
Introduction to Optimization

 Branch and Bound

Dimo Brockhoff

INRIA Lille – Nord Europe

October 12, 2015

École Centrale Paris, Châtenay-Malabry, France

2 Introduction to Optimization @ ECP, Oct. 12, 2015 © Dimo Brockhoff, INRIA 2

Date Topic

Mon, 21.9.2015 Introduction

Mon, 28.9.2015 D Basic Flavors of Complexity Theory

Mon, 5.10.2015 D Greedy algorithms

Mon, 12.10.2015 D Branch and bound (switched w/ dynamic programming)

Mon, 2.11.2015 D Dynamic programming [salle Proto]

Fri, 6.11.2015 D Approximation algorithms and heuristics [S205/S207]

Mon, 9.11.2015 C Introduction to Continuous Optimization I [S118]

Fri, 13.11.2015 C Introduction to Continuous Optimization II

[from here onwards always: S205/S207]

Fri, 20.11.2015 C Gradient-based Algorithms

Fri, 27.11.2015 C End of Gradient-based Algorithms + Linear Programming

Fri, 4.12.2015 C Stochastic Optimization and Derivative Free Optimization

Fri, 18.12.2015 Exam

Course Overview

all classes + exam last 3 hours (incl. a 15min break)

3 Introduction to Optimization @ ECP, Oct. 12, 2015 © Dimo Brockhoff, INRIA 3

 Systematic enumeration of candidate solutions in terms of a

rooted tree

 Each tree node corresponds to a set of solutions; the whole

search space on the root

 At each tree node, the corresponding subset of the search space

is split into (non-overlapping) sub-subsets:

 the optimum of the larger problem must be contained in at

least one of the subproblems

 If tree nodes correspond to small enough subproblems, they are

solved exhaustively.

 The smart part of the algorithm is the estimation of upper and

lower bounds on the optimal function value achieved by

solutions in the tree nodes

 the exploration of a tree node is stopped if a node’s upper

bound is already lower than the lower bound of an already

explored node (assuming maximization)

Branch and Bound: General Ideas

4 Introduction to Optimization @ ECP, Oct. 12, 2015 © Dimo Brockhoff, INRIA 4

Needed for successful application of branch and bound:

 optimization problem

 finite set of solutions

 clear idea of how to split problem into smaller subproblems

 efficient calculation of the following modules:

 upper bound calculation

 lower bound calculation

Applying Branch and Bound

5 Introduction to Optimization @ ECP, Oct. 12, 2015 © Dimo Brockhoff, INRIA 5

Assume w.l.o.g. maximization of f(x) here

Lower Bounds

 any actual feasible solution will give a lower bound (which will be

exact if the solution is the optimal one for the subproblem)

 hence, sampling a (feasible) solution can be one strategy

 using a heuristic to solve the subproblem another one

Upper Bounds

 upper bounds can be achieved by solving a relaxed version of

the problem formulations (i.e. by either loosening or removing

constraints)

Note: the better/tighter the bounds, the quicker the branch and

bound tree can be pruned

Computing Bounds (Maximization Problems)

6 Introduction to Optimization @ ECP, Oct. 12, 2015 © Dimo Brockhoff, INRIA 6

 Exact, global solver

 Can be slow; only exponential worst-case runtime

 due to the exhaustive search behavior if no pruning of the

search tree is possible

 but might work well in some cases

Advantages:

 can be stopped if lower and upper bound are “close enough” in

practice (not necessarily exact anymore then)

 can be combined with other techniques, e.g. “branch and cut”

(not covered here)

Properties of Branch and Bound Algorithms

7 Introduction to Optimization @ ECP, Oct. 12, 2015 © Dimo Brockhoff, INRIA 7

0-1 problems:

 choose unfixed variable xi

 one subproblem defined by setting xi to 0

 one subproblem defined by setting xi to 1

General integer problem:

 choose unfixed variable xi

 choose a value c that xi can take

 one subproblem defined by restricting xi ≤ c

 one subproblem defined by restricting xi > c

Combinatorial Problems:

 branching on certain discrete choices, e.g. an edge/vertex is

chosen or not chosen

The branching decisions are then induced as additional constraints

when defining the subproblems.

Example Branching Decisions

8 Introduction to Optimization @ ECP, Oct. 12, 2015 © Dimo Brockhoff, INRIA 8

Several strategies (again assuming maximization):

 choose the subproblem with highest upper bound

 gain the most in reducing overall upper bound

 if upper bound not the optimal value, this problem needs to

be branched upon anyway sooner or later

 choose the subproblem with lowest lower bound

 simple DFS or BFS

 problem-specific approach most likely to be a good choice

Which Tree Node to Branch on?

9 Introduction to Optimization @ ECP, Oct. 12, 2015 © Dimo Brockhoff, INRIA 9

Concrete steps when designing a branch and bound algorithm:

 How to split a problem into subproblems (“branching”)?

 How to compute upper bounds (assuming maximization)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

4 Steps Towards a Branch and Bound Algorithm

now: example of integer linear programming

example of knapsack problem

10 Introduction to Optimization @ ECP, Oct. 12, 2015 © Dimo Brockhoff, INRIA 10

The ILP formalization covers many problems such as

 Traveling Salesperson Person (TSP)

 Vertex Cover and other covering problems

 Set packing and other packing problems

 Boolean satisfiability (SAT)

Application to ILPs

11 Introduction to Optimization @ ECP, Oct. 12, 2015 © Dimo Brockhoff, INRIA 11

 Do not restrict the solutions to integers and round the solution

found of the relaxed problem (=remove the integer constraints)

by a continuous solver (i.e. solving the so-called LP relaxation)

 no guarantee to be exact

 Exploiting the instance property of A being total unimodular:

 feasible solutions are guaranteed to be integer in this case

 algorithms for continuous relaxation can be used (e.g. the

simplex algorithm)

 Using heuristic methods (typically without any quality guarantee)

 we’ll see these type of algorithms in next week’s lecture

 Using exact algorithms such as branch and bound

Ways of Solving an ILP

12 Introduction to Optimization @ ECP, Oct. 12, 2015 © Dimo Brockhoff, INRIA 12

Here, we just give an idea instead of a concrete algorithm...

 How to split a problem into subproblems (“branching”)?

 How to compute upper bounds (assuming maximization)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

Branch and Bound for ILPs

13 Introduction to Optimization @ ECP, Oct. 12, 2015 © Dimo Brockhoff, INRIA 13

Here, we just give an idea instead of a concrete algorithm...

 How to compute upper bounds (assuming maximization)?

 How to split a problem into subproblems (“branching”)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

Branch and Bound for ILPs

14 Introduction to Optimization @ ECP, Oct. 12, 2015 © Dimo Brockhoff, INRIA 14

How to compute upper bounds (assuming maximization)?

 drop the integer constraints and solve the so-called LP-

relaxation

 can be done by standard LP algorithms such as
scipy.optimize.linprog or Matlab’s linprog

What’s then?

 The LP has no feasible solution. Fine. Prune.

 We found an integer solution. Fine as well. Might give us a

new lower bound to the overall problem.

 The LP problem has an optimal solution which is worse than

the highest lower bound over all already explored

subproblems. Fine. Prune.

 Otherwise: Branch on this subproblem: e.g. if optimal

solution has xi=2.7865, use xi≤2 and xi≥3 as new constraints

Branch and Bound for ILPs

15 Introduction to Optimization @ ECP, Oct. 12, 2015 © Dimo Brockhoff, INRIA 15

How to split a problem into subproblems (“branching”)?

 mainly needed if the solution of the LP-relaxation is not

integer

 branch on a variable which is rational

Not discussed here in depth due to time:

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

 seems to be good choice: subproblem with largest upper

bound of LP-relaxation

Branch and Bound for ILPs

16 Introduction to Optimization @ ECP, Oct. 12, 2015 © Dimo Brockhoff, INRIA 16

Branch and Bound for the 0-1 Knapsack Problem

How would you implement a

branch-and-bound algorithm

for the 0-1 knapsack problem?

what are the subproblems?

how to compute upper bounds?

how to compute lower bounds?

18 Introduction to Optimization @ ECP, Oct. 12, 2015 © Dimo Brockhoff, INRIA 18

I hope it became clear...

 ...what the basic algorithm design ideas of branch and bound are

 ...and for which problem types it is supposed to be suitable

Conclusions

19 Introduction to Optimization @ ECP, Oct. 12, 2015 © Dimo Brockhoff, INRIA 19

back to the exercise:

A Greedy Algorithm for the Knapsack Problem

http://researchers.lille.inria.fr/

~brockhof/optimizationSaclay/

