Introduction to Optimization
Branch and Bound

October 12, 2015
Ecole Centrale Paris, Chatenay-Malabry, France

4 Dimo Brockhoff
CLA— |NRIA Lille — Nord Europe

Course Overview

Mon, 21.9.2015
Mon, 28.9.2015
Mon, 5.10.2015
Mon, 12.10.2015

Mon, 2.11.2015
Fri, 6.11.2015

Mon, 9.11.2015
Fri, 13.11.2015

Fri, 20.11.2015
Fri, 27.11.2015
Fri, 4.12.2015

Fri, 18.12.2015

D
D

O O O O

O O

Date | |Topic

Introduction

Basic Flavors of Complexity Theory

Greedy algorithms

Branch and bound (switched w/ dynamic programming)

Dynamic programming [salle Proto]
Approximation algorithms and heuristics [S205/S207]
Introduction to Continuous Optimization | [S118]

Introduction to Continuous Optimization Il
[from here onwards always: S205/S207]

Gradient-based Algorithms

End of Gradient-based Algorithms + Linear Programming
Stochastic Optimization and Derivative Free Optimization
Exam

all classes + exam last 3 hours (incl. a 15min break)

© Dimo Brockhoff, INRIA

Introduction to Optimization @ ECP, Oct. 12, 2015

Branch and Bound: General Ideas

= Systematic enumeration of candidate solutions in terms of a
rooted tree

» Each tree node corresponds to a set of solutions; the whole
search space on the root

= At each tree node, the corresponding subset of the search space
IS split into (non-overlapping) sub-subsets:

= the optimum of the larger problem must be contained in at
least one of the subproblems

= |f tree nodes correspond to small enough subproblems, they are
solved exhaustively.

= The smart part of the algorithm is the estimation of upper and
lower bounds on the optimal function value achieved by
solutions in the tree nodes

» the exploration of a tree node is stopped if a node’s upper
bound is already lower than the lower bound of an already
explored node (assuming maximization)

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 12, 2015

Applying Branch and Bound

Needed for successful application of branch and bound:
= optimization problem
= finite set of solutions
= clear idea of how to split problem into smaller subproblems
= efficient calculation of the following modules:
* upper bound calculation
= |ower bound calculation

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 12, 2015

Computing Bounds (Maximization Problem

Assume w.l.0.g. maximization of f(x) here

Lower Bounds

= any actual feasible solution will give a lower bound (which will be
exact if the solution is the optimal one for the subproblem)

= hence, sampling a (feasible) solution can be one strategy
= using a heuristic to solve the subproblem another one

Upper Bounds

= upper bounds can be achieved by solving a relaxed version of

the problem formulations (i.e. by either loosening or removing
constraints)

Note: the better/tighter the bounds, the quicker the branch and
bound tree can be pruned

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 12, 2015

Properties of Branch and Bound Algorithms

= Exact, global solver
= Can be slow; only exponential worst-case runtime

= due to the exhaustive search behavior if no pruning of the
search tree is possible

= but might work well in some cases

Advantages:

= can be stopped if lower and upper bound are “close enough” in
practice (not necessarily exact anymore then)

= can be combined with other techniques, e.g. “branch and cut”
(not covered here)

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 12, 2015

Example Branching Decisions

0-1 problems:
= choose unfixed variable x;
= one subproblem defined by setting x; to O
= one subproblem defined by setting x; to 1

General integer problem:
= choose unfixed variable x;
= choose a value c that x; can take
= one subproblem defined by restricting x, < c
= one subproblem defined by restricting x;, > c

Combinatorial Problems:

» pranching on certain discrete choices, e.g. an edge/vertex is
chosen or not chosen

The branching decisions are then induced as additional constraints
when defining the subproblems.

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 12, 2015

Which Tree Node to Branch on?

Several strategies (again assuming maximization):
= choose the subproblem with highest upper bound
= gain the most in reducing overall upper bound

= if upper bound not the optimal value, this problem needs to
be branched upon anyway sooner or later

= choose the subproblem with lowest lower bound
= simple DFS or BFS

= problem-specific approach most likely to be a good choice

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 12, 2015

4 Steps Towards a Branch and Bound Algo

Concrete steps when designing a branch and bound algorithm:
= How to split a problem into subproblems (“branching”)?

= How to compute upper bounds (assuming maximization)?

= Optional: how to compute lower bounds?

= How to decide which next tree node to split?

now: example of integer linear programming
example of knapsack problem

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 12, 2015

Application to ILPs

maximize clx

subject to Ax <b
x>0
and x€Z"

The ILP formalization covers many problems such as
» Traveling Salesperson Person (TSP)

= Vertex Cover and other covering problems

» Set packing and other packing problems

= Boolean satisfiability (SAT)

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 12, 2015

Ways of Solving an ILP

Do not restrict the solutions to integers and round the solution
found of the relaxed problem (=remove the integer constraints)
by a continuous solver (i.e. solving the so-called LP relaxation)

-=> No guarantee to be exact
Exploiting the instance property of A being total unimodular:
= feasible solutions are guaranteed to be integer in this case

= algorithms for continuous relaxation can be used (e.g. the
simplex algorithm)

Using heuristic methods (typically without any guality guarantee)
= we'll see these type of algorithms in next week’s lecture
Using exact algorithms such as branch and bound

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 12, 2015

Branch and Bound for ILPs

Here, we just give an idea instead of a concrete algorithm...

= How to split a problem into subproblems (“branching”)?

= How to compute upper bounds (assuming maximization)?
= Optional: how to compute lower bounds?

= How to decide which next tree node to split?

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 12, 2015

Branch and Bound for ILPs

Here, we just give an idea instead of a concrete algorithm...

= How to compute upper bounds (assuming maximization)?
= How to split a problem into subproblems (“branching”)?

= Optional: how to compute lower bounds?

= How to decide which next tree node to split?

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 12, 2015

Branch and Bound for ILPs

How to compute upper bounds (assuming maximization)?

= drop the integer constraints and solve the so-called LP-
relaxation

= can be done by standard LP algorithms such as
scipy.optimize.linprog or Matlab’'s 1inprog

What’s then?
= The LP has no feasible solution. Fine. Prune.

= We found an integer solution. Fine as well. Might give us a
new lower bound to the overall problem.

= The LP problem has an optimal solution which is worse than
the highest lower bound over all already explored
subproblems. Fine. Prune.

= QOtherwise: Branch on this subproblem: e.g. if optimal
solution has x=2.7865, use x<2 and x;=23 as new constraints

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 12, 2015

Branch and Bound for ILPs

How to split a problem into subproblems (“branching”)?
= mainly needed if the solution of the LP-relaxation is not
Integer
= pranch on a variable which is rational

Not discussed here in depth due to time:
= Optional: how to compute lower bounds?
= How to decide which next tree node to split?

= seems to be good choice: subproblem with largest upper
bound of LP-relaxation

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 12, 2015

Branch and Bound for the 0-1 Knapsack F

How would you implement a
branch-and-bound algorithm
for the 0-1 knapsack problem?

what are the subproblems?

how to compute upper bounds?

how to compute lower bounds?

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 12, 2015

Conclusions

| hope it became clear...

...what the basic algorithm design ideas of branch and bound are
...and for which problem types it is supposed to be suitable

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 12, 2015

back to the exercise:
A Greedy Algorithm for the Knapsack Problem

http://researchers.lille.inria.fr/
~brockhof/optimizationSaclay/

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Oct. 12, 2015

