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Introduction

Basic Flavors of Complexity Theory

Greedy algorithms

Branch and bound (switched w/ dynamic programming)

Dynamic programming [salle Proto]
Approximation algorithms and heuristics [S205/S207]
Introduction to Continuous Optimization | [S118]

Introduction to Continuous Optimization |l
[from here onwards always: S205/S207]

Gradient-based Algorithms [+ finishing the intro]

| ot Gradiont | Alcorit :

Stochastic Optimization and Derivative Free Optimization |
Stochastic Optimization and Derivative Free Optimization Il
Exam (most likely in salle Proto)
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Lecture Overview Continuous Optimization

Introduction to Continuous Optimization
= examples (from ML / black-box problems)
= typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima
= reminders about differentiability, gradient, Hessian matrix
" unconstrained optimization
= first and second order conditions
= convexity
= constrained optimization

Gradient-based Algorithms
» quasi-Newton method (BFGS)

Derivative-free Optimization/ Stochastic Blackbox Optimization
= CMA-ES (adaptive algorithms / Information Geometry)

= PhD thesis possible on this topic
strongly related to ML, new promising research area, interesting open questions
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Small exercise: finding optima of a
constrained problem




Geometrical Interpretation Using an Ex

Exercise:

Consider the problem
inf {f(x,y) | (x,¥) € R? g(x,y) = 0}

2 glxy) =x*+y*—1

1) Plot the level sets of f, plot g =0
2) Compute IV'f and Vg
3) Find the solutions with Vf + AVg =0
equation solving with 3 unknowns (x, y, )
4) Plot the solutions of 3) on top of the level set graph of 1)
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Descent Methods
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Descent Methods

General principle
© choose an initial point x,, sett =1
® while not happy
» choose a descent directiond; # 0
* |ine search:
= choose a step size g; > 0
" setx;p1 =X +o0:d;
» sett=t+1

Remaining questions
= how to choose d;?
= how to choose g;?
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Gradient Descent

Rationale: d; = —Vf(x;) IS a descent direction
indeed for f differentiable

flx = aVf(x)) = f(x) = al[VFCOII? + o(al|Vf ()]
< f(x) for ¢ small enough
Step-size
= optimal step-size: g; = argmin f(x; — aVf(x;))
o

= Line Search: total or partial optimization w.r.t. o
Total is however often too "expensive" (needs to be performed at
each iteration step)
Partial optimization: execute a limited number of trial steps until a
loose approximation of the optimum is found. Typical rule for
partial optimization: Armijo rule
see next slide and exercise

Stopping criteria:
norm of gradient smaller than ¢
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The Armijo-Goldstein Rule

Choosing the step size:
= Only to decrease f-value not enough to converge (quickly)
= Want to have a reasonably large decrease in f

Armijo-Goldstein rule:
= also known as backtracking line search

= starts with a (too) large estimate of o and reduces it until f is
reduced enough

= whatis enough?
= assuming alinear f e.g. my(x) = f(xx) + V ()T (x — x3)
= expected decrease If step of gy, Is done in direction d.
ok Vf(x)'d
= actual decrease: f(x;) — f(xy + 05, d)

» stop if actual decrease is at least constant times expected
decrease (constant typically chosen in [0, 1])
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The Armijo-Goldstein Rule

The Actual Algorithm:

Input: descent direction d, point x. objective function f(x) and its gra-
dient V f(x), parameters oy = 10, 6 € [0, 1] and g € (0,1)
Output: step-size o

Initialize o: 0 <+ oy

while f(x +od) > f(x)+ 0oV [f(x)"d do
o+ [o

end while

Armijo, in his original publication chose g = 6 = 0.5.
Choosing 8 = 0 means the algorithm accepts any decrease.
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The Armijo-Goldstein Rule

Graphical Interpretation
A actual increase
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The Armijo-Goldstein Rule

Graphical Interpretation
A

. decrease in f
........ but not sufficiently large
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The Armijo-Goldstein Rule

Graphical Interpretation
A

—_, decrease in f
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Gradient Descent: Simple Theoretical Analy

Assume f is twice continuously differentiable, convex and that
uly < V4f(x) < L1z with u > 0 holds, assume a fixed step-size o, =

—hlb—\

Note: A < B means xTAx < xTBx for all x

Xep1 — X* =X — X" — 0.V f(y)(xe — x*) for some y; € [x;, x”]
1
Xepp — X = (Id — szf(Yt)) (x; —x%)

1
Hence |lxeq — x7[12 < [[llg =2 V2f OllI? [lxe — x7 ]2
2

<(1=5) Il — 27112

Linear convergence: ||x;+; — x*|| < (1 — %) || — x|

algorithm slower and slower with increasing condition number

Non-convex setting: convergence towards stationary point
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Newton Algorithm

Newton Method

= descent direction: —[V?f(x;)] 1V f(x;) [so-called Newton
direction]

= The Newton direction:
= minimizes the best (locally) quadratic approximation of f:
fla+Ax) = f(x) + Vf()TAx + = (M) V2 f (x) Ax

= points towards the optimum on f(x) = (x — x*)TA(x — x*)
= however, Hessian matrix is expensive to compute in general and
Its inversion is also not easy

guadratic convergence

(i.e. lim =2 =u > O)
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Remark: Affine Invariance

Affine Invariance: same behavior on f(x) and f(Ax + b) for A €
GLn(R)
= Newton method is affine invariant

see http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/
Lecture 6 Scribe Notes.final.pdf

= same convergence rate on all convex-gquadratic functions
» Gradient method not affine invariant

© Dimo Brockhoff, INRIA
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Quasi-Newton Method: BFGS

Xep1 = X — 0 H{Vf (x;) Where H; is an approximation of the inverse
Hessian

Key Idea of Quasi Newton:

successive iterates x;, x;,, and gradients Vf (x;), Vf(x;+1) yield
second order information

Qe = V2 f (Xe1)De
where py = xt4q — x¢ and q; = Vf(xpyq) — V()

Most popular implementation of this idea: Broyden-Fletcher-
Goldfarb-Shanno (BFGS)

= default in MATLAB's £fminunc and python's
scipy.optimize.minimize
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Conclusions

| hope it became clear so far...

...what are gradient and Hessian

...what are sufficient and necessary conditions for optimality
...what is the difference between gradient and Newton direction
...and that adapting the step size in descent algorithms is crucial.
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Derivative-Free Optimization
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Derivative-Free Optimization (DFO)

DFO = blackbox optimization

Why blackbox scenario?

= gradients are not always available (binary code, no analytical
model, ...)

= or not useful (noise, non-smooth, ...)

= problem domain specific knowledge is used only within the black
box, e.g. within an appropriate encoding

= some algorithms are furthermore function-value-free, i.e. invariant
wrt. monotonous transformations of f.
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Derivative-Free Optimization Algorithms

(gradient-based algorithms which approximate the gradient by
finite differences)

coordinate descent
pattern search methods, e.g. Nelder-Mead

surrogate-assisted algorithms, e.g. NEWUOA or other trust-
region methods

function-value-free algorithms

typically stochastic

evolution strategies (ESs) and Covariance Matrix Adaptation
Evolution Strategy (CMA-ES)

differential evolution
particle swarm optimization
simulated annealing
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Stochastic Search Template

A stochastic blackbox search template to minimize f: R" - R
Initialize distribution parameters @, set population size 1 € N
While happy do:

=  Sample distribution P(x|0) —» x4, ...,x; € R"

» Evaluate x4, ...,x;0nf

» Update parameters 6 « Fy(0, x4, ..., X3, f(x1), ..., f(x))

= All depends on the choice of P and Fy
deterministic algorithms are covered as well

= |n Evolutionary Algorithms, P and Fy are often defined implicitly
via their operators.
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Generic Framework of an EA

Initialization best individual

: pOtentia mating
evaluation :
parents selection

environmental
selection

crossover/
mutation

evaluation

stochastic operators

erorotation dhan
<AL Interpretation change

J
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CMA-ES in a Nutshell

Evolution Strategies (ES)

The CMA-ES

Input: m € R*, 0 € Ry, A

Initialize: C =1, andp. =0, p, =0,

Set: cc ~4/n, co = 4/n, ¢y = 2/n?, Cp R [y /1%, C1 + cp <1,de =1+ \/%,
and wi—; _, such that s, = —<=— ~ 0.3\

2
i—1 Wi

While not terminate

xi=m+oy. yi ~ N;j(0,C), fori=1,..., A sampling
m<— Y b wixpy =m+ oy, wherey, =31 wiyi update mean
pe — (1 =co)pe + Mgy <15ym v/ 1 — (1 — ce)®>/itwyw  cumulation for C
Po — (1 —¢co)ps + \/1 — (1 — CJ)Z\/;TWC—%J:W cumulation for o
Ce(1—c1—c,)C+ crpepe’ + ¢ S0 wiviarh, update C
o4 0 X exp (g—z (%—1)) update of o

Not covered on this slide: termination, restarts, useful output, boundaries and
encoding

| 16/ 81
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CMA-ES In a Nutshell

Evolution Strategies (ES) A Search Template

The CMA-ES

Input: m € R*, 0 € Ry, A

Initialize: C =1, andp. =0, p, =0,

Set: cc 2 4/n, co = 4/n, ¢ = f_/fz Cp A /NP, 1+ cp < 1, de = 1+ /B2,
and w;—;._ such that p,, = Zp, 7~ 0.3\

While not terminate

xi=m+oy. yi ~ N;j(0,C), fori=1,..., A sampling
m4— Y 4L wixiy =m+ oy, Wherey, =31 wiyia update mean
pe — (1 =co)pe + Mgy <15ym v/ 1 — (1 — ce)®>/itwyw  cumulation for C
Po — (1= o) po + /1= (1 = ¢ )2\/tiw C 2y, cumulation for &

L T PPN R

C—(1-c1—¢y)C + c1pepe’ +ame

0 4= 0 X eXp (i (E||J'l'}fg},']1)|| 1) Goal:
Understand the main principles
of this state-of-the-art algorithm.

—

16/ 81

Not covered on this slide: terminatic
encoding
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Copyright Notice

= Last slide was taken from
https://www.1lri.fr/~hansen/copenhagen-cma-es.pdf

(copyright by Nikolaus Hansen, one of the main inventors of the
CMA-ES algorithms)

* In the following, | will borrow more slides from there and from
http://researchers.lille.inria.fr/~brockhof/optimiza

tionSaclay/slides/20151106-continuousoptIV.pdf
(by Anne Auger)

* In the following and the online material in particular, | refer to
these pdfs as [Hansen, p. X] and [Auger, p. Y] respectively.
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Announcement: Thesis Projects

= Anne Auger, Nikolaus Hansen, and me propose a couple of
research projects for Bachelor's, Master's, and/or PhD theses

* randopt.gforge.inria.fr/thesisprojects/

- N TS Wi oo - 8 - . )
| & Thesis Projects [start] “+
é @ | randopt.gforge.inria.fr/thesisprojects/doku.php E3 [& C?SE:r:h ﬁ’ E 4+ # 9 =

B Most Visited | Getting Started rl,;,{ algorithms [COmparin.., O numbbo/numbbo - Gi...

Trace: » start

THESIS PROJECTS start

Welcomel!

On this page, you will find various current technical and scientific projects in the field of stochastic blackbox
optimization proposed by @ Anne Auger, ©@Dimo Brockhoff, and @Nikolaus Hansen at Inria. Depending on the subject,
the projects can be Bachelor, Master's, or PhD theses, or related to internships and might be carried out in close
relationship with external collaborators, including companies.

m

If you are interested in (stochastic) blackbox optimization but your favorite topic is not mentioned here, feel free to

contact us personally. We might always have other topics in mind, which range from theoretical studies to algorithm
design but which have not yet been formalized here.

Current Openings

= The Orbit Algorithm for Expensive Numerical Blackbox Problems (Bachelor/Master's project)
= Data Mining Performance Results of Numerical Optimizers (Master's project)
= General Constraint Handling in the Stochastic Numerical Optimization Algorithm CMA-ES (CIFRE PhD)

= Designing Variants of the Covariance Matrix Adaptation Evolution Strategy to Handle Multiobjective Blackbox
Problems (CIFRE PhD)

start.txt - Last modified: 201

Search
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Announcement: Thesis Projects

= Anne Auger, Nikolaus Hansen, and me propose a couple of
research projects for Bachelor's, Master's, and/or PhD theses

* randopt.gforge.inria.fr/thesisprojects/

= projects related to CMA-ES and other (stochastic) blackbox
optimization algorithms

* ranging from
= pure theory (e.g. convergence analysis, Markov chain Monte
Carlo, Information Geometry, ...) over

= algorithm design (CMA-ES variants for new problem types
such as large-scale, multiobjective, ...) to

= applications (CIFRE PhD thesis for example)

Note:
Not all possible projects are described, hence contact us.
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Back to CMA-ES

Evolution Strategies (ES) A Search Template

The CMA-ES

Input: m € R*, 0 € Ry, A

Initialize: C =1, andp. =0, p, =0,

Set: cc 2 4/n, co = 4/n, ¢ = f_/fz Cp A /NP, 1+ cp < 1, de = 1+ /B2,
and w;—;._ such that p,, = Zp, 7~ 0.3\

While not terminate

xi=m+oy. yi ~ N;j(0,C), fori=1,..., A sampling
m4— Y 4L wixiy =m+ oy, Wherey, =31 wiyia update mean
pe — (1 =co)pe + Mgy <15ym v/ 1 — (1 — ce)®>/itwyw  cumulation for C
Po — (1= o) po + /1= (1 = ¢ )2\/tiw C 2y, cumulation for &

L T PPN R

(_,-%(1—.:1—(“#)(_, +C1]JJJLT +o N

0 4= 0 X eXp (i (E||J'l'}fg},']1)|| 1) Goal:
Understand the main principles
of this state-of-the-art algorithm.

—

16/ 81

Not covered on this slide: terminatic
encoding
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CMA-ES: Stochastic Search Template

A stochastic blackbox search template to minimize f: R" - R

Initialize distribution parameters @, set population size 1 € N
While happy do:

= Sample distribution P(x|6) = x4, ...,x; € R"
» Evaluate x4, ...,x;0nf
= Update parameters 0 « Fy(0,xq, ..., X3, f (x1), ..., f(x3))

For CMA-ES and evolution strategies in general:

sample distributions = multivariate Gaussian distributions

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Nov. 27, 2015



Sampling New Candidate Solutions (Offspring
Evolution Strategies

_________________________

New search points are sampled normally distributed

x; ~m+ o N;(0,C) fori=1.....\

as perturbations of m, where x;,m e R", 0 € Ry, C € R™" i
where

@ the mean vector m € R” represents the favorite solution
@ the so-called step-size o € R controls the step length

@ the covariance mairix C € R"™" determines the shape of
the distribution ellipsoid

here, all new points are sampled with the same parameters

It remains to show how to adapt the parameters, but for now: normal
distributions

from [Auger, p. 10]
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Excursion: Normal Distributions

Normal Distribution

1-D case

04 Standard Mormal Distribution

' probability density of the 1-D standard normal
203 distribution N (0, 1)
Em (expected (mean) value, variance) = (0,1)
%.[H (X) — 1 ex ( X2)

P = - P >
0

-4 -2 0 2 4

General case

> Normal distribution A/ (m, )

(expected value, variance) = (m, o?)

1 (x—m)*"

density: pm.o(x) = —=— exp (— 552 )

' 2Ta

» A normal distribution is entirely determined by its mean value and
variance

» The family of normal distributions is closed under linear transformations:
if X is normally distributed then a linear transformation aX + b is also
normally distributed
» Exercice: Show that m + oN(0,1) = N (m, o?)
from [Auger, p. 11]
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Excursion: Normal Distributions

Normal Distribution

General case

A random variable following a 1-D normal distribution is determined by its

mean value m and variance o?2.

In the n-dimensional case it is determined by its mean vector and covariance
matrix

Covariance Matrix

If the entries in a vector X = (X1, ... ,X,,)T are random variables, each with
finite variance, then the covariance matrix ¥ is the matrix whose (/, ) entries
are the covariance of (X;, Xj)

2ij =cov(X;,Xj) =E [(X, — pi)(Xj — P‘fj)]

where p1; = E(X;). Considering the expectation of a matrix as the expectation
of each entry, we have

¥ =E[(X —p)(X — )]

2 is symmetric, positive definite

from [Auger, p. 12]
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Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution A"(m, C) is uniquely determined by its

mean value m € R" and its symmetric positive definite n x n covariance matrix

C.
denSity: p,-\-"{m.(:‘,l(x) — {zﬁ)n__.-"ilcll,:‘z exp(_%(‘x o m)Tc_l(‘x o m))

fro__m [Al_,lge;_r\,l p. 13]
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Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution A"(m, C) is uniquely determined by its

mean value m € R" and its symmetric positive definite n x n covariance matrix
C.

density: paqm,c)(X) = 1 exp(—%(x —m)'C (x — m))

o {zﬂn_..-’2|c|1,.-’z

. £

The mean value m

» determines the displacement (translation)
» value with the largest density (modal value)

» the distribution is symmetric about the
distribution mean

N(m,C)=m+N(0.C)

from [Auger, p. 13]
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Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution N (m, C) is uniquely determined by its

mean value m € R" and its symmetric positive definite n x n covariance matrix
C.

density: paqm,c)(X) = {zxjn.-’é|t:|1.--’2 exp(—%(x —m)'C (x — m))

.

The mean value m

» determines the displacement (translation)
» value with the largest density (modal value)

» the distribution is symmetric about the
distribution mean

N(m,C) =m+ N(0,C)
The covariance matrix C
» determines the shape

» geometrical interpretation: any covariance matrix can be uniquely
identified with the iso-density ellipsoid
(x eR"|(x —m)"C}(x —m) =1}

from [Auger, p. 13]
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Covariance Matrix: Lines of Equal Density

...any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x € R" | (x — m)'C!(x — m) =1}

Lines of Equal Density

N (m, le) ~m+ oN(0,1)
one degree of freedom o
components are

independent standard
normally distributed

where | is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A x A/ (0,1) ~ N(D,AAT) holds for all
A.

© Dimo Brockhoff, INRIA

from [Auger, p. 14]

ECP, Nov. 27, 2015

Introduction to O

timization @



Covariance Matrix: Lines of Equal Density

...any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x € R"|(x — m)"C™}(x — m) =1}

Lines of Equal Density

N(m.a?l)~m+oN(0,1) N (m.D?)~m+DAN(0.1)
one degree of freedom o n degrees of freedom
components are components are

independent standard independent, scaled

normally distributed

where | is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A x N/ (0.1) ~ N(D,AAT) holds for all
A.

© Dimo Brockhoff, INRIA
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Covariance Matrix: Lines of Equal Density

...any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x € R"|(x — m)"C™}(x — m) =1}

Lines of Equal Density

N(m.a?l)~m+oN(0,1) N (m.D?)~m+DAN(0.1)
one degree of freedom o

N(m,C)~ m+C2N(0,1)
n degrees of freedom
components are

(n® 4+ n)/2 degrees of freedom
components are components are
independent standard independent, scaled correlated
normally distributed

where | is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A x N/ (0.1) ~ N(O,AAT) holds for all
A.

© Dimo Brockhoff, INRIA
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Adaptation of Sample Distribution Parameters

Adaptation: What do we want to achieve?

New search points are sampled normally distributed

xj ~m+aN;(0,C) fori=1....,\

where x;, me R", c e R, C € R™"

» the mean vector should represent the favorite solution

» the step-size controls the step-length and thus convergence
rate

should allow to reach fastest convergence rate possible

» the covariance matrix C € R™" determines the shape of the
distribution ellipsoid
adaptation should allow to learn the “topography” of the problem

particulary important for ill-conditionned problems
C < H™! on convex quadratic functions

from [Auger, p. 16]

= &
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Adaptation of the Mean
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Plus and Comma Selection

Evolution Strategies (ES) The Normal Distribution

Evolution Strategies

Terminology
(1. # of parents, \: # of offspring

Plus (elitist) and comma (non-elitist) selection

(1t + A\)-ES: selection in {parents} U {offspring}
(1, A\)-ES: selection in {offspring}

(1+1)-ES
Sample one offspring from parent m

x=m+oN(0,C)

If x better than m select

m+<—Xx

A

from fHansen, p.- 35]
- 25/81
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Non-Elitism and Weighted Recombination

Evolution Strategies (ES)

The (u/p, A)-ES

Non-elitist selection and intermediate (weighted) recombination

Given the i-th solution pointx; = m + o N;(0,C) = m + oy,
S——’
=:yi
Let x;., the i-th ranked solution point, such that f(x.,) < -+ < f(x).0).

The new mean reads

K M
n <— E WiXp\ = m-—+ao E Wi Vi-\

Y

Vw

where

B>

¥ ;‘1' 1 —_— 1 _ Pt
Wy > Zwy >0, P wi= 1 g =
=

The best ;1 points are selected from the new solutions (non-elitistic)

and weighted intermediate recombination is applied.
from [Hanﬁegs,;g. 34]

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Nov. 27



Invariance Against Order-Preserving f-Transforms

Invariance: Function-Value Free Property
f=nh  f=gq0oh f=g20h

N

function value
function value

function value

& 4 3 2 1 [} 1 2 a Ll B L] e} a 2 L 2 1 2 3 B L1

Three functions belonging to the same equivalence class

A function-value free search algorithm is invariant under the
transformation with any order preserving (strictly increasing) g.

Invariances make

e observations meaningful as a rigorous notion of generalization

e algorithms predictable and/or "robust”
from [Hansen, p. 37]
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Invariance Against Translations in Search Spa

Evolution Strategies (ES)

Basic Invariance in Search Space

@ translation invariance
is true for most optimization algorithms

fx) & flx —a)

Identical behavior on f and f,

f: x—=fl(x), x(=0) = x,
fu: x> fx—a), x=9 =x;,+a

No difference can be observed w.r.t. the argument of f

from [Ha”ﬁe%, p: 38]
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Invariance Against Search Space Rotations

Evolution Strategies (ES)

Rotational Invariance in Search Space

@ invariance to orthogonal (rigid) transformations R, where RRT =1
e.g. true for simple evolution strategies
recombination operators might jeopardize rotational invariance

Fx) < f(Re) L

Identical behavior on f and fg

froxofl), x=x
fro X f(Re). x0= = R~ (xo)

45 No difference can be observed w.r.t. the argument of f

4Sal::uml:-n 1996. "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A
survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278

5Hansen 2000. Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies. Parallel Problem Solving from
Nature PPSN VI
from [HanSegn, p: 39]
29/ 81

© Dimo Brockhoff, INRIA Introduction to Optimi



Invariance Against Rigid Search Space Transform

Evolution Strategies (ES) Invariance

Invariance Under Rigid Search Space Transformations

f = hRast f-level sets in dimension 2 f =h
I ; i
— A
T -
e
_2_.
-3 -2 -1 0 1 2 3

for example, invariance under search space rotation
(separable < non-separable)

from [Hansen, p. 40
27/ 81 ]
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Invariance Against Rigid Search Space Transforms

Evolution Strategies (ES) Invariance

Invariance Under Rigid Search Space Transformations

f=hrasto R Flevel sets in dimension 2 f=hoR

for example, invariance under search space rotation
(separable < non-separable)

from [Hansen, p. 41]
- 27/81
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Invariance Against Rigid Search Space Transfor

Evolution Strategies (ES)

Invariance Under Rigid Search Space Transformations

f=hrasto R Flevel sets in dimension 2 f=hoR

for example, invariance un:

(separable < non-separak mainly Nelder-Mead and CMA-ES

have this property

| 27181
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Invariances: Summary

Evolution Strategies (ES)

Invariance

The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest number of hypotheses or axioms.
— Albert Einstein

@ Empirical performance results

» from benchmark functions
» from solved real world problems

are only useful if they do generalize to other problems

@ [nvariance is a strong non-empirical statement about

generalization
generalizing (identical) performance from a single function to a whole

class of functions

consequently, invariance is important for the evaluation of search
algorithms

from fHansen; . 43]
- 30/81
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Step-Size Adaptation
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Recap CMA-ES: What We Have So Far

Step-Size Control

Evolution Strategies

Recalling

New search points are sampled normally distributed |

xi ~m~+ aN;0,C) fori=1...., A -

as perturbations of , where x;,m € R*, 0 € R, C € R™*" |
where

@ the mean vector m € R” represents the favorite solution
and m < I wix;
@ the so-called step-size o € R, controls the step length

@ the covariance maltrix C € R"" determines the shape of
the distribution ellipsoid

The remaining question is how to update » and C.

from fHansen; . 45]
32/ 81
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Why At All Step-Size Adaptation?
Why Step-Size Control?

10° What do you think will happen for a
(1+1)-ES with constant step-size?
g
=2 3
3 10 )
5 f(x)=>
"‘é i=1
-6
=10 in [<0.2,0.8]"
for n =10
_g : | | |
10 0 0.5 1 1.5 2

. . h
function evaluations % 10

from [Auger, p. 22]
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Why Step-Size Adaptation?
Why Step-Size Control?

100 m ........................ ....................... i
5 § random search
step-size too small - : :
) corésta tstep—sizeé
E -3 : :
T 10 | ,
C : _ 2
s Al f ) =3
- S N il Bl step-size too large— - — — - = — 1 .
U ; : f:].
C : : !
= 10_6_ ______________________ . L—\ _______ . 5 i n
g g g in [—0.2,0.8]
5 5 for n =10
optimal step-size
(scale invariant) .
107° : : :
0 05 1 15 2
function evaluations % 10°

from [Auger, p. 22]
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Optimal Step-Size

Step-Size Control

Why Step-Size Control?
(5/5w,10)-ES, H. runs

-

— with optimal step-size |-

f(x)

=

..............................................................................

forn = 10 and
x' € [-0.2,0.8]"

lm —x*|[ =

I \ i i
400 600 800 1000 1200
function evaluations

with optimal step-size o

i
0 200

from [Hansen, p.247]
- 34/81
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Optimal Step-Size vs. Step-Size Control

Step-Size Control

Why Step-Size Control?
(5/5w,10)-ES, tjmes 11Iruns

_"E-:;'f?,#‘_;\ ------------------ e — with optimal step-size [3
: — with step-size control |]

f(x)

=

.......................................................

forn =10 and
x' € [-0.2,0.8]"

|2 — x*||

i i g
400 600 800 1200

function evaluations

with optimal versus adaptive step-size o with too small initial o

i
200

from fHansen; .- 48]
35/ 81
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Optimal Step-Size vs. Step-Size Control

Step-Size Control

Why Step-Size Control?

(5/5w,10)-ES . :
10° - ------------------ e — with optimal step-size |
f — with step-size control |]
I : -  respective step-size |]
0 NS o : : :
ﬁ/ H H
S~
107 ko AN S R — — | "
_ , 5 a a 5 ] — -2
|| r : : : : : . f(x) _ }“!'
% | s s s s =1
P i N A A e
! : = ' | ’ | for n = 10 and
= | ; ; : ; x! € [-0.2,0.8]"
104 | NN e AR e :
107 5 200 400 500 800 1000 1200

function evaluations
comparing number of f-evals to reach |jm| = 107: 1810 ~ 1.5
from fHansen; . 49]
- 36/81
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Adapting the Step-Size

= How to actually adapt the step-size during the optimization?

Most common:

= 1/5 success rule

= Cumulative Step-Size Adaptation (CSA, as in standard CMA-ES)
= others possible (Two-Point Adaptation, self-adaptive step-size, ...)
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One-Fifth Success Rule

One-fifth success rule

- —~ AN
\\\\ .
% *
)
N ’/"/
///
Increase o decrease o

from [Auger, p. 32]

© Dimo Brockhoff, INRIA Introduction to Optimization @



One-Fifth Success Rule

One-fifth success rule

/,.-*"“‘“\\
Probability of success (ps) Probability of success (ps)
1/2 1/5 “too small’

from [Auger, p. 33]
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One-Fifth Success Rule

One-fifth success rule

ps: # of successful offspring / # offspring (per generation)

1 pS - pl;a,['get) Increase a |f p_g = ptarget

g0 xexp| = x
P (3 1 — Prarget Decrease o if ps < prarget

(14 1)-ES
Ptarget — 1/5
|F offspring better parent
ps =1, 0+ 0 xexp(1l/3)

ELSE
ps =0, 0« 0/ exp(1/3)1/4

© Dimo Brockhoff, INRIA Introduction to Optimization @ ECP, Nov. 27, 2015
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One-Fifth Success Rule

Why 1/57

Asymptotic convergence rate and probability of success of
scale-invariant step-size (1+1)-ES

0.5 ) ) ) )

I e .
=

Q

I & 12 ] PRI S . PP .
=

@

E

o P L R .
)

E

k=]

[

T

— R

min (CR

. (1)
: : i | = = -proba of success
_0_3 1 1 1 I
0 2 4 6 8 10
sigma*dimension

N e

sphere - asymptotic results, i.e. n = 0o (see slides before)

1/5 trade-off of optimal probability of success on the sphere and
corridor from [Auger, p. 35]
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Cumulative Step-Size Adaptation (CSA)

Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

Xi = m+aoYyi
m < mM+oYyw

Measure the length of the evolution path

the pathway of the mean vector m in the generation

sequence
decrease o increase o

fro[n [AL_Jger, p. 36]
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Cumulative Step-Size Adaptation (CSA)

Path Length Control (CSA)

The Equations

Initialize m € R", o € R, evolution path p, =0,
set ¢, ~4/n, d, = 1.

m <+ m-+oy, Wherey, = ‘;”:1 Wi Y\ update mean

p, + (l—cg)pg+\/1—(1—Ca)2 vV Hw Yw

-
accounts for 1—c,

S 1o | )) .
g 4 o0X exp( ( —1 update step-size
U \d, \EIN(.Y 7))

>1 <= ||p-|| is greater than its expectation

accounts for w;

from [Auger, p. 37]
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Cumulative Step-Size Adaptation (CSA)

Step-size adaptation
What is achived

()

=

g n

: LR

2 | =1

g stepirsizefs .

S R R B . in [—0.2,0.8]"
for n =10

optimal step—si adaptive

(scale invariant) A ! step-size G

0 500 1000
function evaluations

1500

Linear convergence

from [Auger, p. 38]
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Covariance Matrix Adaptation
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Recap CMA-ES: What We Have So Far

Evolution Strategies

Recalling

New search points are sampled normally

distributed T T
xi ~m+ o N;(0,C) fori=1.....\ L S
i - +:::--:. .
as perturbations of m, where x;, m e R", 0 € R_, ‘ J
C e RPXn
where

» the mean vector m € R" represents the favorite solution
» the so-called step-size o € R controls the step length
» the covariance matrix C € R"*" determines the shape
of the distribution ellipsoid
The remaining question is how to update C.

from [Auger, p. 40]
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Recap CMA-ES: What We Have So Far

Evolution Strategies

Recalling

New search points are sampled normally

distributed T
xj~ m+ o N;i(0,C) fori=1,....\ : *i*-r{
as perturbations of m, where x;, meR", ce R,, | =~ . __________
C e RM™"
where

» the mean vector m € R" represents the favorite solution

» the so-called step-size C . : . |
© " ...which is what we will see in the last

» the covariance matrix lecture next Friday

of the distribution elli.

The remaining question is how to update C.

from [Auger, p. 40]
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