# Introduction to Optimization Introduction to Continuous Optimization II

November 13, 2015 École Centrale Paris, Châtenay-Malabry, France



Dimo Brockhoff INRIA Lille – Nord Europe

# **Course Overview**

| Date            |   | Topic                                                                                                            |
|-----------------|---|------------------------------------------------------------------------------------------------------------------|
| Mon, 21.9.2015  |   | Introduction                                                                                                     |
| Mon, 28.9.2015  | D | Basic Flavors of Complexity Theory                                                                               |
| Mon, 5.10.2015  | D | Greedy algorithms                                                                                                |
| Mon, 12.10.2015 | D | Branch and bound (switched w/ dynamic programming)                                                               |
|                 |   |                                                                                                                  |
| Mon, 2.11.2015  | D | Dynamic programming [salle Proto]                                                                                |
| Fri, 6.11.2015  | D | Approximation algorithms and heuristics [S205/S207]                                                              |
| Mon, 9.11.2015  | С | Introduction to Continuous Optimization I [S118]                                                                 |
| Fri, 13.11.2015 | C | Introduction to Continuous Optimization II [from here onwards always: S205/S207]                                 |
| Fri, 20.11.2015 | С | Gradient-based Algorithms                                                                                        |
| Fri, 27.11.2015 | С | End of Gradient-based Algorithms + Linear Programming Stochastic Optimization and Derivative Free Optimization I |
| Fri, 4.12.2015  | С | Stochastic Optimization and Derivative Free Optimization II                                                      |
| Tue, 15.12.2015 |   | Exam                                                                                                             |

# **Lecture Overview Continuous Optimization**

#### **Introduction to Continuous Optimization**

- examples (from ML / black-box problems)
- typical difficulties in optimization (e.g. constraints)

#### **Mathematical Tools to Characterize Optima**

- reminders about differentiability, gradient, Hessian matrix
- unconstrained optimization
  - first and second order conditions
  - convexity
- constrained optimization

#### **Gradient-based Algorithms**

quasi-Newton method (BFGS)

#### Learning in Optimization / Stochastic Optimization

- CMA-ES (adaptive algorithms / Information Geometry)
- PhD thesis possible on this topic
   strongly related to ML, new promising research area, interesting open questions



# **Mathematical Characterization of Optima**

Objective: Derive general characterization of optima

Example: if  $f: \mathbb{R} \to \mathbb{R}$  differentiable, f'(x) = 0 at optimal points



#### **Final Goal:**

- generalization to  $f: \mathbb{R}^n \to \mathbb{R}$
- generalization to constrained problems

# **Reminder of Monday's Lecture**

#### We have seen so far:

- continuity of a function
- differentiability in 1-D and n-D ("gradient")

# **Gradient: Geometrical Interpretation**

#### **Exercise:**

Let  $L_c = \{x \in \mathbb{R}^n \mid f(x) = c\}$  be again a level set of a function f(x). Let  $x_0 \in L_c \neq \emptyset$ .

Compute the level sets for  $f_1(x) = a^T x$  and  $f_2(x) = ||x||^2$  and the gradient in a chosen point  $x_0$  and observe that  $\nabla f(x_0)$  is **orthogonal** to the level set in  $x_0$ .

Again: if this seems too difficult, do it for two variables (and a concrete  $a \in \mathbb{R}^2$  and draw the level sets and the gradients.

More generally, the gradient of a differentiable function is orthogonal to its level sets.



# Differentiability in $\mathbb{R}^n$

#### **Taylor Formula – Order One**

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + (\nabla f(\mathbf{x}))^T \mathbf{h} + o(||\mathbf{h}||)$$

# Reminder: Second Order Differentiability in 1D

- Let  $f:D \subseteq \mathbb{R} \to \mathbb{R}$  be a differentiable function and let  $f':x \to f'(x)$  be its derivative.
- If f' is differentiable in x, then we denote its derivative as f''(x)
- f''(x) is called the second order derivative of f.

# **Taylor Formula: Second Order Derivative**

- If  $f: \mathbb{R} \to \mathbb{R}$  is two times differentiable then  $f(x+h) = f(x) + f'(x)h + f''(x)h^2 + o(||h||^2)$  i.e. for h small enough,  $h \to f(x) + hf'(x) + h^2f''(x)$  approximates h + f(x+h)
- $h \to f(x) + hf'(x) + h^2f''(x)$  is a quadratic approximation (or order 2) of f in a neighborhood of x



■ The second derivative of  $f: \mathbb{R} \to \mathbb{R}$  generalizes naturally to larger dimension.

#### **Hessian Matrix**

In  $(\mathbb{R}^n, \langle x, y \rangle = x^T y)$ ,  $\nabla^2 f(x)$  is represented by a symmetric matrix called the Hessian matrix. It can be computed as

$$\nabla^{2}(f) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \dots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

#### **Exercise on Hessian Matrix**

#### **Exercise:**

Let  $f(x) = \frac{1}{2}x^T A x$ ,  $x \in \mathbb{R}^n$ , and  $A \in \mathbb{R}^{n \times n}$  symmetric.

Compute the Hessian matrix of f.

If it is too complex, consider  $f: \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ x \to \frac{1}{2} x^T A x \end{cases}$  with  $A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix}$ 

# Second Order Differentiability in $\mathbb{R}^n$

#### **Taylor Formula – Order Two**

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + (\nabla f(\mathbf{x}))^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T (\nabla^2 f(\mathbf{x})) \mathbf{h} + o(||\mathbf{h}||^2)$$

#### **Back to III-Conditioned Problems**

We have seen that for a convex quadratic function

$$f(x) = \frac{1}{2}(x - x_0)^T A(x - x_0) + b \text{ of } x \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n}, A \text{ SPD, } b \in \mathbb{R}^n$$
:

1) The level sets are ellipsoids. The eigenvalues of *A* determine the lengths of the principle axes of the ellipsoid.



2) The Hessian matrix of f equals to A.

*Ill-conditioned convex quadratic problems* are problems with large ratio between largest and smallest eigenvalue of *A* which means large ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

#### **Gradient Direction Vs. Newton Direction**

**Gradient direction:**  $\nabla f(x)$ 

**Newton direction:**  $(H(x))^{-1} \cdot \nabla f(x)$ 

with  $H(x) = \nabla^2 f(x)$  being the Hessian at x

#### **Exercise:**

Let again 
$$f(x) = \frac{1}{2}x^T A x$$
,  $x \in \mathbb{R}^2$ ,  $A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ .

Plot the gradient and Newton direction of f in a point  $x \in \mathbb{R}^n$  of your choice (which should not be on a coordinate axis) into the same plot with the level sets, we created before.

# Exercise: Comparing Gradient-Based Algorithms on Convex Quadratic Functions (Tasks 1. – 4.)

http://researchers.lille.inria.fr/
 ~brockhof/optimizationSaclay/

# Optimality Conditions for Unconstrained Problems

# Optimality Conditions: First Order Necessary Cond.

#### For 1-dimensional optimization problems $f: \mathbb{R} \to \mathbb{R}$

Assume *f* is differentiable

- $x^*$  is a local optimum  $\Rightarrow f'(x^*) = 0$ not a sufficient condition: consider  $f(x) = x^3$ 
  - proof via Taylor formula:  $f(x^* + h) = f(x^*) + f'(x^*)h + o(||h||)$
- points y such that f'(y) = 0 are called critical or stationary points

#### Generalization to *n*-dimensional functions

If  $f: U \subset \mathbb{R}^n \mapsto \mathbb{R}$  is differentiable

• necessary condition: If  $x^*$  is a local optimum of f, then  $\nabla f(x^*) = 0$ proof via Taylor formula

# Second Order Necessary and Sufficient Opt. Cond.

#### If *f* is twice continuously differentiable

• Necessary condition: if  $x^*$  is a local minimum, then  $\nabla f(x^*) = 0$  and  $\nabla^2 f(x^*)$  is positive semi-definite

#### proof via Taylor formula at order 2

• Sufficient condition: if  $\nabla f(x^*) = 0$  and  $\nabla^2 f(x^*)$  is positive definite, then  $x^*$  is a strict local minimum

#### **Proof of Sufficient Condition:**

Let  $\lambda > 0$  be the smallest eigenvalue of  $\nabla^2 f(x^*)$ , using a second order Taylor expansion, we have for all h:

$$f(\mathbf{x}^* + \mathbf{h}) - f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T \nabla^2 f(\mathbf{x}^*) \mathbf{h} + o(||\mathbf{h}||^2)$$
$$> \frac{\lambda}{2} ||\mathbf{h}||^2 + o(||\mathbf{h}||^2) = \left(\frac{\lambda}{2} + \frac{o(||\mathbf{h}||^2)}{||\mathbf{h}||^2}\right) ||\mathbf{h}||^2$$

#### **Convex Functions**

Let U be a convex open set of  $\mathbb{R}^n$  and  $f: U \to \mathbb{R}$ . The function f is said to be convex if for all  $x, y \in U$  and for all  $t \in [0,1]$ 

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y)$$

#### **Theorem**

If f is differentiable, then f is convex if and only if for all x, y

$$f(y) - f(x) \ge (\nabla f(x))^{T} (y - x)$$

if n = 1, the curve is on top of the tangent

If f is twice continuously differentiable, then f is convex if and only if  $\nabla^2 f(x)$  is positive semi-definite for all x.

# **Constrained Optimization**

# **Equality Constraint**

#### **Objective:**

Generalize the necessary condition of  $\nabla f(x) = 0$  at the optima of f when f is in  $C^1$ , i.e. is differentiable and its derivative is continuous

#### **Theorem:**

Be U an open set of (E, || ||), and  $f: U \to \mathbb{R}$ ,  $g: U \to \mathbb{R}$  in  $\mathcal{C}^1$ . Let  $a \in E$  satisfy

$$\begin{cases} f(a) = \inf \{ f(x) \mid x \in \mathbb{R}^n, g(x) = 0 \} \\ g(a) = 0 \end{cases}$$

i.e. a is optimum of the problem

If  $\nabla g(a) \neq 0$ , then there exists a constant  $\lambda \in \mathbb{R}$  called *Lagrange multiplier*, such that

$$\nabla f(a) + \lambda \nabla g(a) = 0$$

i.e. gradients of f and g in a are colinear

Note: a need not be a global minimum but a local one

# Geometrical Interpretation Using an Example

#### **Exercise:**

Consider the problem

inf 
$$\{ f(x,y) \mid (x,y) \in \mathbb{R}^2, g(x,y) = 0 \}$$

$$f(x,y) = y - x^2$$
  $g(x,y) = x^2 + y^2 - 1$ 

- 1) Plot the level sets of f, plot g = 0
- 2) Compute  $\nabla f$  and  $\nabla g$
- 3) Find the solutions with  $\nabla f + \lambda \nabla g = 0$

equation solving with 3 unknowns  $(x, y, \lambda)$ 

4) Plot the solutions of 3) on top of the level set graph of 1)

# Interpretation of Euler-Lagrange Equation

Intuitive way to retrieve the Euler-Lagrange equation:

- In a local minimum a of a constrained problem, the hypersurfaces (or level sets) f = f(a) and g = 0 are necessarily tangent (otherwise we could decrease f by moving along g = 0).
- Since the gradients  $\nabla f(a)$  and  $\nabla g(a)$  are orthogonal to the level sets f = f(a) and g = 0, it follows that  $\nabla f(a)$  and  $\nabla g(a)$  are colinear.

#### **Generalization to More than One Constraint**

#### **Theorem**

- Assume  $f: U \to \mathbb{R}$  and  $g_k: U \to \mathbb{R}$   $(1 \le k \le p)$  are  $\mathcal{C}^1$ .
- Let a be such that

$$\begin{cases} f(a) = \inf \{ f(x) \mid x \in \mathbb{R}^n, & g_k(x) = 0, \\ g_k(a) = 0 \text{ for all } 1 \le k \le p \end{cases}$$

• If  $(\nabla g_k(a))_{1 \le k \le p}$  are linearly independent, then there exist p real constants  $(\lambda_k)_{1 \le k \le p}$  such that

$$\nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0$$

Lagrange multiplier

again: a does not need to be global but local minimum

# The Lagrangian

■ Define the Lagrangian on  $\mathbb{R}^n \times \mathbb{R}^p$  as

$$\mathcal{L}(x,\{\lambda_k\}) = f(x) + \sum_{k=1}^{p} \lambda_k g_k(x)$$

To find optimal solutions, we can solve the optimality system

Find 
$$(x, \{\lambda_k\}) \in \mathbb{R}^n \times \mathbb{R}^p$$
 such that  $\nabla f(x) + \sum_{k=1}^p \lambda_k \nabla g_k(x) = 0$ 

$$g_k(x) = 0 \text{ for all } 1 \le k \le p$$

$$\Leftrightarrow \begin{cases} \text{Find } (x, \{\lambda_k\}) \in \mathbb{R}^n \times \mathbb{R}^p \text{ such that } \nabla_x \mathcal{L}(x, \{\lambda_k\}) = 0 \\ \nabla_{\lambda_k} \mathcal{L}(x, \{\lambda_k\})(x) = 0 \text{ for all } 1 \le k \le p \end{cases}$$

# **Inequality Constraints: Definitions**

Let 
$$\mathcal{U} = \{x \in \mathbb{R}^n \mid g_k(x) = 0 \text{ (for } k \in E), \ g_k(x) \le 0 \text{ (for } k \in I)\}.$$

#### **Definition:**

The points in  $\mathbb{R}^n$  that satisfy the constraints are also called *feasible* points.

#### **Definition:**

Let  $a \in \mathcal{U}$ , we say that the constraint  $g_k(x) \leq 0$  (for  $k \in I$ ) is *active* in a if  $g_k(a) = 0$ .

### Inequality Constraint: Karush-Kuhn-Tucker Theorem

#### Theorem (Karush-Kuhn-Tucker, KKT):

Let U be an open set of  $(E, ||\ ||)$  and  $f: U \to \mathbb{R}, g_k: U \to \mathbb{R}$ , all  $\mathcal{C}^1$ Furthermore, let  $a \in U$  satisfy

$$\begin{cases} f(a) = \inf(f(x) \mid x \in \mathbb{R}^n, g_k(x) = 0 \text{ (for } k \in E), g_k(x) \leq 0 \text{ (for } k \in I) \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \leq 0 \text{ (for } k \in I) \end{cases} \text{ also works again for } a \text{ being a local minimum}$$

Let  $I_a^0$  be the set of constraints that are active in a. Assume that  $(\nabla g_k(a))_{k \in E \cup I_a^0}$  are linearly independent.

Then there exist  $(\lambda_k)_{1 \le k \le p}$  that satisfy

$$\begin{cases} \nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0 \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \le 0 \text{ (for } k \in I) \\ \lambda_k \ge 0 \text{ (for } k \in I_a^0) \\ \lambda_k g_k(a) = 0 \text{ (for } k \in E \cup I) \end{cases}$$

# Inequality Constraint: Karush-Kuhn-Tucker Theorem

#### Theorem (Karush-Kuhn-Tucker, KKT):

Let U be an open set of (E, || ||) and  $f: U \to \mathbb{R}$ ,  $g_k: U \to \mathbb{R}$ , all  $\mathcal{C}^1$ Furthermore, let  $a \in U$  satisfy

$$\begin{cases} f(a) = \inf(f(x) \mid x \in \mathbb{R}^n, g_k(x) = 0 \text{ (for } k \in E), g_k(x) \leq 0 \text{ (for } k \in I) \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \leq 0 \text{ (for } k \in I) \end{cases}$$

Let  $I_a^0$  be the set of constraints that are active in a. Assume that  $\left(\nabla g_k(a)\right)_{k\in E\cup I_a^0}$  are linearly independent.

Then there exist  $(\lambda_k)_{1 \le k \le p}$  that satisfy

$$\begin{cases} \nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0 \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \le 0 \text{ (for } k \in I) \\ \lambda_k \ge 0 \text{ (for } k \in I_a^0) \\ \lambda_k g_k(a) = 0 \text{ (for } k \in E \cup I) \end{cases}$$

either active constraint or  $\lambda_k = 0$ 

# **Descent Methods**

#### **Descent Methods**

#### **General principle**

- choose an initial point  $x_0$ , set t = 1
- while not happy
  - choose a descent direction  $d_t \neq 0$
  - line search:
    - choose a step size  $\sigma_t > 0$
    - set  $x_{t+1} = x_t + \sigma_t d_t$
  - set t = t + 1

#### **Remaining questions**

- how to choose  $d_t$ ?
- how to choose  $\sigma_t$ ?

#### **Gradient Descent**

Rationale:  $d_t = -\nabla f(x_t)$  is a descent direction indeed for f differentiable

$$f(x - \sigma \nabla f(x)) = f(x) - \sigma ||\nabla f(x)||^2 + o(\sigma ||\nabla f(x)||)$$
  
  $< f(x)$  for  $\sigma$  small enough

#### Step-size

- optimal step-size:  $\sigma_t = \underset{\sigma}{\operatorname{argmin}} f(\mathbf{x}_t \sigma \nabla f(\mathbf{x}_t))$
- Line Search: total or partial optimization w.r.t.  $\sigma$  Total is however often too "expensive" (needs to be performed at each iteration step)

Partial optimization: execute a limited number of trial steps until a loose approximation of the optimum is found. Typical rule for partial optimization: Armijo rule

see next slide and exercise

#### **Stopping criteria:**

norm of gradient smaller than  $\epsilon$ 

#### Choosing the step size:

- Only to decrease f-value not enough to converge (quickly)
- Want to have a reasonably large decrease in f

#### **Armijo-Goldstein rule:**

- also known as backtracking line search
- starts with a (too) large estimate of  $\sigma$  and reduces it until f is reduced enough
- what is enough?
  - assuming a linear f e.g.  $m_k(x) = f(x_k) + \nabla f(x_k)^T (x x_k)$
  - expected decrease if step of  $\sigma_k$  is done in direction  $\boldsymbol{d}$ :  $\sigma_k \nabla f(x_k)^T \boldsymbol{d}$
  - actual decrease:  $f(x_k) f(x_k + \sigma_k d)$
  - stop if actual decrease is at least constant times expected decrease (constant typically chosen in [0, 1])

#### The Actual Algorithm:

Input: descent direction **d**, point **x**, objective function  $f(\mathbf{x})$  and its gradient  $\nabla f(\mathbf{x})$ , parameters  $\sigma_0 = 10$ ,  $\theta \in [0, 1]$  and  $\beta \in (0, 1)$ 

Output: step-size  $\sigma$ 

Initialize  $\sigma$ :  $\sigma \leftarrow \sigma_0$ while  $f(\mathbf{x} + \sigma \mathbf{d}) > f(\mathbf{x}) + \theta \sigma \nabla f(\mathbf{x})^T \mathbf{d}$  do  $\sigma \leftarrow \beta \sigma$ end while

Armijo, in his original publication chose  $\beta=\theta=0.5$ . Choosing  $\theta=0$  means the algorithm accepts any decrease.







# **Gradient Descent: Simple Theoretical Analysis**

Assume f is twice continuously differentiable, convex and that  $\mu I_d \leq \nabla^2 f(x) \leq L I_d$  with  $\mu > 0$  holds, assume a fixed step-size  $\sigma_t = \frac{1}{I}$ 

Note:  $A \leq B$  means  $x^T A x \leq x^T B x$  for all x

$$x_{t+1} - x^* = x_t - x^* - \sigma_t \nabla^2 f(y_t) (x_t - x^*) \text{ for some } y_t \in [x_t, x^*]$$

$$x_{t+1} - x^* = \left(I_d - \frac{1}{L} \nabla^2 f(y_t)\right) (x_t - x^*)$$
Hence  $||x_{t+1} - x^*||^2 \le |||I_d - \frac{1}{L} \nabla^2 f(y_t)|||^2 ||x_t - x^*||^2$ 

$$\le \left(1 - \frac{\mu}{L}\right)^2 ||x_t - x^*||^2$$

Linear convergence: 
$$||x_{t+1} - x^*|| \le (1 - \frac{\mu}{L})||x_t - x^*||$$

algorithm slower and slower with increasing condition number

Non-convex setting: convergence towards stationary point

# **Newton Algorithm**

#### **Newton Method**

- descent direction:  $-[\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$  [so-called Newton direction]
- The Newton direction:
  - minimizes the best (locally) quadratic approximation of f:  $\tilde{f}(x + \Delta x) = f(x) + \nabla f(x)^T \Delta x + \frac{1}{2} (\Delta x)^T \nabla^2 f(x) \Delta x$
  - points towards the optimum on  $f(x) = (x x^*)^T A(x x^*)$
- however, Hessian matrix is expensive to compute in general and its inversion is also not easy

quadratic convergence

(i.e. 
$$\lim_{k\to\infty} \frac{|x_{k+1}-x^*|}{|x_k-x^*|^2} = \mu > 0$$
)

#### Remark: Affine Invariance

Affine Invariance: same behavior on f(x) and f(Ax + b) for  $A \in GLn(\mathbb{R})$ 

Newton method is affine invariant

```
See http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/
Lecture_6_Scribe_Notes.final.pdf
```

- same convergence rate on all convex-quadratic functions
- Gradient method not affine invariant

#### **Quasi-Newton Method: BFGS**

 $x_{t+1} = x_t - \sigma_t H_t \nabla f(x_t)$  where  $H_t$  is an approximation of the inverse Hessian

#### **Key idea of Quasi Newton:**

successive iterates  $x_t$ ,  $x_{t+1}$  and gradients  $\nabla f(x_t)$ ,  $\nabla f(x_{t+1})$  yield second order information

$$q_t \approx \nabla^2 f(x_{t+1}) p_t$$
 where  $p_t = x_{t+1} - x_t$  and  $q_t = \nabla f(x_{t+1}) - \nabla f(x_t)$ 

Most popular implementation of this idea: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

 default in MATLAB's fminunc and python's scipy.optimize.minimize

#### **Conclusions**

I hope it became clear...

- ...what are gradient and Hessian
- ...what are sufficient and necessary conditions for optimality
- ...what is the difference between gradient and Newton direction
- ...and that adapting the step size in descent algorithms is crucial.