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Date Topic

Mon, 21.9.2015 Introduction

Mon, 28.9.2015 D Basic Flavors of Complexity Theory

Mon, 5.10.2015 D Greedy algorithms

Mon, 12.10.2015 D Branch and bound (switched w/ dynamic programming)

Mon, 2.11.2015 D Dynamic programming [salle Proto]

Fri, 6.11.2015 D Approximation algorithms and heuristics [S205/S207]

Mon, 9.11.2015 C Introduction to Continuous Optimization I [S118]

Fri, 13.11.2015 C Introduction to Continuous Optimization II

[from here onwards always: S205/S207]

Fri, 20.11.2015 C Gradient-based Algorithms [+ finishing the intro]

Fri, 27.11.2015 C End of Gradient-based Algorithms + Linear Programming

Stochastic Optimization and Derivative Free Optimization I

Fri, 4.12.2015 C Stochastic Optimization and Derivative Free Optimization II

Tue, 15.12.2015 Exam (most likely in salle Proto)

Course Overview
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Introduction to Continuous Optimization

 examples (from ML / black-box problems)

 typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

 reminders about differentiability, gradient, Hessian matrix

 unconstrained optimization

 first and second order conditions

 convexity

 constrained optimization

Gradient-based Algorithms

 quasi-Newton method (BFGS)

Derivative-free Optimization/ Stochastic Blackbox Optimization 

 CMA-ES (adaptive algorithms / Information Geometry)

 PhD thesis possible on this topic
strongly related to ML, new promising research area, interesting open questions

Lecture Overview Continuous Optimization
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Small exercise: finding optima of a 

constrained problem
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Geometrical Interpretation Using an Example

Exercise:

Consider the problem

inf 𝑓 𝑥, 𝑦 𝑥, 𝑦 ∈ ℝ2, 𝑔 𝑥, 𝑦 = 0}

𝑓 𝑥, 𝑦 = 𝑦 − 𝑥2 𝑔 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 1

1) Plot the level sets of 𝑓, plot 𝑔 = 0
2) Compute 𝛻𝑓 and 𝛻𝑔
3) Find the solutions with 𝛻𝑓 + 𝜆𝛻𝑔 = 0

equation solving with 3 unknowns (𝑥, 𝑦, 𝜆)

4) Plot the solutions of 3) on top of the level set graph of 1)
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Descent Methods
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General principle

 choose an initial point 𝒙0, set 𝑡 = 1

 while not happy

 choose a descent direction 𝒅𝑡 ≠ 0

 line search:

 choose a step size 𝜎𝑡 > 0

 set 𝒙𝑡+1 = 𝒙𝑡 + 𝜎𝑡𝒅𝑡

 set 𝑡 = 𝑡 + 1

Remaining questions

 how to choose 𝒅𝑡?

 how to choose 𝜎𝑡? 

Descent Methods



9Introduction to Optimization @ ECP, Nov. 27, 2015© Dimo Brockhoff, INRIA 9

Rationale: 𝒅𝑡 = −𝛻𝑓(𝒙𝑡) is a descent direction

indeed for 𝑓 differentiable

𝑓 𝑥 − 𝜎𝛻𝑓 𝑥 = 𝑓 𝑥 − 𝜎||𝛻𝑓 𝑥 ||2 + 𝑜(𝜎||𝛻𝑓 𝑥 ||)

< 𝑓(𝑥) for 𝜎 small enough

Step-size

 optimal step-size: 𝜎𝑡 = argmin
𝜎

𝑓(𝒙𝑡 − 𝜎𝛻𝑓 𝒙𝑡 )

 Line Search: total or partial optimization w.r.t. 𝜎
Total is however often too "expensive" (needs to be performed at 

each iteration step)

Partial optimization: execute a limited number of trial steps until a 

loose approximation of the optimum is found. Typical rule for 

partial optimization: Armijo rule
see next slide and exercise

Stopping criteria:

norm of gradient smaller than 𝜖

Gradient Descent
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Choosing the step size:

 Only to decrease 𝑓-value not enough to converge (quickly)

 Want to have a reasonably large decrease in 𝑓

Armijo-Goldstein rule:

 also known as backtracking line search

 starts with a (too) large estimate of 𝜎 and reduces it until 𝑓 is 

reduced enough

 what is enough?

 assuming a linear 𝑓 e.g. 𝑚𝑘(𝑥) = 𝑓(𝑥𝑘) + 𝛻 𝑓 𝑥𝑘
𝑇(𝑥 − 𝑥𝑘)

 expected decrease if step of 𝜎𝑘 is done in direction 𝒅: 

𝜎𝑘𝛻𝑓 𝑥𝑘
𝑇𝒅

 actual decrease: 𝑓 𝑥𝑘 − 𝑓(𝑥𝑘 + 𝜎𝑘𝒅)

 stop if actual decrease is at least constant times expected 

decrease (constant typically chosen in [0, 1])

The Armijo-Goldstein Rule
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The Actual Algorithm:

Armijo, in his original publication chose 𝛽 = 𝜃 = 0.5.

Choosing 𝜃 = 0 means the algorithm accepts any decrease.

The Armijo-Goldstein Rule
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Graphical Interpretation

The Armijo-Goldstein Rule

𝑥

𝜎0
linear approximation

(expected decrease)

accepted decrease

actual increase
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Graphical Interpretation

The Armijo-Goldstein Rule

𝑥

𝜎1

linear approximation

(expected decrease)

accepted decrease

decrease in 𝑓
but not sufficiently large
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Graphical Interpretation

The Armijo-Goldstein Rule

𝑥

𝜎2

linear approximation 

(expected decrease)

accepted decrease

decrease in 𝑓
now sufficiently large
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Assume 𝑓 is twice continuously differentiable, convex and that 

𝜇𝐼𝑑 ≼ 𝛻2𝑓 𝑥 ≼ 𝐿𝐼𝑑 with 𝜇 > 0 holds, assume a fixed step-size 𝜎𝑡 =
1

𝐿

Note: 𝐴 ≼ 𝐵 means 𝑥𝑇𝐴𝑥 ≤ 𝑥𝑇𝐵𝑥 for all 𝑥

𝑥𝑡+1 − 𝑥∗ = 𝑥𝑡 − 𝑥∗ − 𝜎𝑡𝛻
2𝑓 𝑦𝑡 𝑥𝑡 − 𝑥∗ for some 𝑦𝑡 ∈ [𝑥𝑡 , 𝑥

∗]

𝑥𝑡+1 − 𝑥∗ = 𝐼𝑑 −
1

𝐿
𝛻2𝑓 𝑦𝑡 𝑥𝑡 − 𝑥∗

Hence | 𝑥𝑡+1 − 𝑥∗ |2 ≤ |||𝐼𝑑 −
1

𝐿
𝛻2𝑓 𝑦𝑡 |||2 | 𝑥𝑡 − 𝑥∗ |2

≤ 1 −
𝜇

𝐿

2

||𝑥𝑡 − 𝑥∗||2

Linear convergence: | 𝑥𝑡+1 − 𝑥∗ | ≤ 1 −
𝜇

𝐿
||𝑥𝑡 − 𝑥∗||

algorithm slower and slower with increasing condition number

Non-convex setting: convergence towards stationary point

Gradient Descent: Simple Theoretical Analysis
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Newton Method

 descent direction: − 𝛻2𝑓 𝑥𝑘
−1𝛻𝑓(𝑥𝑘) [so-called Newton 

direction]

 The Newton direction:

 minimizes the best (locally) quadratic approximation of 𝑓: 

 𝑓 𝑥 + Δ𝑥 = 𝑓 𝑥 + 𝛻𝑓 𝑥 𝑇Δ𝑥 +
1

2
Δ𝑥 𝑇𝛻2𝑓 𝑥 Δx

 points towards the optimum on 𝑓 𝑥 = 𝑥 − 𝑥∗ 𝑇𝐴 𝑥 − 𝑥∗

 however, Hessian matrix is expensive to compute in general and 

its inversion is also not easy

quadratic convergence

(i.e. lim
𝑘→ ∞

|𝑥𝑘+1−𝑥∗|

𝑥𝑘−𝑥∗ 2 = 𝜇 > 0 )

Newton Algorithm
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Affine Invariance: same behavior on 𝑓 𝑥 and 𝑓(𝐴𝑥 + 𝑏) for 𝐴 ∈
GLn(ℝ)

 Newton method is affine invariant
see http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/

Lecture_6_Scribe_Notes.final.pdf

 same convergence rate on all convex-quadratic functions

 Gradient method not affine invariant

Remark: Affine Invariance
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𝑥𝑡+1 = 𝑥𝑡 − 𝜎𝑡𝐻𝑡𝛻𝑓(𝑥𝑡) where 𝐻𝑡 is an approximation of the inverse 

Hessian

Key Idea of Quasi Newton:

successive iterates 𝑥𝑡, 𝑥𝑡+1 and gradients 𝛻𝑓 𝑥𝑡 , 𝛻𝑓(𝑥𝑡+1) yield

second order information

𝑞𝑡 ≈ 𝛻2𝑓 𝑥𝑡+1 𝑝𝑡

where  𝑝𝑡 = 𝑥𝑡+1 − 𝑥𝑡 and 𝑞𝑡 = 𝛻𝑓 𝑥𝑡+1 − 𝛻𝑓 𝑥𝑡

Most popular implementation of this idea: Broyden-Fletcher-

Goldfarb-Shanno (BFGS)

 default in MATLAB's fminunc and python's 

scipy.optimize.minimize

Quasi-Newton Method: BFGS
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I hope it became clear so far...

...what are gradient and Hessian

...what are sufficient and necessary conditions for optimality

...what is the difference between gradient and Newton direction

...and that adapting the step size in descent algorithms is crucial.

Conclusions
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Derivative-Free Optimization
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DFO = blackbox optimization

Why blackbox scenario?

 gradients are not always available (binary code, no analytical 

model, ...)

 or not useful (noise, non-smooth, ...)

 problem domain specific knowledge is used only within the black 

box, e.g. within an appropriate encoding

 some algorithms are furthermore function-value-free, i.e. invariant

wrt. monotonous transformations of 𝑓.

Derivative-Free Optimization (DFO)

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ
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 (gradient-based algorithms which approximate the gradient by 

finite differences)

 coordinate descent

 pattern search methods, e.g. Nelder-Mead

 surrogate-assisted algorithms, e.g. NEWUOA or other trust-

region methods

 function-value-free algorithms

 typically stochastic

 evolution strategies (ESs) and Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES)

 differential evolution

 particle swarm optimization

 simulated annealing

 ...

Derivative-Free Optimization Algorithms
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A stochastic blackbox search template to minimize 𝒇: ℝ𝒏 → ℝ

Initialize distribution parameters 𝜃, set population size 𝜆 ∈ ℕ

While happy do:

 Sample distribution 𝑃 𝒙 𝜃 → 𝒙1, … , 𝒙𝜆 ∈ ℝ𝑛

 Evaluate 𝒙1, … , 𝒙𝜆 on 𝑓

 Update parameters 𝜃 ← 𝐹𝜃(𝜃, 𝒙1, … , 𝒙𝜆, 𝑓 𝒙1 , … , 𝑓 𝒙𝜆 )

 All depends on the choice of 𝑃 and 𝐹𝜃

deterministic algorithms are covered as well

 In Evolutionary Algorithms, 𝑃 and 𝐹𝜃 are often defined implicitly

via their operators.

Stochastic Search Template
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Generic Framework of an EA

Nothing else: just

interpretation change

initialization

evaluation

evaluation

potential

parents

offspring

parents

crossover/

mutation

mating

selection

environmental

selection

stop?

best individual

stochastic operators

“Darwinism”

stopping criteria
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CMA-ES in a Nutshell
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CMA-ES in a Nutshell

Goal:

Understand the main principles

of this state-of-the-art algorithm.
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 Last slide was taken from 
https://www.lri.fr/~hansen/copenhagen-cma-es.pdf

(copyright by Nikolaus Hansen, one of the main inventors of the 

CMA-ES algorithms)

 In the following, I will borrow more slides from there and from 
http://researchers.lille.inria.fr/~brockhof/optimiza

tionSaclay/slides/20151106-continuousoptIV.pdf

(by Anne Auger)

 In the following and the online material in particular, I refer to 

these pdfs as [Hansen, p. X] and [Auger, p. Y] respectively.

Copyright Notice



28Introduction to Optimization @ ECP, Nov. 27, 2015© Dimo Brockhoff, INRIA 28

 Anne Auger, Nikolaus Hansen, and me propose a couple of 

research projects for Bachelor's, Master's, and/or PhD theses

 randopt.gforge.inria.fr/thesisprojects/

Announcement: Thesis Projects
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 Anne Auger, Nikolaus Hansen, and me propose a couple of 

research projects for Bachelor's, Master's, and/or PhD theses

 randopt.gforge.inria.fr/thesisprojects/

 projects related to CMA-ES and other (stochastic) blackbox

optimization algorithms

 ranging from

 pure theory (e.g. convergence analysis, Markov chain Monte 

Carlo, Information Geometry, ...) over

 algorithm design (CMA-ES variants for new problem types 

such as large-scale, multiobjective, ...) to

 applications (CIFRE PhD thesis for example)

Announcement: Thesis Projects

Note:

Not all possible projects are described, hence contact us.
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Back to CMA-ES

Goal:

Understand the main principles

of this state-of-the-art algorithm.
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A stochastic blackbox search template to minimize 𝒇: ℝ𝒏 → ℝ

Initialize distribution parameters 𝜃, set population size 𝜆 ∈ ℕ

While happy do:

 Sample distribution 𝑃 𝒙 𝜃 → 𝒙1, … , 𝒙𝜆 ∈ ℝ𝑛

 Evaluate 𝒙1, … , 𝒙𝜆 on 𝑓

 Update parameters 𝜃 ← 𝐹𝜃(𝜃, 𝒙1, … , 𝒙𝜆, 𝑓 𝒙1 , … , 𝑓 𝒙𝜆 )

For CMA-ES and evolution strategies in general: 

sample distributions = multivariate Gaussian distributions

CMA-ES: Stochastic Search Template
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it remains to show how to adapt the parameters, but for now: normal 

distributions

Sampling New Candidate Solutions (Offspring)

from [Auger, p. 10]
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Excursion: Normal Distributions

from [Auger, p. 11]



34Introduction to Optimization @ ECP, Nov. 27, 2015© Dimo Brockhoff, INRIA 34

Excursion: Normal Distributions

from [Auger, p. 12]
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Excursion: Normal Distributions

from [Auger, p. 13]
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Excursion: Normal Distributions

from [Auger, p. 13]
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Excursion: Normal Distributions

from [Auger, p. 13]



38Introduction to Optimization @ ECP, Nov. 27, 2015© Dimo Brockhoff, INRIA 38

Covariance Matrix: Lines of Equal Density

from [Auger, p. 14]
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Covariance Matrix: Lines of Equal Density

from [Auger, p. 14]
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Covariance Matrix: Lines of Equal Density

from [Auger, p. 14]
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Adaptation of Sample Distribution Parameters

from [Auger, p. 16]
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Adaptation of the Mean
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Plus and Comma Selection

from [Hansen, p. 35]
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Non-Elitism and Weighted Recombination

from [Hansen, p. 34]
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Invariance Against Order-Preserving 𝑓-Transformations

from [Hansen, p. 37]
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Invariance Against Translations in Search Space

from [Hansen, p. 38]
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Invariance Against Search Space Rotations

from [Hansen, p. 39]
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Invariance Against Rigid Search Space Transformations

from [Hansen, p. 40

]
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Invariance Against Rigid Search Space Transformations

from [Hansen, p. 41]
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Invariance Against Rigid Search Space Transformations

mainly Nelder-Mead and CMA-ES

have this property
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Invariances: Summary

from [Hansen, p. 43]
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Step-Size Adaptation
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Recap CMA-ES: What We Have So Far

from [Hansen, p. 45]
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Why At All Step-Size Adaptation?

What do you think will happen for a

(1+1)-ES with constant step-size?

from [Auger, p. 22]
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Why Step-Size Adaptation?

from [Auger, p. 22]
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Optimal Step-Size

from [Hansen, p. 47]
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Optimal Step-Size vs. Step-Size Control 

from [Hansen, p. 48]
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Optimal Step-Size vs. Step-Size Control 

from [Hansen, p. 49]
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 How to actually adapt the step-size during the optimization?

Most common:

 1/5 success rule

 Cumulative Step-Size Adaptation (CSA, as in standard CMA-ES)

 others possible (Two-Point Adaptation, self-adaptive step-size, ...) 

Adapting the Step-Size
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One-Fifth Success Rule

from [Auger, p. 32]
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One-Fifth Success Rule

from [Auger, p. 33]
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One-Fifth Success Rule

from [Auger, p. 34]
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One-Fifth Success Rule

from [Auger, p. 35]
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Cumulative Step-Size Adaptation (CSA)

from [Auger, p. 36]
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Cumulative Step-Size Adaptation (CSA)

from [Auger, p. 37]
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Cumulative Step-Size Adaptation (CSA)

from [Auger, p. 38]
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Covariance Matrix Adaptation
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Recap CMA-ES: What We Have So Far

from [Auger, p. 40]
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Recap CMA-ES: What We Have So Far

from [Auger, p. 40]

...which is what we will see in the last

lecture next Friday


