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Date Topic

Mon, 21.9.2015 Introduction

Mon, 28.9.2015 D Basic Flavors of Complexity Theory

Mon, 5.10.2015 D Greedy algorithms

Mon, 12.10.2015 D Branch and bound (switched w/ dynamic programming)

Mon, 2.11.2015 D Dynamic programming [salle Proto]

Fri, 6.11.2015 D Approximation algorithms and heuristics [S205/S207]

Mon, 9.11.2015 C Introduction to Continuous Optimization I [S118]

Fri, 13.11.2015 C Introduction to Continuous Optimization II

[from here onwards always: S205/S207]

Fri, 20.11.2015 C Gradient-based Algorithms [+ finishing the intro]

Fri, 27.11.2015 C End of Gradient-based Algorithms + Linear Programming

Stochastic Optimization and Derivative Free Optimization I

Fri, 4.12.2015 C Stochastic Optimization and Derivative Free Optimization II

Tue, 15.12.2015 Exam

Course Overview
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Introduction to Continuous Optimization

 examples (from ML / black-box problems)

 typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

 reminders about differentiability, gradient, Hessian matrix

 unconstrained optimization

 first and second order conditions

 convexity

 constrained optimization

Gradient-based Algorithms

 quasi-Newton method (BFGS)

Learning in Optimization / Stochastic Optimization 

 CMA-ES (adaptive algorithms / Information Geometry)

 PhD thesis possible on this topic
strongly related to ML, new promising research area, interesting open questions

Lecture Overview Continuous Optimization
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Question: Is the Hessian matrix always symmetric?

Answer: No, but 𝑓 having continuous second order partial 

derivatives is a sufficient condition for the Hessian to be symmetric 

("Schwarz' theorem").

Remark on Last Lecture
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Question: How do we prove in general that the gradient is 

orthogonal to the level sets?

Answer:

 similar to what we did for two variables

 take any curve within the level set, parametrized by 𝑡 ⟼ 𝑐(𝑡)

 clear: 𝑓(𝑐(𝑡)) = 𝑐 for all 𝑡

 derivative wrt to 𝑡: 
𝑑

𝑑𝑡
𝑓 𝑐 𝑡 = 0

 but also 
𝑑

𝑑𝑡
𝑓(𝑐 𝑡 ) = ∇(𝑓(𝑐(𝑡))

𝑑

𝑑𝑡
𝑐(𝑡)

[via chain rule, 
𝑑

𝑑𝑡
𝑐(𝑡) is a vector, tangent to the curve in 𝑡]

Remark on Last Lecture II
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Mathematical Tools to Characterize Optima
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Objective: Derive general characterization of optima

Example: if 𝑓:ℝ → ℝ differentiable,

𝑓′ 𝑥 = 0 at optimal points

Final Goal:

 generalization to 𝑓:ℝ𝑛 → ℝ

 generalization to constrained problems

Mathematical Characterization of Optima
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Optimality Conditions

for Unconstrained Problems
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For 1-dimensional optimization problems 𝒇: ℝ → ℝ

Assume 𝑓 is differentiable

 𝒙∗ is a local optimum ⟹ 𝑓′ 𝒙∗ = 0

not a sufficient condition: consider 𝑓 𝒙 = 𝒙3

proof via Taylor formula: 𝑓 𝒙∗ + 𝒉 = 𝑓 𝒙∗ + 𝑓′ 𝒙∗ 𝒉 + 𝑜(||𝒉||)

 points 𝒚 such that 𝑓′ 𝒚 = 0 are called critical or stationary points

Generalization to 𝒏-dimensional functions

If 𝑓:𝑈 ⊂ ℝ𝑛 ⟼ ℝ is differentiable

 necessary condition: If 𝒙∗ is a local optimum of 𝑓, then 𝛻𝑓 𝒙∗ = 𝟎

proof via Taylor formula 

Optimality Conditions: First Order Necessary Cond.
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If 𝑓 is twice continuously differentiable

 Necessary condition: if 𝒙∗ is a local minimum, then 𝛻𝑓 𝒙∗ = 0
and 𝛻2𝑓(𝒙∗) is positive semi-definite

proof via Taylor formula at order 2

 Sufficient condition: if 𝛻𝑓 𝒙∗ = 0 and 𝛻2𝑓 𝒙∗ is positive definite, 

then 𝒙∗ is a strict local minimum

Proof of Sufficient Condition:

 Let 𝜆 > 0 be the smallest eigenvalue of 𝛻2𝑓(𝒙∗), using a second 

order Taylor expansion, we have for all 𝒉:

 𝑓 𝒙∗ + 𝒉 − 𝑓 𝒙∗ = 𝛻𝑓 𝒙∗ 𝑇𝒉 +
1

2
𝒉𝑇𝛻2𝑓 𝒙∗ 𝒉 + 𝑜(||𝒉||2)

>
𝜆

2
| 𝒉 |2 + o(||𝒉||2) =

𝜆

2
+
𝑜(||𝒉||2)

||𝒉||2
||𝒉||2

Second Order Necessary and Sufficient Opt. Cond.
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Let 𝑈 be a convex open set of ℝ𝑛 and 𝑓:𝑈 → ℝ. The function 𝑓 is

said to be convex if for all 𝒙, 𝒚 ∈ 𝑈 and for all 𝑡 ∈ [0,1]

𝑓 1 − 𝑡 𝒙 + 𝑡𝒚 ≤ 1 − 𝑡 𝑓 𝒙 + 𝑡𝑓(𝒚)

Theorem

If 𝑓 is differentiable, then 𝑓 is convex if and only if for all 𝒙, 𝒚

𝑓 𝒚 − 𝑓 𝒙 ≥ 𝛻𝑓 𝑥
𝑇
(𝒚 − 𝒙)

if 𝑛 = 1, the curve is on top of the tangent

If 𝑓 is twice continuously differentiable, then 𝑓 is convex if and only if 

𝛻2𝑓(𝒙) is positive semi-definite for all 𝒙.

Convex Functions
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Examples of Convex Functions:

 𝑓 𝒙 = 𝑎𝑇𝒙 + 𝑏

 𝑓 𝒙 =
1

2
𝒙𝑇𝐴𝒙 + 𝑎𝑇𝒙 + 𝑏, 𝐴 symmetric positive definite

 the negative of the entropy function (i.e. 𝑓 𝒙 =  𝑖=1
𝑛 𝒙𝑖 ln(𝒙𝒊) for 

positive 𝒙)

Why convexity? local minima are also global under convexity 

assumption.

Convex Functions: Why Convexity?

Exercise:

Let 𝑓:𝑈 → ℝ be a convex and differentiable function on a

convex open 𝑈.

Show that if 𝛻𝑓 𝒙∗ = 0, then 𝒙∗ is a global minimum of 𝑓
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Constrained Optimization
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Objective:

Generalize the necessary condition of 𝛻𝑓 𝑥 = 0 at the optima of f

when 𝑓 is in 𝒞1, i.e. is differentiable and its derivative is continuous

Theorem:

Be 𝑈 an open set of 𝐸, | | , and 𝑓: 𝑈 → ℝ, 𝑔:𝑈 → ℝ in 𝒞1.

Let 𝑎 ∈ 𝐸 satisfy

 
𝑓 𝑎 = inf 𝑓 𝑥 𝑥 ∈ 𝑈, 𝑔 𝑥 = 0}

𝑔 𝑎 = 0

i.e. 𝑎 is optimum of the problem

If 𝛻𝑔 𝑎 ≠ 0, then there exists a constant 𝜆 ∈ ℝ called Lagrange 

multiplier, such that

𝛻𝑓 𝑎 + 𝜆𝛻𝑔 𝑎 = 0

i.e. gradients of 𝑓 and 𝑔 in 𝑎 are colinear

Note: 𝑎 need not be a global minimum but a local one

Equality Constraint
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Geometrical Interpretation Using an Example

Exercise:

Consider the problem

inf 𝑓 𝑥, 𝑦 𝑥, 𝑦 ∈ ℝ2, 𝑔 𝑥, 𝑦 = 0}

𝑓 𝑥, 𝑦 = 𝑦 − 𝑥2 𝑔 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 1

1) Plot the level sets of 𝑓, plot 𝑔 = 0
2) Compute 𝛻𝑓 and 𝛻𝑔
3) Find the solutions with 𝛻𝑓 + 𝜆𝛻𝑔 = 0

equation solving with 3 unknowns (𝑥, 𝑦, 𝜆)

4) Plot the solutions of 3) on top of the level set graph of 1)
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Intuitive way to retrieve the Euler-Lagrange equation:

 In a local minimum 𝑎 of a constrained problem, the 

hypersurfaces (or level sets) 𝑓 = 𝑓(𝑎) and 𝑔 = 0 are necessarily

tangent (otherwise we could decrease 𝑓 by moving along 𝑔 = 0).

 Since the gradients 𝛻𝑓 𝑎 and 𝛻𝑔(𝑎) are orthogonal to the level

sets 𝑓 = 𝑓(𝑎) and 𝑔 = 0, it follows that 𝛻𝑓(𝑎) and 𝛻𝑔(𝑎) are 

colinear.

Interpretation of Euler-Lagrange Equation
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Theorem

 Assume 𝑓:𝑈 → ℝ and 𝑔𝑘: 𝑈 → ℝ (1 ≤ 𝑘 ≤ 𝑝) are 𝒞1.

 Let 𝑎 be such that

 
𝑓 𝑎 = inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛, 𝑔𝑘 𝑥 = 0, 1 ≤ 𝑘 ≤ 𝑝}

𝑔𝑘 𝑎 = 0 for all 1 ≤ 𝑘 ≤ 𝑝

 If 𝛻𝑔𝑘 𝑎
1≤𝑘≤𝑝

are linearly independent, then there exist 𝑝 real 

constants 𝜆𝑘 1≤𝑘≤𝑝 such that

𝛻𝑓 𝑎 +  

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑎 = 0

again: 𝑎 does not need to be global but local minimum

Generalization to More than One Constraint

Lagrange multiplier
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 Define the Lagrangian on ℝ𝑛 × ℝ𝑝 as

ℒ 𝑥, 𝜆𝑘 = 𝑓 𝑥 +  

𝑘=1

𝑝

𝜆𝑘𝑔𝑘(𝑥)

 To find optimal solutions, we can solve the optimality system

Find 𝑥, 𝜆𝑘 ∈ ℝ𝑛 × ℝ𝑝 such that 𝛻𝑓 𝑥 +  

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑥 = 0

𝑔𝑘 𝑥 = 0 for all 1 ≤ 𝑘 ≤ 𝑝

⟺  
Find 𝑥, 𝜆𝑘 ∈ ℝ𝑛 × ℝ𝑝 such that 𝛻𝑥ℒ 𝑥, {𝜆𝑘} = 0

𝛻𝜆𝑘ℒ 𝑥, {𝜆𝑘} 𝑥 = 0 for all 1 ≤ 𝑘 ≤ 𝑝

The Lagrangian
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Let 𝒰 = 𝑥 ∈ ℝ𝑛 𝑔𝑘 𝑥 = 0 for 𝑘 ∈ 𝐸 , 𝑔𝑘(𝑥) ≤ 0 (for 𝑘 ∈ 𝐼)}.

Definition:

The points in ℝ𝑛 that satisfy the constraints are also called feasible

points.

Definition:

Let 𝑎 ∈ 𝒰, we say that the constraint 𝑔𝑘 𝑥 ≤ 0 (for 𝑘 ∈ 𝐼) is active

in 𝑎 if 𝑔𝑘 𝑎 = 0.

Inequality Constraints: Definitions
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Theorem (Karush-Kuhn-Tucker, KKT):

Let 𝑈 be an open set of 𝐸, | ||) and 𝑓: 𝑈 → ℝ, 𝑔𝑘: 𝑈 → ℝ, all 𝒞1

Furthermore, let 𝑎 ∈ 𝑈 satisfy

 

𝑓 𝑎 = inf 𝑓 𝑥 𝑥 ∈ 𝑈, 𝑔𝑘(𝑥) = 0 for 𝑘 ∈ 𝐸 , 𝑔𝑘 𝑥 ≤ 0 (for 𝑘 ∈ I)

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

Let 𝐼𝑎
0 be the set of constraints that are active in 𝑎 and assume that

𝛻𝑔𝑘 𝑎
𝑘 ∈ 𝐸 ∪ 𝐼𝑎

0 are linearly independent.

Then there exist 𝜆𝑘 1≤𝑘≤𝑝 that satisfy

𝛻𝑓 𝑎 +  

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑎 = 0

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

𝜆𝑘 ≥ 0 (for 𝑘 ∈ 𝐼𝑎
0)

𝜆𝑘𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸 ∪ 𝐼)

Inequality Constraint: Karush-Kuhn-Tucker Theorem

also works again for 𝑎
being a local minimum
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Theorem (Karush-Kuhn-Tucker, KKT):

Let 𝑈 be an open set of 𝐸, | ||) and 𝑓: 𝑈 → ℝ, 𝑔𝑘: 𝑈 → ℝ, all 𝒞1

Furthermore, let 𝑎 ∈ 𝑈 satisfy

 

𝑓 𝑎 = inf 𝑓 𝑥 𝑥 ∈ 𝑈, 𝑔𝑘(𝑥) = 0 for 𝑘 ∈ 𝐸 , 𝑔𝑘 𝑥 ≤ 0 (for 𝑘 ∈ I)

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

Let 𝐼𝑎
0 be the set of constraints that are active in 𝑎 and assume that

𝛻𝑔𝑘 𝑎
𝑘 ∈ 𝐸 ∪ 𝐼𝑎

0 are linearly independent.

Then there exist 𝜆𝑘 1≤𝑘≤𝑝 that satisfy

𝛻𝑓 𝑎 +  

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑎 = 0

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

𝜆𝑘 ≥ 0 (for 𝑘 ∈ 𝐼𝑎
0)

𝜆𝑘𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸 ∪ 𝐼)

Inequality Constraint: Karush-Kuhn-Tucker Theorem

also works again for 𝑎
being a local minimum

either active constraint

or 𝜆𝑘 = 0
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Descent Methods
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General principle

 choose an initial point 𝒙0, set 𝑡 = 1

 while not happy

 choose a descent direction 𝒅𝑡 ≠ 0

 line search:

 choose a step size 𝜎𝑡 > 0

 set 𝒙𝑡+1 = 𝒙𝑡 + 𝜎𝑡𝒅𝑡

 set 𝑡 = 𝑡 + 1

Remaining questions

 how to choose 𝒅𝑡?

 how to choose 𝜎𝑡? 

Descent Methods
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Rationale: 𝒅𝑡 = −𝛻𝑓(𝒙𝑡) is a descent direction

indeed for 𝑓 differentiable

𝑓 𝑥 − 𝜎𝛻𝑓 𝑥 = 𝑓 𝑥 − 𝜎||𝛻𝑓 𝑥 ||2 + 𝑜(𝜎||𝛻𝑓 𝑥 ||)

< 𝑓(𝑥) for 𝜎 small enough

Step-size

 optimal step-size: 𝜎𝑡 = argmin
𝜎

𝑓(𝒙𝑡 − 𝜎𝛻𝑓 𝒙𝑡 )

 Line Search: total or partial optimization w.r.t. 𝜎
Total is however often too "expensive" (needs to be performed at 

each iteration step)

Partial optimization: execute a limited number of trial steps until a 

loose approximation of the optimum is found. Typical rule for 

partial optimization: Armijo rule
see next slide and exercise

Stopping criteria:

norm of gradient smaller than 𝜖

Gradient Descent
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Choosing the step size:

 Only to decrease 𝑓-value not enough to converge (quickly)

 Want to have a reasonably large decrease in 𝑓

Armijo-Goldstein rule:

 also known as backtracking line search

 starts with a (too) large estimate of 𝜎 and reduces it until 𝑓 is 

reduced enough

 what is enough?

 assuming a linear 𝑓 e.g. 𝑚𝑘(𝑥) = 𝑓(𝑥𝑘) + 𝛻 𝑓 𝑥𝑘
𝑇(𝑥 − 𝑥𝑘)

 expected decrease if step of 𝜎𝑘 is done in direction 𝒅: 

𝜎𝑘𝛻𝑓 𝑥𝑘
𝑇𝒅

 actual decrease: 𝑓 𝑥𝑘 − 𝑓(𝑥𝑘 + 𝜎𝑘𝒅)

 stop if actual decrease is at least constant times expected 

decrease (constant typically chosen in [0, 1])

The Armijo-Goldstein Rule



27Introduction to Optimization @ ECP, Nov. 20, 2015© Dimo Brockhoff, INRIA 27

The Actual Algorithm:

Armijo, in his original publication chose 𝛽 = 𝜃 = 0.5.

Choosing 𝜃 = 0 means the algorithm accepts any decrease.

The Armijo-Goldstein Rule
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Graphical Interpretation

The Armijo-Goldstein Rule

𝑥

𝜎0
linear approximation

(expected decrease)

accepted decrease

actual increase
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Graphical Interpretation

The Armijo-Goldstein Rule

𝑥

𝜎1
linear approximation

(expected decrease)

accepted decrease

decrease in 𝑓
but not sufficiently large
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Graphical Interpretation

The Armijo-Goldstein Rule

𝑥

𝜎2
linear approximation 

(expected decrease)

accepted decrease

decrease in 𝑓
now sufficiently large
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Assume 𝑓 is twice continuously differentiable, convex and that 

𝜇𝐼𝑑 ≼ 𝛻2𝑓 𝑥 ≼ 𝐿𝐼𝑑 with 𝜇 > 0 holds, assume a fixed step-size 𝜎𝑡 =
1

𝐿

Note: 𝐴 ≼ 𝐵 means 𝑥𝑇𝐴𝑥 ≤ 𝑥𝑇𝐵𝑥 for all 𝑥

𝑥𝑡+1 − 𝑥∗ = 𝑥𝑡 − 𝑥∗ − 𝜎𝑡𝛻
2𝑓 𝑦𝑡 𝑥𝑡 − 𝑥∗ for some 𝑦𝑡 ∈ [𝑥𝑡 , 𝑥

∗]

𝑥𝑡+1 − 𝑥∗ = 𝐼𝑑 −
1

𝐿
𝛻2𝑓 𝑦𝑡 𝑥𝑡 − 𝑥∗

Hence | 𝑥𝑡+1 − 𝑥∗ |2 ≤ |||𝐼𝑑 −
1

𝐿
𝛻2𝑓 𝑦𝑡 |||2 | 𝑥𝑡 − 𝑥∗ |2

≤ 1 −
𝜇

𝐿

2

||𝑥𝑡 − 𝑥∗||2

Linear convergence: | 𝑥𝑡+1 − 𝑥∗ | ≤ 1 −
𝜇

𝐿
||𝑥𝑡 − 𝑥∗||

algorithm slower and slower with increasing condition number

Non-convex setting: convergence towards stationary point

Gradient Descent: Simple Theoretical Analysis
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Newton Method

 descent direction: − 𝛻2𝑓 𝑥𝑘
−1𝛻𝑓(𝑥𝑘) [so-called Newton 

direction]

 The Newton direction:

 minimizes the best (locally) quadratic approximation of 𝑓: 

 𝑓 𝑥 + Δ𝑥 = 𝑓 𝑥 + 𝛻𝑓 𝑥 𝑇Δ𝑥 +
1

2
Δ𝑥 𝑇𝛻2𝑓 𝑥 Δx

 points towards the optimum on 𝑓 𝑥 = 𝑥 − 𝑥∗ 𝑇𝐴 𝑥 − 𝑥∗

 however, Hessian matrix is expensive to compute in general and 

its inversion is also not easy

quadratic convergence

(i.e. lim
𝑘→∞

|𝑥𝑘+1−𝑥
∗|

𝑥𝑘−𝑥
∗ 2 = 𝜇 > 0 )

Newton Algorithm
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Affine Invariance: same behavior on 𝑓 𝑥 and 𝑓(𝐴𝑥 + 𝑏) for 𝐴 ∈
GLn(ℝ)

 Newton method is affine invariant
see http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/

Lecture_6_Scribe_Notes.final.pdf

 same convergence rate on all convex-quadratic functions

 Gradient method not affine invariant

Remark: Affine Invariance
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𝑥𝑡+1 = 𝑥𝑡 − 𝜎𝑡𝐻𝑡𝛻𝑓(𝑥𝑡) where 𝐻𝑡 is an approximation of the inverse 

Hessian

Key idea of Quasi Newton:

successive iterates 𝑥𝑡, 𝑥𝑡+1 and gradients 𝛻𝑓 𝑥𝑡 , 𝛻𝑓(𝑥𝑡+1) yield

second order information

𝑞𝑡 ≈ 𝛻2𝑓 𝑥𝑡+1 𝑝𝑡

where  𝑝𝑡 = 𝑥𝑡+1 − 𝑥𝑡 and 𝑞𝑡 = 𝛻𝑓 𝑥𝑡+1 − 𝛻𝑓 𝑥𝑡

Most popular implementation of this idea: Broyden-Fletcher-

Goldfarb-Shanno (BFGS)

 default in MATLAB's fminunc and python's 

scipy.optimize.minimize

Quasi-Newton Method: BFGS
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I hope it became clear...

...what are gradient and Hessian

...what are sufficient and necessary conditions for optimality

...what is the difference between gradient and Newton direction

...and that adapting the step size in descent algorithms is crucial.

Conclusions


