Introduction to Optimization Approximation Algorithms and Heuristics

November 9, 2015
École Centrale Paris, Châtenay-Malabry, France

Dimo Brockhoff INRIA Lille - Nord Europe

Course Overview

Date		Topic					
Mon, 21.9.2015		Introduction					
Mon, 28.9.2015	D	Basic Flavors of Complexity Theory					
Mon, 5.10.2015	D	Greedy algorithms					
Mon, 12.10.2015	D	Branch and bound (switched w/ dynamic programming)					
Mon, 2.11.2015	D	Dynamic programming [salle Proto]					
Fri, 6.11.2015	D	Approximation algorithms and heuristics [S205/S207]					
Mon, 9.11.2015	C	Introduction to Continuous Optimization I [S118]					
Fri, 13.11.2015	C	Introduction to Continuous Optimization II					
[from here onwards always: S205/S207]			$	$	Fri, 20.11.2015	C	Gradient-based Algorithms
:---	:---	:---					
Fri, 27.11.2015	C	End of Gradient-based Algorithms + Linear Programming Stochastic Optimization and Derivative Free Optimization I					
Fri, 4.12.2015	C	Stochastic Optimization and Derivative Free Optimization II					
Tue, 15.12.2015		Exam					

Overview of Today's Lecture

Introduction to Continuous Optimizaation

- examples (from ML / black-box problems)
- typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix

Further Details on Remaining Lectures

Introduction to Continuous Optimization

- examples (from ML / black-box problems)
- typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix
- unconstraint optimization
- first and second order conditions
- convexity
- constrained optimization

Gradient-based Algorithms

- quasi-Newton method (BFGS)

Learning in Optimization / Stochastic Optimization

- CMA-ES (adaptive algorithms / Information Geometry)
- PhD thesis possible on this topic strongly related to $M L$, new promising research area, interesting open questions

First Example of a Continuous Optimization Problem

Computer simulation teaches itself to walk upright (virtual robots (of different shapes) learning to walk, through stochastic optimization (CMA-ES)), by Utrecht University:

We present a control system based on 3D muscle actuation

https://www.youtube.com/watch?v=yci5Ful1ovk

T. Geitjtenbeek, M. Van de Panne, F. Van der Stappen: "Flexible Muscle-Based Locomotion for Bipedal Creatures", SIGGRAPH Asia, 2013.

Continuous Optimization

- Optimize $f:\left\{\begin{array}{c}\Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R} \\ x=\left(x_{1}, \ldots, x_{n}\right) \rightarrow f\left(x_{1}, \ldots, x_{n}\right)\end{array}\right.$ unconstrained optimization
- Search space is continuous, i.e. composed of real vectors $x \in \mathbb{R}^{n}$
- $n=\{$ dimension of the problem dimension of the search space \mathbb{R}^{n} (as vector space)

2-D level sets

Unconstrained vs. Constrained Optimization

Unconstrained optimization

$$
\inf \left\{f(x) \mid x \in \mathbb{R}^{n}\right\}
$$

Constrained optimization

- Equality constraints: $\inf \left\{f(x) \mid x \in \mathbb{R}^{n}, g_{k}(x)=0,1 \leq k \leq p\right\}$
- Inequality constraints: $\inf \left\{f(x) \mid x \in \mathbb{R}^{n}, g_{k}(x) \leq 0,1 \leq k \leq p\right\}$
where always $g_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

Example of a Constraint

$\min _{x \in \mathbb{R}} f(x)=x^{2}$ such that $x \leq-1$

Analytical Functions

Example: 1-D

$$
\begin{gathered}
f_{1}(x)=a\left(x-x_{0}\right)^{2}+b \\
\text { where } x, x_{0}, b \in \mathbb{R}, a \in \mathbb{R}
\end{gathered}
$$

Generalization:

convex quadratic function

$$
\begin{gathered}
f_{2}(x)=\left(x-x_{0}\right)^{T} A\left(x-x_{0}\right)+b \\
\text { where } x, x_{0}, b \in \mathbb{R}^{n}, A \in \mathbb{R}^{\{n \times n\}} \\
\text { and } A \text { symmetric positive definite (SPD) }
\end{gathered}
$$

Exercise:
 What is the minimum of $f_{2}(x)$?

Levels Sets of Convex Quadratic Functions

Continuation of exercise:

 What are the level sets of f_{2} ?Reminder: level sets of a function

$$
L_{c}=\left\{x \in \mathbb{R}^{n} \mid f(x)=c\right\}
$$

(similar to topography lines / level sets on a map)

Levels Sets of Convex Quadratic Functions

Continuation of exercise:

What are the level sets of f_{2} ?

- Probably too complicated in general, thus an example here
- Consider $A=\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right), b=0, n=2$
a) Compute $f_{2}(x)$.
b) Plot the level sets of $f_{2}(x)$.
c) Optional: More generally, for $n=2$, if A is SPD with eigenvalues $\lambda_{1}=9$ and $\lambda_{2}=1$, what are the level sets of $f_{2}(x)$?

Example Problems

Data Fitting - Data Calibration

Objective

- Given a sequence of data points $\left(\boldsymbol{x}_{i}, y_{i}\right) \in \mathbb{R}^{p} \times \mathbb{R}, i=1, \ldots, N$, find a model " $y=f(\boldsymbol{x})$ " that explains the data
experimental measurements in biology, chemistry, ...
- In general, choice of a parametric model or family of functions $\left(f_{\theta}\right)_{\theta \in \mathbb{R}^{n}}$
use of expertise for choosing model or simple models only affordable (linear, quadratic)
- Try to find the parameter $\theta \in \mathbb{R}^{n}$ fitting best to the data

Fitting best to the data
Minimize the quadratic error:

$$
\min _{\theta \in \mathbb{R}^{n}} \sum_{i=1}^{N}\left|f_{\theta}\left(\boldsymbol{x}_{i}\right)-y_{i}\right|^{2}
$$

Optimization and Machine Learning: Lin. Regression

Supervised Learning:

Predict $y \in \mathcal{Y}$ from $\boldsymbol{x} \in \mathcal{X}$, given a set of observations (examples) $\left\{y_{i}, x_{i}\right\}_{i=1, \ldots, N}$
(Simple) Linear regression
Given a set of data: $\{y_{i}, \underbrace{x_{i}^{1}, \ldots, x_{i}^{p}}_{\boldsymbol{x}_{i}^{T}}\}_{i=1 \ldots N}$

$$
\underbrace{}_{\| \boldsymbol{w} \in \mathbb{R}^{p}, \beta \in \mathbb{R}} \underbrace{\sum_{i=1}^{N}\left|\boldsymbol{w}^{T} \boldsymbol{x}_{i}+\beta-y_{i}\right|^{2}}_{\|\widetilde{\boldsymbol{X}} \widetilde{\boldsymbol{w}}-\boldsymbol{y}\|^{2} \quad \widetilde{X} \in \mathbb{R}^{N \times(p+1)}, \widetilde{\boldsymbol{w}} \in \mathbb{R}^{p+1}}
$$

same as data fitting with linear model, i.e. $f_{(w, \beta)}(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{x}+\beta$,

$$
\theta \in \mathbb{R}^{p+1}
$$

A Real-World Problem in Petroleum Engineering

Well Placement Problem

Function Difficulties

What Makes a Function Difficult to Solve?

- dimensionality
(considerably) larger than three
- non-separability dependencies between the objective variables
- ill-conditioning
- ruggedness

non-smooth, discontinuous, multimodal, and/or noisy function

cut from 3D example, solvable with an evolution strategy

Curse of Dimensionality

- The term Curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.
- Example: Consider placing 100 points onto a real interval, say $[0,1]$. To get similar coverage, in terms of distance between adjacent points, of the 10 -dimensional space $[0,1]^{10}$ would require $100^{10}=10^{20}$ points. The original 100 points appear now as isolated points in a vast empty space.
- Consequently, a search policy (e.g. exhaustive search) that is valuable in small dimensions might be useless in moderate or large dimensional search spaces.

Separable Problems

Definition (Separable Problem)

A function f is separable if

$$
\underset{\left(x_{1}, \ldots, x_{n}\right)}{\operatorname{argmin}} f\left(x_{1}, \ldots, x_{n}\right)=\left(\underset{x_{1}}{\operatorname{argmin}} f\left(x_{1}, \ldots\right), \ldots, \underset{x_{n}}{\operatorname{argmin}} f\left(\ldots, x_{n}\right)\right)
$$

\Rightarrow it follows that f can be optimized in a sequence of n independent 1-D optimization processes

Example:

Additively decomposable functions

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\substack{i=1 \\ \text { Rastrigin function }}}^{n} f_{i}\left(x_{i}\right)
$$

Non-Separable Problems

Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system

- $f: x \mapsto f(x)$ separable
- $f: \boldsymbol{x} \mapsto f(R \boldsymbol{x})$ non-separable

R rotation matrix

[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation". Sixth ICGA, pp. 57-64, Morgan Kaufmann
[2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278

III-Conditioned Problems: Curvature of Level Sets

Consider the convex-quadratic function

$$
f(\boldsymbol{x})=\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)^{T} H\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)=\frac{1}{2} \sum_{i} h_{i, i} x_{i}^{2}+\frac{1}{2} \sum_{i, j} h_{i, j} x_{i} x_{j}
$$

H is Hessian matrix of f and symmetric positive definite

$$
\begin{aligned}
& \text { gradient direction }-f^{\prime}(x)^{T} \\
& \text { Newton direction }-H^{-1} f^{\prime}(x)^{T}
\end{aligned}
$$

III-conditioning means squeezed level sets (high curvature). Condition number of SPD matrix $A=$ ratio between largest and smallest eigenvalue
Condition number equals nine here (kind of well-conditioned). Condition numbers up to 10^{10} are not unusual in real-world problems.

Mathematical Tools to Characterize Optima

Different Notions of Optimum

Unconstrained case

- local vs. global
- local minimum x^{*} : \exists a neighborhood V of \boldsymbol{x}^{*} such that $\forall \boldsymbol{x} \in \mathrm{V}: f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}^{*}\right)$
- global minimum: $\forall x \in \Omega: f(x) \geq f\left(x^{*}\right)$
- strict local minimum if the inequality is strict

Mathematical Characterization of Optima

Objective: Derive general characterization of optima
Example: if $f: \mathbb{R} \rightarrow \mathbb{R}$ differentiable, $f^{\prime}(x)=0$ at optimal points

- generalization to $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$?
- generalization to constrained problems?

Remark: notion of optimum independent of notion of differentiability

optima of such function can be easily approached by certain type of methods

Reminder: Continuity of a Function

$f:\left(V,\| \|_{V}\right) \rightarrow\left(W,\| \|_{W}\right)$ is continuous in $x \in V$ if
$\forall \epsilon>0, \exists \eta>0$ such that $\forall y \in V:\|x-y\|_{V} \leq \eta ;\|f(x)-f(y)\|_{W} \leq \epsilon$

not continuous

continuous function

Reminder: Differentiability in 1D (n=1)

$f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable in $x \in \mathbb{R}$ if

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \text { exists, } h \in \mathbb{R}
$$

Notation:
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

The derivative corresponds to the slope of the tangent in x.

Reminder: Differentiability in 1D (n=1)

Taylor Formula (Order 1)
If f is differentiable in x then

$$
f(x+h)=f(x)+f^{\prime}(x) h+o(\|h\|)
$$

i.e. for h small enough, $h \mapsto f(x+h)$ is approximated by $h \mapsto$ $f(x)+f^{\prime}(h)$
$h \mapsto f(x)+f^{\prime}(x) h$ is called a first order approximation of $f(x+h)$

Reminder: Differentiability in 1D (n=1)

Geometrically:

The notion of derivative of a function defined on \mathbb{R}^{n} is generalized via this idea of a linear approximation of $f(x+h)$ for h small enough.

Gradient Definition Via Partial Derivatives

- In $\left(\mathbb{R}^{n},\| \|_{2}\right)$ where $\|x\|_{2}=\sqrt{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}$ is the Euclidean norm deriving from the scalar product $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\boldsymbol{x}^{T} \boldsymbol{y}$

$$
\nabla f(x)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right)
$$

- Reminder: partial derivative in x_{0}

$$
\begin{gathered}
\mathrm{f}_{\mathrm{i}}: y \rightarrow f\left(x_{0}^{1}, \ldots, x_{0}^{i-1}, y, x_{0}^{i+1}, \ldots, x_{0}^{n}\right) \\
\frac{\partial f}{\partial x_{i}}\left(x_{0}\right)=f_{i}^{\prime}\left(x_{0}\right)
\end{gathered}
$$

Exercise: Gradients

Exercise:

Compute the gradients of a) $f(x)=x_{1}$ with $x \in \mathbb{R}^{n}$
b) $f(x)=a^{T} x$ with a, $x \in \mathbb{R}^{n}$
c) $f(x)=x^{T} x\left(=\|\mathrm{x}\|^{2}\right)$ with $x \in \mathbb{R}^{n}$

Exercise: Gradients

Exercise:

Compute the gradients of
a) $f(x)=x_{1}$ with $x \in \mathbb{R}^{n}$
b) $f(x)=a^{T} x$ with a, $x \in \mathbb{R}^{n}$
c) $f(x)=x^{T} x\left(=\|x\|^{2}\right)$ with $x \in \mathbb{R}^{n}$

Some more examples:

- in \mathbb{R}^{n}, if $f(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}$, then $\nabla f(\boldsymbol{x})=\left(A+A^{T}\right) \boldsymbol{x}$
- in $\mathbb{R}, \nabla f(\boldsymbol{x})=f^{\prime}(\boldsymbol{x})$

Gradient: Geometrical Interpretation

Exercise:

Let $L_{c}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid f(\boldsymbol{x})=c\right\}$ be again a level set of a function $f(\boldsymbol{x})$. Let $x_{0} \in L_{c} \neq \emptyset$.

Plot the level sets for $f(\boldsymbol{x})=\boldsymbol{a}^{T} \boldsymbol{x}$ and $f(\boldsymbol{x})=\|\boldsymbol{x}\|^{2}$, compute the gradient in a chosen point x_{0} and observe that $\nabla f\left(\boldsymbol{x}_{0}\right)$ is orthogonal to the level set in x_{0}.

More generally, the gradient of a differentiable function is orthogonal to its level sets.

Reminder: Differentiability in \mathbb{R}^{n}

Taylor Formula - Order One

$$
f(\boldsymbol{x}+\boldsymbol{h})=f(\boldsymbol{x})+(\nabla f(\boldsymbol{x}))^{T} \boldsymbol{h}+o(\|\boldsymbol{h}\|)
$$

Reminder: Second Order Differentiability in 1D

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function and let $f^{\prime}: x \rightarrow f^{\prime}(x)$ be its derivative.
- If f^{\prime} is differentiable in x, then we denote its derivative as $f^{\prime \prime}(x)$
- $\quad f^{\prime \prime}(x)$ is called the second order derivative of f.

Taylor Formula: Second Order Derivative

- If $f: \mathbb{R} \rightarrow \mathbb{R}$ is two times differentiable then

$$
f(x+h)=f(x)+f^{\prime}(x) h+f^{\prime \prime}(x) h^{2}+o\left(\|h\|^{2}\right)
$$

i.e. for h small enough, $h \rightarrow f(x)+h f^{\prime}(x)+h^{2} f^{\prime \prime}(x)$ approximates $h+f(x+h)$

- $\quad h \rightarrow f(x)+h f^{\prime}(x)+h^{2} f^{\prime \prime}(x)$ is a quadratic approximation (or order 2) of f in a neighborhood of x

- The second derivative of $f: \mathbb{R} \rightarrow \mathbb{R}$ generalizes naturally to larger dimension.

Hessian Matrix

In $\left(\mathbb{R}^{n},\langle x, y\rangle=x^{T} y\right), \nabla^{2} f(x)$ is represented by a symmetric matrix called the Hessian matrix. It can be computed as

$$
\nabla^{2}(f)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Exercise on Hessian Matrix

Exercise:

Let $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}, \boldsymbol{x} \in \mathbb{R}^{n}$, and $A \in \mathbb{R}^{n \times n}$ symmetric.
Compute the Hessian matrix of f.
If it is too complex, consider $f:\left\{\begin{array}{c}\mathbb{R}^{2} \rightarrow \mathbb{R} \\ x \rightarrow \frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}\end{array}\right.$ with $A=\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right)$

Second Order Differentiability in \mathbb{R}^{n}

Taylor Formula - Order Two

$$
f(\boldsymbol{x}+\boldsymbol{h})=f(\boldsymbol{x})+(\nabla f(\boldsymbol{x}))^{T} \boldsymbol{h}+\frac{1}{2} \boldsymbol{h}^{T}\left(\nabla^{2} f(\boldsymbol{x})\right) \boldsymbol{h}+o\left(\|\boldsymbol{h}\|^{2}\right)
$$

Back to III-Conditioned Problems

We have seen that for a convex quadratic function
$f(x)=\frac{1}{2}\left(x-x_{0}\right)^{T} A\left(x-x_{0}\right)+b$ of $x \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}, A \operatorname{SPD}, b \in \mathbb{R}^{n}$:

1) The level sets are ellipsoids. The eigenvalues of A determine the lengths of the principle axes of the ellipsoid.

2) The Hessian matrix of f equals to A.

III-conditioned convex quadratic problems are problems with large ratio between largest and smallest eigenvalue of A which means large ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Gradient Direction Vs. Newton Direction

Gradient direction: $\nabla f(\boldsymbol{x})$
Newton direction: $(H(\boldsymbol{x}))^{-1} \cdot \nabla f(\boldsymbol{x})$
with $H(x)=\nabla^{2}(\boldsymbol{x})$ being the Hessian at \boldsymbol{x}

Exercise:

Let again $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}, \boldsymbol{x} \in \mathbb{R}^{2}, A=\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right) \in \mathbb{R}^{2 \times 2}$.
Plot the gradient and Newton direction of f in a point $x \in \mathbb{R}^{n}$ of your choice (which should not be on a coordinate axis) into the same plot with the level sets, we created before.

Conclusions

I hope it became clear...
...what are the difficulties to cope with when solving numerical optimization problems
in particular dimensionality, non-separability and ill-conditioning
...what are gradient and Hessian
...what is the difference between gradient and Newton direction

