam 

Course Overview 

all classes + exam last 3 hours (incl. a 15min break) 
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 Systematic enumeration of candidate solutions in terms of a 

rooted tree 

 Each tree node corresponds to a set of solutions; the whole 

search space on the root 

 At each tree node, the corresponding subset of the search space 

is split into (non-overlapping) sub-subsets: 

 the optimum of the larger problem must be contained in at 

least one of the subproblems 

 If tree nodes correspond to small enough subproblems, they are 

solved exhaustively. 

 The smart part of the algorithm is the estimation of upper and 

lower bounds on the optimal function value achieved by 

solutions in the tree nodes 

 the exploration of a tree node is stopped if a node’s upper 

bound is already lower than the lower bound of an already 

explored node (assuming maximization) 

Branch and Bound: General Ideas 
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Needed for successful application of branch and bound: 

 optimization problem 

 finite set of solutions 

 clear idea of how to split problem into smaller subproblems 

 efficient calculation of the following modules: 

 upper bound calculation 

 lower bound calculation 

Applying Branch and Bound 
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Assume w.l.o.g. maximization of f(x) here 

 

Lower Bounds 

 any actual feasible solution will give a lower bound (which will be 

exact if the solution is the optimal one for the subproblem) 

 hence, sampling a (feasible) solution can be one strategy 

 using a heuristic to solve the subproblem another one 

 

Upper Bounds 

 upper bounds can be achieved by solving a relaxed version of 

the problem formulations (i.e. by either loosening or removing 

constraints) 

 

Note: the better/tighter the bounds, the quicker the branch and 

bound tree can be pruned 

Computing Bounds (Maximization Problems) 
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 Exact, global solver 

 Can be slow; only exponential worst-case runtime 

 due to the exhaustive search behavior if no pruning of the 

search tree is possible 

 but might work well in some cases 

 

Advantages: 

 can be stopped if lower and upper bound are “close enough” in 

practice (not necessarily exact anymore then) 

 can be combined with other techniques, e.g. “branch and cut” 

(not covered here) 

Properties of Branch and Bound Algorithms 
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0-1 problems: 

 choose unfixed variable xi 

 one subproblem defined by setting xi to 0 

 one subproblem defined by setting xi to 1 
 

General integer problem: 

 choose unfixed variable xi 

 choose a value c that xi can take 

 one subproblem defined by restricting xi ≤ c 

 one subproblem defined by restricting xi > c 
 

Combinatorial Problems: 

 branching on certain discrete choices, e.g. an edge/vertex is 

chosen or not chosen 
 

The branching decisions are then induced as additional constraints 

when defining the subproblems. 

Example Branching Decisions 
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Several strategies (again assuming maximization): 

 choose the subproblem with highest upper bound 

 gain the most in reducing overall upper bound 

 if upper bound not the optimal value, this problem needs to 

be branched upon anyway sooner or later 

 choose the subproblem with lowest lower bound 

 simple DFS or BFS 

 problem-specific approach most likely to be a good choice 

Which Tree Node to Branch on? 
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Concrete steps when designing a branch and bound algorithm: 

 How to split a problem into subproblems (“branching”)? 

 How to compute upper bounds (assuming maximization)? 

 Optional: how to compute lower bounds? 

 How to decide which next tree node to split? 

4 Steps Towards a Branch and Bound Algorithm 

now: example of integer linear programming 

example of knapsack problem 
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The ILP formalization covers many problems such as 

 Traveling Salesperson Person (TSP) 

 Vertex Cover and other covering problems 

 Set packing and other packing problems 

 Boolean satisfiability (SAT) 

 

 

Application to ILPs 
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 Do not restrict the solutions to integers and round the solution 

found of the relaxed problem (=remove the integer constraints) 

by a continuous solver (i.e. solving the so-called LP relaxation) 

 no guarantee to be exact 

 Exploiting the instance property of A being total unimodular: 

 feasible solutions are guaranteed to be integer in this case 

 algorithms for continuous relaxation  can be used (e.g. the 

simplex algorithm) 

 Using heuristic methods (typically without any quality guarantee) 

 we’ll see these type of algorithms in next week’s lecture 

 Using exact algorithms such as branch and bound 

Ways of Solving an ILP 
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Here, we just give an idea instead of a concrete algorithm... 

 

 How to split a problem into subproblems (“branching”)? 

 How to compute upper bounds (assuming maximization)? 

 Optional: how to compute lower bounds? 

 How to decide which next tree node to split? 

 

Branch and Bound for ILPs 
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Here, we just give an idea instead of a concrete algorithm... 

 

 How to compute upper bounds (assuming maximization)? 

 How to split a problem into subproblems (“branching”)? 

 Optional: how to compute lower bounds? 

 How to decide which next tree node to split? 

 

Branch and Bound for ILPs 
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How to compute upper bounds (assuming maximization)? 

 drop the integer constraints and solve the so-called LP-

relaxation 

 can be done by standard LP algorithms such as 
scipy.optimize.linprog  or Matlab’s linprog 

 

What’s then? 

 The LP has no feasible solution. Fine. Prune. 

 We found an integer solution. Fine as well. Might give us a 

new lower bound to the overall problem.  

 The LP problem has an optimal solution which is worse than 

the highest lower bound over all already explored 

subproblems. Fine. Prune. 

 Otherwise: Branch on this subproblem: e.g. if optimal 

solution has xi=2.7865, use xi≤2 and xi≥3 as new constraints 

Branch and Bound for ILPs 
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How to split a problem into subproblems (“branching”)? 

 mainly needed if the solution of the LP-relaxation is not 

integer 

 branch on a variable which is rational 

 

Not discussed here in depth due to time: 

 Optional: how to compute lower bounds? 

 How to decide which next tree node to split? 

 seems to be good choice: subproblem with largest upper 

bound of LP-relaxation 

Branch and Bound for ILPs 
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Branch and Bound for the 0-1 Knapsack Problem 

How would you implement a 

branch-and-bound algorithm 

for the 0-1 knapsack problem? 

what are the subproblems? 

how to compute upper bounds? 

how to compute lower bounds? 
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I hope it became clear... 

 

 ...what the basic algorithm design ideas of branch and bound are 

 ...and for which problem types it is supposed to be suitable 

Conclusions 
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back to the exercise: 

A Greedy Algorithm for the Knapsack Problem 

 

http://researchers.lille.inria.fr/ 

~brockhof/optimizationSaclay/ 

 




