Introduction to Optimization Approximation Algorithms and Heuristics

November 9, 2015 École Centrale Paris, Châtenay-Malabry, France

Dimo Brockhoff INRIA Lille – Nord Europe

Course Overview

Date		Торіс			
Mon, 21.9.2015		Introduction			
Mon, 28.9.2015	D	Basic Flavors of Complexity Theory			
Mon, 5.10.2015	D	Greedy algorithms			
Mon, 12.10.2015	D	Branch and bound (switched w/ dynamic programming)			
Mon, 2.11.2015	D	Dynamic programming [salle Proto]			
Fri, 6.11.2015	D	Approximation algorithms and heuristics [S205/S207]			
Mon, 9.11.2015	С	Introduction to Continuous Optimization I [S118]			
Fri, 13.11.2015	С	Introduction to Continuous Optimization II [from here onwards always: S205/S207]			
Fri, 20.11.2015	С	Gradient-based Algorithms			
Fri, 27.11.2015	С	End of Gradient-based Algorithms + Linear Programming Stochastic Optimization and Derivative Free Optimization I			
Fri, 4.12.2015	С	Stochastic Optimization and Derivative Free Optimization II			
Tue, 15.12.2015		Exam			

Overview of Today's Lecture

Introduction to Continuous Optimizaation

- examples (from ML / black-box problems)
- typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

reminders about differentiability, gradient, Hessian matrix

Further Details on Remaining Lectures

Introduction to Continuous Optimization

- examples (from ML / black-box problems)
- typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix
- unconstraint optimization
 - first and second order conditions
 - convexity
- constrained optimization

Gradient-based Algorithms

quasi-Newton method (BFGS)

Learning in Optimization / Stochastic Optimization

- CMA-ES (adaptive algorithms / Information Geometry)
- PhD thesis possible on this topic

strongly related to ML, new promising research area, interesting open questions

First Example of a Continuous Optimization Problem

Computer simulation teaches itself to walk upright (virtual robots (of different shapes) learning to walk, through stochastic optimization (CMA-ES)), by Utrecht University:

We present a control system based on 3D muscle actuation

https://www.youtube.com/watch?v=yci5Ful1ovk

T. Geitjtenbeek, M. Van de Panne, F. Van der Stappen: "Flexible Muscle-Based Locomotion for Bipedal Creatures", SIGGRAPH Asia, 2013.

Continuous Optimization

• Optimize
$$f: \begin{cases} \Omega \subset \mathbb{R}^n \to \mathbb{R} \\ x = (x_1, \dots, x_n) \to f(x_1, \dots, x_n) \\ \searrow \in \mathbb{R} \end{cases}$$
 unconstrained optimization

• Search space is continuous, i.e. composed of real vectors $x \in \mathbb{R}^n$

2-D level sets

Unconstrained vs. Constrained Optimization

Unconstrained optimization

 $\inf \{ f(x) \mid x \in \mathbb{R}^n \}$

Constrained optimization

- Equality constraints: $\inf \{f(x) \mid x \in \mathbb{R}^n, g_k(x) = 0, 1 \le k \le p\}$
- Inequality constraints: $\inf \{f(x) \mid x \in \mathbb{R}^n, g_k(x) \le 0, 1 \le k \le p\}$

where always g_k : $\mathbb{R}^n \to \mathbb{R}$

Example of a Constraint

$$\min_{x \in \mathbb{R}} f(x) = x^2 \text{ such that } x \le -1$$

Analytical Functions

Example: 1-D

 $f_1(x) = a(x - x_0)^2 + b$ where $x, x_0, b \in \mathbb{R}, a \in \mathbb{R}$

Generalization:

convex quadratic function

$$f_2(x) = (x - x_0)^T A (x - x_0) + b$$

where $x, x_0, b \in \mathbb{R}^n, A \in \mathbb{R}^{\{n \times n\}}$
and A symmetric positive definite (SPD)

Exercise: What is the minimum of $f_2(x)$?

Levels Sets of Convex Quadratic Functions

Continuation of exercise: What are the level sets of f_2 ?

Reminder: level sets of a function

$$L_c = \{x \in \mathbb{R}^n \mid f(x) = c\}$$

(similar to topography lines / level sets on a map)

Levels Sets of Convex Quadratic Functions

Continuation of exercise: What are the level sets of f_2 ?

Probably too complicated in general, thus an example here

• Consider
$$A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}$$
, $b = 0, n = 2$

- a) Compute $f_2(x)$.
- b) Plot the level sets of $f_2(x)$.
- c) Optional: More generally, for n = 2, if A is SPD with eigenvalues $\lambda_1 = 9$ and $\lambda_2 = 1$, what are the level sets of $f_2(x)$?

Example Problems

Data Fitting – Data Calibration

Objective

- Given a sequence of data points $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}, i = 1, ..., N$, find a model "y = f(x)" that explains the data experimental measurements in biology, chemistry, ...
- In general, choice of a parametric model or family of functions $(f_{\theta})_{\theta \in \mathbb{R}^n}$

use of expertise for choosing model or simple models only affordable (linear, quadratic)

• Try to find the parameter $\theta \in \mathbb{R}^n$ fitting best to the data

Fitting best to the data

Minimize the quadratic error:

$$\min_{\theta \in \mathbb{R}^n} \sum_{i=1}^N |f_\theta(\boldsymbol{x}_i) - y_i|^2$$

Supervised Learning:

Predict $y \in \mathcal{Y}$ from $x \in \mathcal{X}$, given a set of observations (examples) $\{y_i, x_i\}_{i=1,...,N}$

(Simple) Linear regression

 $\theta \in \mathbb{R}^{p+1}$

A Real-World Problem in Petroleum Engineering

Well Placement Problem

8 2010 . IFP E

Function Difficulties

What Makes a Function Difficult to Solve?

dimensionality

(considerably) larger than three

non-separability

dependencies between the objective variables

- ill-conditioning
- ruggedness

non-smooth, discontinuous, multimodal, and/or noisy function

a narrow ridge

cut from 3D example, solvable with an evolution strategy

Curse of Dimensionality

- The term Curse of dimensionality (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.
- Example: Consider placing 100 points onto a real interval, say
 [0,1]. To get similar coverage, in terms of distance between
 adjacent points, of the 10-dimensional space [0,1]¹⁰ would
 require 100¹⁰ = 10²⁰ points. The original 100 points appear now
 as isolated points in a vast empty space.
- Consequently, a search policy (e.g. exhaustive search) that is valuable in small dimensions might be useless in moderate or large dimensional search spaces.

Definition (Separable Problem)

A function f is separable if

$$\operatorname{argmin}_{(x_1,\ldots,x_n)} f(x_1,\ldots,x_n) = \left(\operatorname{argmin}_{x_1} f(x_1,\ldots),\ldots,\operatorname{argmin}_{x_n} f(\ldots,x_n) \right)$$

 \Rightarrow it follows that f can be optimized in a sequence of *n* independent 1-D optimization processes

Example:

Additively decomposable functions

$$f(x_1, \dots, x_n) = \sum_{\substack{i=1\\ \text{Rastrigin function}}}^n f_i(x_i)$$

Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system

- $f: x \mapsto f(x)$ separable
- $f: x \mapsto f(Rx)$ non-separable

R rotation matrix

[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation". Sixth ICGA, pp. 57-64, Morgan Kaufmann
[2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278

III-Conditioned Problems: Curvature of Level Sets

Consider the convex-quadratic function

$$f(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^T H(\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_{i} h_{i,i} x_i^2 + \frac{1}{2} \sum_{i,j} h_{i,j} x_i x_j$$

H is Hessian matrix of f and symmetric positive definite

gradient direction $-f'(x)^T$ Newton direction $-H^{-1}f'(x)^T$

Ill-conditioning means squeezed level sets (high curvature).

Condition number of SPD matrix A = ratio between largest and smallest eigenvalue

Condition number equals nine here (kind of well-conditioned). Condition numbers up to 10¹⁰ are not unusual in real-world problems.

Mathematical Tools to Characterize Optima

Different Notions of Optimum

Unconstrained case

- Iocal vs. global
 - local minimum x^* : \exists a neighborhood V of x^* such that $\forall x \in V: f(x) \ge f(x^*)$
 - global minimum: $\forall x \in \Omega: f(x) \ge f(x^*)$
- strict local minimum if the inequality is strict

Mathematical Characterization of Optima

Objective: Derive general characterization of optima

Example: if $f: \mathbb{R} \to \mathbb{R}$ differentiable, f'(x) = 0 at optimal points

- generalization to $f: \mathbb{R}^n \to \mathbb{R}$?
- generalization to constrained problems?

Remark: notion of optimum independent of notion of differentiability

optima of such function can be easily approached by certain type of methods

Reminder: Continuity of a Function

 $f: (V, || ||_V) \rightarrow (W, || ||_W)$ is continuous in $x \in V$ if $\forall \epsilon > 0, \exists \eta > 0$ such that $\forall y \in V: ||x - y||_V \leq \eta; ||f(x) - f(y)||_W \leq \epsilon$

Reminder: Differentiability in 1D (n=1)

 $f \colon \mathbb{R} \to \mathbb{R}$ is differentiable in $x \in \mathbb{R}$ if

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ exists, } h \in \mathbb{R}$$

Notation:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The derivative corresponds to the slope of the tangent in x.

Reminder: Differentiability in 1D (n=1)

Taylor Formula (Order 1)

If *f* is differentiable in *x* then f(x+h) = f(x) + f'(x)h + o(||h||)

i.e. for *h* small enough, $h \mapsto f(x+h)$ is approximated by $h \mapsto f(x) + f'(h)$

 $h \mapsto f(x) + f'(x)h$ is called a first order approximation of f(x + h)

Reminder: Differentiability in 1D (n=1)

Geometrically:

 $f(x+h) \approx
 ((x+h) (y)$

The notion of derivative of a function defined on \mathbb{R}^n is generalized via this idea of a linear approximation of f(x + h) for h small enough.

Gradient Definition Via Partial Derivatives

• In $(\mathbb{R}^n, || ||_2)$ where $||x||_2 = \sqrt{\langle x, x \rangle}$ is the Euclidean norm deriving from the scalar product $\langle x, y \rangle = x^T y$

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Reminder: partial derivative in x₀

$$f_{i}: y \to f\left(x_{0}^{1}, \dots, x_{0}^{i-1}, y, x_{0}^{i+1}, \dots, x_{0}^{n}\right)$$
$$\frac{\partial f}{\partial x_{i}}(x_{0}) = f_{i}'(x_{0})$$

Exercise: Gradients

Exercise:

Compute the gradients of a) $f(x) = x_1$ with $x \in \mathbb{R}^n$ b) $f(x) = a^T x$ with $a, x \in \mathbb{R}^n$ c) $f(x) = x^T x (= ||x||^2)$ with $x \in \mathbb{R}^n$

Exercise: Gradients

Exercise:

Compute the gradients of a) $f(x) = x_1$ with $x \in \mathbb{R}^n$ b) $f(x) = a^T x$ with $a, x \in \mathbb{R}^n$ c) $f(x) = x^T x (= ||x||^2)$ with $x \in \mathbb{R}^n$

Some more examples:

- in \mathbb{R}^n , if $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, then $\nabla f(\mathbf{x}) = (A + A^T) \mathbf{x}$
- in \mathbb{R} , $\nabla f(\mathbf{x}) = f'(\mathbf{x})$

Exercise:

Let $L_c = \{x \in \mathbb{R}^n \mid f(x) = c\}$ be again a level set of a function f(x). Let $x_0 \in L_c \neq \emptyset$.

Plot the level sets for $f(x) = a^T x$ and $f(x) = ||x||^2$, compute the gradient in a chosen point x_0 and observe that $\nabla f(x_0)$ is *orthogonal* to the level set in x_0 .

More generally, the gradient of a differentiable function is orthogonal to its level sets.

Taylor Formula – Order One

$$f(\boldsymbol{x} + \boldsymbol{h}) = f(\boldsymbol{x}) + (\nabla f(\boldsymbol{x}))^T \boldsymbol{h} + o(||\boldsymbol{h}||)$$

Reminder: Second Order Differentiability in 1D

- Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function and let $f': x \to f'(x)$ be its derivative.
- If f' is differentiable in x, then we denote its derivative as f''(x)
- f''(x) is called the second order derivative of f.

Taylor Formula: Second Order Derivative

- If f: ℝ → ℝ is two times differentiable then
 f(x + h) = f(x) + f'(x)h + f''(x)h² + o(||h||²)
 i.e. for h small enough, h → f(x) + hf'(x) + h²f''(x)
 approximates h + f(x + h)
- $h \to f(x) + hf'(x) + h^2 f''(x)$ is a quadratic approximation (or order 2) of f in a neighborhood of x

• The second derivative of $f: \mathbb{R} \to \mathbb{R}$ generalizes naturally to larger dimension.

Hessian Matrix

In $(\mathbb{R}^n, \langle x, y \rangle = x^T y), \nabla^2 f(x)$ is represented by a symmetric matrix called the Hessian matrix. It can be computed as

	$\int \partial^2 f$	$\partial^2 f$		$\partial^2 f$]
	$\overline{\partial x_1^2}$	$\overline{\partial x_1 \partial x_2}$	•••	$\overline{\partial x_1 \partial x_n}$
	$\partial^2 f$	$\partial^2 f$		$\partial^2 f$
$\nabla^2(f) =$	$\overline{\partial x_2 \partial x_1}$	$\overline{\partial x_2^2}$	•••	$\overline{\partial x_2 \partial x_n}$
	:	•	•.	
	$\partial^2 f$	$\partial^2 f$		$\partial^2 f$
	$\overline{\partial x_n \partial x_1}$	$\overline{\partial x_n \partial x_2}$	•••	$\overline{\partial x_n^2}$

Exercise on Hessian Matrix

Exercise:

Let
$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T A \mathbf{x}, \mathbf{x} \in \mathbb{R}^n$$
, and $A \in \mathbb{R}^{n \times n}$ symmetric.

Compute the Hessian matrix of f.

If it is too complex, consider
$$f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ x \to \frac{1}{2} x^T A x \end{cases}$$
 with $A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}$

Second Order Differentiability in \mathbb{R}^n

Taylor Formula – Order Two

$$f(\boldsymbol{x} + \boldsymbol{h}) = f(\boldsymbol{x}) + \left(\nabla f(\boldsymbol{x})\right)^T \boldsymbol{h} + \frac{1}{2}\boldsymbol{h}^T \left(\nabla^2 f(\boldsymbol{x})\right) \boldsymbol{h} + o(||\boldsymbol{h}||^2)$$

Back to III-Conditioned Problems

We have seen that for a convex quadratic function

 $f(x) = \frac{1}{2}(x - x_0)^T A(x - x_0) + b \text{ of } x \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}, A \text{ SPD}, b \in \mathbb{R}^n:$

1) The level sets are ellipsoids. The eigenvalues of *A* determine the lengths of the principle axes of the ellipsoid.

2) The Hessian matrix of f equals to A.

Ill-conditioned convex quadratic problems are problems with large ratio between largest and smallest eigenvalue of *A* which means large ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Gradient Direction Vs. Newton Direction

Gradient direction: $\nabla f(\mathbf{x})$ **Newton direction:** $(H(\mathbf{x}))^{-1} \cdot \nabla f(\mathbf{x})$ with $H(\mathbf{x}) = \nabla^2(\mathbf{x})$ being the Hessian at \mathbf{x}

Exercise:

Let again
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x}, \mathbf{x} \in \mathbb{R}^2, A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}.$$

Plot the gradient and Newton direction of f in a point $x \in \mathbb{R}^n$ of your choice (which should not be on a coordinate axis) into the same plot with the level sets, we created before.

I hope it became clear...

...what are the difficulties to cope with when solving numerical optimization problems

in particular dimensionality, non-separability and ill-conditioning ...what are gradient and Hessian

...what is the difference between gradient and Newton direction