Introduction to Optimization Derivative-Free Optimization / Blackbox Methods

November 27, 2015
École Centrale Paris, Châtenay-Malabry, France

Dimo Brockhoff INRIA Lille - Nord Europe

Course Overview

Date		Topic
Mon, 21.9.2015		Introduction
Mon, 28.9.2015	D	Basic Flavors of Complexity Theory
Mon, 5.10.2015	D	Greedy algorithms
Mon, 12.10.2015	D	Branch and bound (switched w/ dynamic programming)
Mon, 2.11.2015	D	Dynamic programming [salle Proto]
Fri, 6.11.2015	D	Approximation algorithms and heuristics [S205/S207]
Mon, 9.11.2015	C	Introduction to Continuous Optimization I [S118]
Fri, 13.11.2015	C	Introduction to Continuous Optimization II
[from here onwards always: S205/S207]		
Fri, 20.11.2015	C	Gradient-based Algorithms [+ finishing the intro]
Fri, 27.11.2015	C	End of Gradient-based Algorithms + Linear Programming Stochastic Optimization and Derivative Free Optimization I
Fri, 4.12.2015	C	Stochastic Optimization and Derivative Free Optimization II
Tue, 15.12.2015		Exam (most likely in salle Proto)

Lecture Overview Continuous Optimization

Introduction to Continuous Optimization

- examples (from ML / black-box problems)
- typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix
- unconstrained optimization
- first and second order conditions
- convexity
- constrained optimization

Gradient-based Algorithms

- quasi-Newton method (BFGS)

Derivative-free Optimization/ Stochastic Blackbox Optimization

- CMA-ES (adaptive algorithms / Information Geometry)
- PhD thesis possible on this topic
strongly related to ML, new promising research area, interesting open questions

Small exercise: finding optima of a constrained problem

Geometrical Interpretation Using an Example

Exercise:

Consider the problem

$$
\inf \left\{f(x, y) \mid(x, y) \in \mathbb{R}^{2}, g(x, y)=0\right\}
$$

$$
f(x, y)=y-x^{2} \quad g(x, y)=x^{2}+y^{2}-1
$$

1) Plot the level sets of f, plot $g=0$
2) Compute ∇f and ∇g
3) Find the solutions with $\nabla f+\lambda \nabla g=0$
equation solving with 3 unknowns (x, y, λ)
4) Plot the solutions of 3) on top of the level set graph of 1)

Descent Methods

Descent Methods

General principle

(1) choose an initial point x_{0}, set $t=1$
(2) while not happy

- choose a descent direction $\boldsymbol{d}_{t} \neq 0$
- line search:
- choose a step size $\sigma_{t}>0$
- set $\boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}+\sigma_{t} \boldsymbol{d}_{t}$
- set $t=t+1$

Remaining questions

- how to choose \boldsymbol{d}_{t} ?
- how to choose σ_{t} ?

Gradient Descent

Rationale: $\boldsymbol{d}_{t}=-\nabla f\left(\boldsymbol{x}_{t}\right)$ is a descent direction indeed for f differentiable

$$
\begin{aligned}
f(x-\sigma \nabla f(x)) & =f(x)-\sigma\|\nabla f(x)\|^{2}+o(\sigma\|\nabla f(x)\|) \\
< & f(x) \text { for } \sigma \text { small enough }
\end{aligned}
$$

Step-size

- optimal step-size: $\sigma_{t}=\operatorname{argmin} f\left(\boldsymbol{x}_{t}-\sigma \nabla f\left(\boldsymbol{x}_{t}\right)\right)$
- Line Search: total or partial optimization w.r.t. σ Total is however often too "expensive" (needs to be performed at each iteration step)
Partial optimization: execute a limited number of trial steps until a loose approximation of the optimum is found. Typical rule for partial optimization: Armijo rule

Stopping criteria:

norm of gradient smaller than ϵ

The Armijo-Goldstein Rule

Choosing the step size:

- Only to decrease f-value not enough to converge (quickly)
- Want to have a reasonably large decrease in f

Armijo-Goldstein rule:

- also known as backtracking line search
- starts with a (too) large estimate of σ and reduces it until f is reduced enough
- what is enough?
- assuming a linear f e.g. $m_{k}(x)=f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{T}\left(x-x_{k}\right)$
- expected decrease if step of σ_{k} is done in direction \boldsymbol{d} : $\sigma_{k} \nabla f\left(x_{k}\right)^{T} \boldsymbol{d}$
- actual decrease: $f\left(x_{k}\right)-f\left(x_{k}+\sigma_{k} \boldsymbol{d}\right)$
- stop if actual decrease is at least constant times expected decrease (constant typically chosen in [0, 1])

The Armijo-Goldstein Rule

The Actual Algorithm:

Input: descent direction d, point \mathbf{x}, objective function $f(\mathbf{x})$ and its gradient $\nabla f(\mathbf{x})$, parameters $\sigma_{0}=10, \theta \in[0,1]$ and $\beta \in(0,1)$
Output: step-size σ
Initialize $\sigma: \sigma \leftarrow \sigma_{0}$
while $f(\mathbf{x}+\sigma \mathbf{d})>f(\mathbf{x})+\theta \sigma \nabla f(\mathbf{x})^{T} \mathbf{d}$ do
$\sigma \leftarrow \beta \sigma$
end while

Armijo, in his original publication chose $\beta=\theta=0.5$.
Choosing $\theta=0$ means the algorithm accepts any decrease.

The Armijo-Goldstein Rule

Graphical Interpretation

linear approximation
(expected decrease)

The Armijo-Goldstein Rule

Graphical Interpretation

linear approximation
(expected decrease)

The Armijo-Goldstein Rule

Graphical Interpretation

linear approximation
(expected decrease)

Gradient Descent: Simple Theoretical Analysis

Assume f is twice continuously differentiable, convex and that $\mu I_{d} \leqslant \nabla^{2} f(x) \leqslant L I_{d}$ with $\mu>0$ holds, assume a fixed step-size $\sigma_{t}=\frac{1}{L}$ Note: $A \preccurlyeq B$ means $x^{T} A x \leq x^{T} B x$ for all x

$$
\begin{gathered}
x_{t+1}-x^{*}=x_{t}-x^{*}-\sigma_{t} \nabla^{2} f\left(y_{t}\right)\left(x_{t}-x^{*}\right) \text { for some } y_{t} \in\left[x_{t}, x^{*}\right] \\
x_{t+1}-x^{*}=\left(I_{d}-\frac{1}{L} \nabla^{2} f\left(y_{t}\right)\right)\left(x_{t}-x^{*}\right)
\end{gathered}
$$

$$
\text { Hence }\left\|x_{t+1}-x^{*}\right\|^{2} \leq\| \| I_{d}-\frac{1}{L} \nabla^{2} f\left(y_{t}\right)\| \|^{2}\left\|x_{t}-x^{*}\right\|^{2}
$$

$$
\leq\left(1-\frac{\mu}{L}\right)^{2}\left\|x_{t}-x^{*}\right\|^{2}
$$

Linear convergence: $\left\|x_{t+1}-x^{*}\right\| \leq\left(1-\frac{\mu}{L}\right)\left\|x_{t}-x^{*}\right\|$
algorithm slower and slower with increasing condition number
Non-convex setting: convergence towards stationary point

Newton Algorithm

Newton Method

- descent direction: $-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)$ [so-called Newton direction]
- The Newton direction:
- minimizes the best (locally) quadratic approximation of f :

$$
\tilde{f}(x+\Delta x)=f(x)+\nabla f(x)^{T} \Delta x+\frac{1}{2}(\Delta x)^{T} \nabla^{2} f(x) \Delta \mathrm{x}
$$

- points towards the optimum on $f(x)=\left(x-x^{*}\right)^{T} A\left(x-x^{*}\right)$
- however, Hessian matrix is expensive to compute in general and its inversion is also not easy
quadratic convergence

$$
\text { (i.e. } \lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|^{2}}=\mu>0 \text {) }
$$

Remark: Affine Invariance

Affine Invariance: same behavior on $f(x)$ and $f(A x+b)$ for $A \in$ GLn(R)

- Newton method is affine invariant see http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/ Lecture_6_Scribe_Notes.final.pdf
- same convergence rate on all convex-quadratic functions
- Gradient method not affine invariant

Quasi-Newton Method: BFGS

$x_{t+1}=x_{t}-\sigma_{t} H_{t} \nabla f\left(x_{t}\right)$ where H_{t} is an approximation of the inverse Hessian

Key Idea of Quasi Newton:

successive iterates x_{t}, x_{t+1} and gradients $\nabla f\left(x_{t}\right), \nabla f\left(x_{t+1}\right)$ yield second order information

$$
\begin{gathered}
q_{t} \approx \nabla^{2} f\left(x_{t+1}\right) p_{t} \\
\text { where } p_{t}=x_{t+1}-x_{t} \text { and } q_{t}=\nabla f\left(x_{t+1}\right)-\nabla f\left(x_{t}\right)
\end{gathered}
$$

Most popular implementation of this idea: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

- default in MATLAB's fminunc and python's scipy.optimize.minimize

Conclusions

I hope it became clear so far...
...what are gradient and Hessian
...what are sufficient and necessary conditions for optimality
...what is the difference between gradient and Newton direction
...and that adapting the step size in descent algorithms is crucial.

Derivative-Free Optimization

Derivative-Free Optimization (DFO)

DFO = blackbox optimization

Why blackbox scenario?

- gradients are not always available (binary code, no analytical model, ...)
- or not useful (noise, non-smooth, ...)
- problem domain specific knowledge is used only within the black box, e.g. within an appropriate encoding
- some algorithms are furthermore function-value-free, i.e. invariant wrt. monotonous transformations of f.

Derivative-Free Optimization Algorithms

- (gradient-based algorithms which approximate the gradient by finite differences)
- coordinate descent
- pattern search methods, e.g. Nelder-Mead
- surrogate-assisted algorithms, e.g. NEWUOA or other trustregion methods
- function-value-free algorithms
- typically stochastic
- evolution strategies (ESs) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
- differential evolution
- particle swarm optimization
- simulated annealing

Stochastic Search Template

A stochastic blackbox search template to minimize $f: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}$ Initialize distribution parameters θ, set population size $\lambda \in \mathbb{N}$ While happy do:

- Sample distribution $P(\boldsymbol{x} \mid \theta) \rightarrow \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda} \in \mathbb{R}^{n}$
- Evaluate $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda}$ on f
- Update parameters $\theta \leftarrow F_{\theta}\left(\theta, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda}, f\left(\boldsymbol{x}_{1}\right), \ldots, f\left(\boldsymbol{x}_{\lambda}\right)\right)$
- All depends on the choice of P and F_{θ} deterministic algorithms are covered as well
- In Evolutionary Algorithms, P and F_{θ} are often defined implicitly via their operators.

Generic Framework of an EA

stochastic operators
"Darwinism"
stopping criteria

Nothing else: just interpretation change

CMA-ES in a Nutshell

The CMA-ES

Input: $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \lambda$
Initialize: $\mathbf{C}=\mathbf{I}$, and $p_{\mathrm{c}}=\mathbf{0}, p_{\sigma}=\mathbf{0}$,
Set: $c_{\mathrm{c}} \approx 4 / n, c_{\sigma} \approx 4 / n, c_{1} \approx 2 / n^{2}, c_{\mu} \approx \mu_{w} / n^{2}, c_{1}+c_{\mu} \leq 1, d_{\sigma} \approx 1+\sqrt{\frac{\mu_{w}}{n}}$, and $w_{i=1 \ldots \lambda}$ such that $\mu_{w}=\frac{1}{\sum_{i=1}^{\mu} w_{i}} \approx 0.3 \lambda$
While not terminate

$$
\begin{array}{rlr}
\boldsymbol{x}_{i} & =m+\sigma \boldsymbol{y}_{i}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}), \quad \text { for } i=1, \ldots, \lambda & \text { sampling } \\
m & \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}=m+\sigma \boldsymbol{y}_{w} & \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \\
p_{\mathrm{c}} & \leftarrow\left(1-c_{\mathrm{c}}\right) p_{\mathrm{c}}+\mathbb{1}_{\left\{\left\|p_{\rho}\right\|<1.5 \sqrt{n}\right\}}^{1-\left(1-c_{\mathrm{c}}\right)^{2}} \sqrt{\mu_{w}} \boldsymbol{y}_{w} & \text { cumulate mean } \\
p_{\sigma} & \leftarrow\left(1-c_{\sigma}\right) p_{\sigma}+\sqrt{1-\left(1-c_{\sigma}\right)^{2}} \sqrt{\mu_{w}} \mathrm{C}^{-\frac{1}{2} \boldsymbol{y}_{w}} & \text { cumulation for } \sigma \\
\mathrm{C} & \leftarrow\left(1-c_{1}-c_{\mu}\right) \mathrm{C}+c_{1} p_{\mathrm{c}} p_{\mathrm{c}}^{\mathrm{T}}+c_{\mu} \sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \boldsymbol{y}_{i: \lambda}^{\mathrm{T}} & \text { update } \mathrm{C} \\
\sigma & \text { update of } \sigma
\end{array}
$$

Not covered on this slide: termination, restarts, useful output, boundaries and encoding

CMA-ES in a Nutshell

The CMA-ES

Input: $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \lambda$
Initialize: $\mathbf{C}=\mathbf{I}$, and $p_{\mathrm{c}}=\mathbf{0}, p_{\sigma}=\mathbf{0}$,
Set: $c_{\mathrm{c}} \approx 4 / n, c_{\sigma} \approx 4 / n, c_{1} \approx 2 / n^{2}, c_{\mu} \approx \mu_{w} / n^{2}, c_{1}+c_{\mu} \leq 1, d_{\sigma} \approx 1+\sqrt{\frac{\mu_{w}}{n}}$, and $w_{i=1 \ldots \lambda}$ such that $\mu_{w}=\frac{1}{\sum_{i=1}^{\mu} w_{i}^{2}} \approx 0.3 \lambda$
While not terminate

$$
\begin{array}{rlr}
\boldsymbol{x}_{i} & =m+\sigma \boldsymbol{y}_{i}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}), \quad \text { for } i=1, \ldots, \lambda & \text { sampling } \\
m & \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}=m+\sigma \boldsymbol{y}_{w} & \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda}
\end{array} \text { update mean } .
$$

Copyright Notice

- Last slide was taken from
https://www.lri.fr/~hansen/copenhagen-cma-es.pdf (copyright by Nikolaus Hansen, one of the main inventors of the CMA-ES algorithms)
- In the following, I will borrow more slides from there and from http://researchers.lille.inria.fr/~brockhof/optimiza tionSaclay/slides/20151106-continuousoptIV.pdf (by Anne Auger)
- In the following and the online material in particular, I refer to these pdfs as [Hansen, p. X] and [Auger, p. Y] respectively.

Announcement: Thesis Projects

- Anne Auger, Nikolaus Hansen, and me propose a couple of research projects for Bachelor's, Master's, and/or PhD theses randopt.gforge.inria.fr/thesisprojects/

Announcement: Thesis Projects

- Anne Auger, Nikolaus Hansen, and me propose a couple of research projects for Bachelor's, Master's, and/or PhD theses
- randopt.gforge.inria.fr/thesisprojects/
- projects related to CMA-ES and other (stochastic) blackbox optimization algorithms
- ranging from
- pure theory (e.g. convergence analysis, Markov chain Monte Carlo, Information Geometry, ...) over
- algorithm design (CMA-ES variants for new problem types such as large-scale, multiobjective, ...) to
- applications (CIFRE PhD thesis for example)

Note:

Not all possible projects are described, hence contact us.

Back to CMA-ES

The CMA-ES

Input: $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \lambda$
Initialize: $\mathbf{C}=\mathbf{I}$, and $p_{\mathrm{c}}=\mathbf{0}, p_{\sigma}=\mathbf{0}$,
Set: $c_{\mathrm{c}} \approx 4 / n, c_{\sigma} \approx 4 / n, c_{1} \approx 2 / n^{2}, c_{\mu} \approx \mu_{w} / n^{2}, c_{1}+c_{\mu} \leq 1, d_{\sigma} \approx 1+\sqrt{\frac{\mu_{w}}{n}}$, and $w_{i=1 \ldots \lambda}$ such that $\mu_{w}=\frac{1}{\sum_{i=1}^{\mu} w_{i}^{2}} \approx 0.3 \lambda$
While not terminate

$$
\begin{array}{rlr}
\boldsymbol{x}_{i} & =m+\sigma \boldsymbol{y}_{i}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}), \quad \text { for } i=1, \ldots, \lambda & \text { sampling } \\
m & \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}=m+\sigma \boldsymbol{y}_{w} & \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda}
\end{array} \text { update mean } .
$$

CMA-ES: Stochastic Search Template

A stochastic blackbox search template to minimize $f: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}$ Initialize distribution parameters θ, set population size $\lambda \in \mathbb{N}$ While happy do:

- Sample distribution $P(\boldsymbol{x} \mid \theta) \rightarrow \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda} \in \mathbb{R}^{n}$
- Evaluate $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda}$ on f
- Update parameters $\theta \leftarrow F_{\theta}\left(\theta, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda}, f\left(\boldsymbol{x}_{1}\right), \ldots, f\left(\boldsymbol{x}_{\lambda}\right)\right)$

For CMA-ES and evolution strategies in general:
sample distributions = multivariate Gaussian distributions

Sampling New Candidate Solutions (Offspring)

Evolution Strategies

New search points are sampled normally distributed

$$
\boldsymbol{x}_{i} \sim m+\sigma \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \quad \text { for } i=1, \ldots, \lambda
$$

as perturbations of m, \quad where $\boldsymbol{x}_{i}, m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \mathrm{C} \in \mathbb{R}^{n \times n}$
 where

- the mean vector $m \in \mathbb{R}^{n}$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_{+}$controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid
here, all new points are sampled with the same parameters
it remains to show how to adapt the parameters, but for now: normal distributions
from [Auger, p. 10]

Excursion: Normal Distributions

Normal Distribution

1-D case

probability density of the 1-D standard normal distribution $\mathcal{N}(0,1)$
$($ expected $($ mean $)$ value, variance $)=(0,1)$

$$
p(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

General case
$($ expected value, variance $)=\left(\boldsymbol{m}, \sigma^{2}\right)$ density: $p_{\boldsymbol{m}, \sigma}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\boldsymbol{m})^{2}}{2 \sigma^{2}}\right)$

- A normal distribution is entirely determined by its mean value and variance
- The family of normal distributions is closed under linear transformations: if X is normally distributed then a linear transformation $a X+b$ is also normally distributed
- Exercice: Show that $m+\sigma \mathcal{N}(0,1)=\mathcal{N}\left(m, \sigma^{2}\right)$

Excursion: Normal Distributions

Normal Distribution

General case

A random variable following a 1-D normal distribution is determined by its mean value m and variance σ^{2}.

In the n-dimensional case it is determined by its mean vector and covariance matrix

Covariance Matrix
If the entries in a vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ are random variables, each with finite variance, then the covariance matrix Σ is the matrix whose (i, j) entries are the covariance of $\left(X_{i}, X_{j}\right)$

$$
\Sigma_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)=\mathrm{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]
$$

where $\mu_{i}=\mathrm{E}\left(X_{i}\right)$. Considering the expectation of a matrix as the expectation of each entry, we have

$$
\Sigma=\mathrm{E}\left[(X-\mu)(X-\mu)^{T}\right]
$$

Σ is symmetric, positive definite

Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(m, C)$ is uniquely determined by its mean value $m \in \mathbb{R}^{n}$ and its symmetric positive definite $n \times n$ covariance matrix C.

$$
\text { density: } p_{\mathcal{N}(\boldsymbol{m}, \mathbf{C})}(x)=\frac{1}{(2 \pi)^{n / 2}|\mathbf{C}|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\boldsymbol{m})^{\mathrm{T}} \mathbf{C}^{-1}(x-\boldsymbol{m})\right),
$$

Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(m, C)$ is uniquely determined by its mean value $m \in \mathbb{R}^{n}$ and its symmetric positive definite $n \times n$ covariance matrix C.

$$
\text { density: } p_{\mathcal{N}(\boldsymbol{m}, \mathbf{C})}(x)=\frac{1}{(2 \pi)^{n / 2}|\mathbf{C}|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\boldsymbol{m})^{\mathrm{T}} \mathbf{C}^{-1}(x-\boldsymbol{m})\right),
$$

The mean value m

- determines the displacement (translation)
- value with the largest density (modal value)
- the distribution is symmetric about the distribution mean

$$
\mathcal{N}(\boldsymbol{m}, \mathbf{C})=\boldsymbol{m}+\mathcal{N}(0, \mathbf{C})
$$

Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(m, C)$ is uniquely determined by its mean value $m \in \mathbb{R}^{n}$ and its symmetric positive definite $n \times n$ covariance matrix C.

$$
\text { density: } p_{\mathcal{N}(\boldsymbol{m}, \mathbf{C})}(x)=\frac{1}{(2 \pi)^{n / 2}|\mathbf{C}|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\boldsymbol{m})^{\mathrm{T}} \mathbf{C}^{-1}(x-\boldsymbol{m})\right),
$$

The mean value m

- determines the displacement (translation)
- value with the largest density (modal value)
- the distribution is symmetric about the distribution mean

$$
\mathcal{N}(\boldsymbol{m}, \mathbf{C})=\boldsymbol{m}+\mathcal{N}(0, \mathbf{C})
$$

The covariance matrix C

- determines the shape
- geometrical interpretation: any covariance matrix can be uniquely identified with the iso-density ellipsoid

$$
\left\{x \in \mathbb{R}^{n} \mid(x-m)^{\mathrm{T}} \mathbf{C}^{-1}(x-m)=1\right\}
$$

from [Auger, p. 13]

Covariance Matrix: Lines of Equal Density

... any covariance matrix can be uniquely identified with the iso-density ellipsoid $\left\{x \in \mathbb{R}^{n} \mid(x-m)^{\mathrm{T}} \mathbf{C}^{-1}(x-m)=1\right\}$

Lines of Equal Density

$\mathcal{N}\left(\boldsymbol{m}, \sigma^{2} \mathbf{I}\right) \sim \boldsymbol{m}+\sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$
one degree of freedom σ
components are
independent standard
normally distributed
where \mathbf{I} is the identity matrix (isotropic case) and \mathbf{D} is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{A} \mathbf{A}^{\mathrm{T}}\right)$ holds for all A.

Covariance Matrix: Lines of Equal Density

... any covariance matrix can be uniquely identified with the iso-density ellipsoid $\left\{x \in \mathbb{R}^{n} \mid(x-m)^{\mathrm{T}} \mathbf{C}^{-1}(x-m)=1\right\}$

Lines of Equal Density

$\mathcal{N}\left(\boldsymbol{m}, \sigma^{2} \mathbf{I}\right) \sim \boldsymbol{m}+\sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$
one degree of freedom σ components are independent standard

$$
\mathcal{N}\left(m, \mathbf{D}^{2}\right) \sim m+\mathbf{D} \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

n degrees of freedom
components are independent, scaled normally distributed
where \mathbf{I} is the identity matrix (isotropic case) and \mathbf{D} is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{A} \mathbf{A}^{\mathrm{T}}\right)$ holds for all A.

Covariance Matrix: Lines of Equal Density

... any covariance matrix can be uniquely identified with the iso-density ellipsoid $\left\{x \in \mathbb{R}^{n} \mid(x-m)^{\mathrm{T}} \mathrm{C}^{-1}(x-m)=1\right\}$

Lines of Equal Density

$\mathcal{N}\left(\boldsymbol{m}, \sigma^{2} \mathbf{I}\right) \sim m+\sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$
one degree of freedom σ components are independent standard normally distributed
where \mathbf{I} is the identity matrix (isotropic case) and \mathbf{D} is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{A} \mathbf{A}^{\mathrm{T}}\right)$ holds for all A.

Adaptation of Sample Distribution Parameters

Adaptation: What do we want to achieve?
New search points are sampled normally distributed

$$
\begin{aligned}
& \boldsymbol{x}_{i} \sim m+\sigma \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \quad \text { for } i
\end{aligned}=1, \ldots, \lambda, \quad \begin{aligned}
& \text { where } \boldsymbol{x}_{i}, \boldsymbol{m} \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \mathrm{C} \in \mathbb{R}^{n \times n}
\end{aligned}
$$

- the mean vector should represent the favorite solution
- the step-size controls the step-length and thus convergence rate

```
should allow to reach fastest convergence rate possible
```

- the covariance matrix $C \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid
adaptation should allow to learn the "topography" of the problem particulary important for ill-conditionned problems $\mathbf{C} \propto \boldsymbol{H}^{-1}$ on convex quadratic functions from [Auger, p. 16]

Adaptation of the Mean

Plus and Comma Selection

Evolution Strategies

Terminology
μ : \# of parents, λ : \# of offspring
Plus (elitist) and comma (non-elitist) selection
$(\mu+\lambda)$-ES: selection in $\{$ parents $\} \cup\{$ offspring $\}$
(μ, λ)-ES: selection in $\{$ offspring $\}$

$$
(1+1)-E S
$$

Sample one offspring from parent m

$$
\boldsymbol{x}=m+\sigma \mathcal{N}(\mathbf{0}, \mathrm{C})
$$

If x better than m select

$$
m \leftarrow \boldsymbol{x}
$$

Non-Elitism and Weighted Recombination

The $(\mu / \mu, \lambda)$-ES
Non-elitist selection and intermediate (weighted) recombination
Given the i-th solution point $\boldsymbol{x}_{i}=m+\sigma \underbrace{\mathcal{N}_{i}(\mathbf{0}, \mathbf{C})}_{=: y_{i}}=m+\sigma \boldsymbol{y}_{i}$
Let $\boldsymbol{x}_{i: \lambda}$ the i-th ranked solution point, such that $f\left(\boldsymbol{x}_{1: \lambda}\right) \leq \cdots \leq f\left(\boldsymbol{x}_{\lambda: \lambda}\right)$. The new mean reads

$$
m \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}=m+\sigma \underbrace{\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda}}_{=: \boldsymbol{y}_{w}}
$$

where

$$
w_{1} \geq \cdots \geq w_{\mu}>0, \quad \sum_{i=1}^{\mu} w_{i}=1, \quad \frac{1}{\sum_{i=1}^{\mu} w_{i}^{2}}=: \mu_{w} \approx \frac{\lambda}{4}
$$

The best μ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied.

Invariance Against Order-Preserving f-Transformations

Invariance: Function-Value Free Property

Three functions belonging to the same equivalence class

A function-value free search algorithm is invariant under the transformation with any order preserving (strictly increasing) g.

Invariances make

- observations meaningful as a rigorous notion of generalization
- algorithms predictable and/or "robust"

Invariance Against Translations in Search Space

Basic Invariance in Search Space

- translation invariance
is true for most optimization algorithms

$$
f(\boldsymbol{x}) \leftrightarrow f(\boldsymbol{x}-\boldsymbol{a})
$$

Identical behavior on f and f_{a}

$$
\begin{aligned}
f: & \boldsymbol{x} \mapsto f(\boldsymbol{x}), & & \boldsymbol{x}^{(t=0)}=\boldsymbol{x}_{0} \\
f_{\boldsymbol{a}}: & & \boldsymbol{x} \mapsto f(\boldsymbol{x}-\boldsymbol{a}), & \boldsymbol{x}^{(t=0)}=\boldsymbol{x}_{0}+\boldsymbol{a}
\end{aligned}
$$

No difference can be observed w.r.t. the argument of f

Invariance Against Search Space Rotations

Rotational Invariance in Search Space

- invariance to orthogonal (rigid) transformations \mathbf{R}, where $\mathbf{R R}^{\mathrm{T}}=\mathbf{I}$
e.g. true for simple evolution strategies recombination operators might jeopardize rotational invariance

$$
f(\boldsymbol{x}) \leftrightarrow f(\mathbf{R} \boldsymbol{x})
$$

Identical behavior on f and $f_{\mathbf{R}}$

$$
\begin{array}{rlll}
f: & \boldsymbol{x} \mapsto f(\boldsymbol{x}), & \boldsymbol{x}^{(t=0)}=\boldsymbol{x}_{0} \\
f_{\mathbf{R}}: & & \boldsymbol{x} \mapsto f(\mathbf{R} \boldsymbol{x}), & \boldsymbol{x}^{(t=0)}=\mathbf{R}^{-1}\left(\boldsymbol{x}_{0}\right)
\end{array}
$$

45
No difference can be observed w.r.t. the argument of f

[^0]
Invariance Against Rigid Search Space Transformations

Invariance Under Rigid Search Space Transformations

for example, invariance under search space rotation (separable \Leftrightarrow non-separable)
from [Hansen, p. 40

Invariance Against Rigid Search Space Transformations

Invariance Under Rigid Search Space Transformations

for example, invariance under search space rotation (separable \Leftrightarrow non-separable)
from [Hansen, p. 41]

Invariance Against Rigid Search Space Transformations

Invariance Under Rigid Search Space Transformations

for example, invariance un (separable \Leftrightarrow non-separab

mainly Nelder-Mead and CMA-ES have this property

Invariances: Summary

Invariance

The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest number of hypotheses or axioms.

- Albert Einstein
- Empirical performance results
- from benchmark functions
- from solved real world problems
are only useful if they do generalize to other problems
- Invariance is a strong non-empirical statement about generalization
generalizing (identical) performance from a single function to a whole class of functions
consequently, invariance is important for the evaluation of search algorithms

Step-Size Adaptation

Recap CMA-ES: What We Have So Far

Evolution Strategies

Recalling
New search points are sampled normally distributed

$$
\boldsymbol{x}_{i} \sim m+\sigma \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \quad \text { for } i=1, \ldots, \lambda
$$

as perturbations of m, \quad where $\boldsymbol{x}_{i}, m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \mathrm{C} \in \mathbb{R}^{n \times n}$
where

- the mean vector $m \in \mathbb{R}^{n}$ represents the favorite solution and $m \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}$
- the so-called step-size $\sigma \in \mathbb{R}_{+}$controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

The remaining question is how to update σ and C .

Why At All Step-Size Adaptation?

Why Step-Size Control?

Why Step-Size Adaptation?

Why Step-Size Control?

$$
f(x)=\sum_{i=1}^{n} x_{i}^{2}
$$

$$
\text { in }[-0.2,0.8]^{n}
$$

$$
\text { for } n=10
$$

Optimal Step-Size

Why Step-Size Control?

$$
\begin{aligned}
& \qquad f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}^{2} \\
& \text { for } n=10 \text { and } \\
& \boldsymbol{x}^{0} \in[-0.2,0.8]^{n}
\end{aligned}
$$

with optimal step-size σ

Optimal Step-Size vs. Step-Size Control

Why Step-Size Control?

(5/5w, 10)-ES, 2 times 11 runs

$$
\begin{gathered}
f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}^{2} \\
\text { for } n=10 \text { and } \\
\boldsymbol{x}^{0} \in[-0.2,0.8]^{n}
\end{gathered}
$$

with optimal versus adaptive step-size σ with too small initial σ

Optimal Step-Size vs. Step-Size Control

Why Step-Size Control?

$$
\begin{aligned}
& f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}^{2} \\
& \text { for } n=10 \text { and } \\
& \boldsymbol{x}^{0} \in[-0.2,0.8]^{n}
\end{aligned}
$$

comparing number of f-evals to reach $\|m\|=10^{-5}: \frac{1100-100}{650} \approx 1.5$
from Hansen, p®49]

Adapting the Step-Size

- How to actually adapt the step-size during the optimization?

Most common:

- $1 / 5$ success rule
- Cumulative Step-Size Adaptation (CSA, as in standard CMA-ES)
- others possible (Two-Point Adaptation, self-adaptive step-size, ...)

One-Fifth Success Rule

One-fifth success rule

from [Auger, p. 32]

One-Fifth Success Rule

One-fifth success rule

Probability of success $\left(p_{s}\right)$
$1 / 2$

Probability of success $\left(p_{s}\right)$
"too small"

One-Fifth Success Rule

One-fifth success rule

p_{s} : \# of successful offspring / \# offspring (per generation)
$\sigma \leftarrow \sigma \times \exp \left(\frac{1}{3} \times \frac{p_{s}-p_{\text {target }}}{1-p_{\text {target }}}\right) \quad \begin{aligned} & \text { Increase } \sigma \text { if } p_{s}>p_{\text {target }} \\ & \text { Decrease } \sigma \text { if } p_{s}<p_{\text {target }}\end{aligned}$
$(1+1)$-ES

$$
p_{\text {target }}=1 / 5
$$

IF offspring better parent

$$
p_{s}=1, \sigma \leftarrow \sigma \times \exp (1 / 3)
$$

ELSE

$$
p_{s}=0, \sigma \leftarrow \sigma / \exp (1 / 3)^{1 / 4}
$$

One-Fifth Success Rule

Why $1 / 5$?
Asymptotic convergence rate and probability of success of scale-invariant step-size ($1+1$)-ES

sphere - asymptotic results, i.e. $n=\infty$ (see slides before)
$1 / 5$ trade-off of optimal probability of success on the sphere and corridor

Cumulative Step-Size Adaptation (CSA)

Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

$$
\begin{aligned}
& \boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{m}+\sigma \boldsymbol{y}_{i} \\
& \boldsymbol{m} \leftarrow \boldsymbol{m}+\sigma \boldsymbol{y}_{w}
\end{aligned}
$$

Measure the length of the evolution path the pathway of the mean vector m in the generation sequence

Cumulative Step-Size Adaptation (CSA)

Path Length Control (CSA)

The Equations

Initialize $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}$, evolution path $p_{\sigma}=\mathbf{0}$, set $c_{\sigma} \approx 4 / n, d_{\sigma} \approx 1$.

$$
\begin{aligned}
& m \leftarrow m+\sigma \boldsymbol{y}_{w} \quad \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \quad \text { update mean } \\
& \boldsymbol{p}_{\sigma} \leftarrow\left(1-c_{\sigma}\right) \boldsymbol{p}_{\sigma}+\underbrace{\sqrt{1-\left(1-c_{\sigma}\right)^{2}}}_{\text {accounts for } 1-c_{\sigma}} \underbrace{\sqrt{\mu_{w}}}_{\text {accounts for } w_{i}} \boldsymbol{y}_{w} \\
& \sigma \leftarrow \sigma \times \underbrace{\exp \left(\frac{c_{\sigma}}{d_{\sigma}}\left(\frac{\left\|p_{\sigma}\right\|}{\mathrm{E}\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|}-1\right)\right)}_{>1 \Longleftrightarrow\left\|\boldsymbol{p}_{\sigma}\right\| \text { is greater than its expectation }} \text { update step-size }
\end{aligned}
$$

Cumulative Step-Size Adaptation (CSA)

Step-size adaptation

What is achived

$f(x)=\sum_{i=1}^{n} x_{i}^{2}$
in $[-0.2,0.8]^{n}$
for $n=10$

Linear convergence
from [Auger, p. 38]

Covariance Matrix Adaptation

Recap CMA-ES: What We Have So Far

Evolution Strategies

Recalling
New search points are sampled normally distributed

$$
\boldsymbol{x}_{i} \sim m+\sigma \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \quad \text { for } i=1, \ldots, \lambda
$$

as perturbations of m, where $\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{m} \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}$,

$$
C \in \mathbb{R}^{n \times n}
$$

where

- the mean vector $m \in \mathbb{R}^{n}$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_{+}$controls the step length
- the covariance matrix $C \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

The remaining question is how to update C .

Recap CMA-ES: What We Have So Far

Evolution Strategies

Recalling
New search points are sampled normally distributed

$$
\boldsymbol{x}_{i} \sim m+\sigma \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \quad \text { for } i=1, \ldots, \lambda
$$

as perturbations of m, where $\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{m} \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}$,

$$
C \in \mathbb{R}^{n \times n}
$$

where

- the mean vector $m \in \mathbb{R}^{n}$ represents the favorite solution
- the so-called step-size ...which is what we will see in the last
- the covariance matrix of the distribution elli lecture next Friday

The remaining question is how to update C .

[^0]: ${ }^{4}$ Salomon 1996. "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278
 ${ }^{5}$ Hansen 2000. Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies. Parallel Problem Solving from Nature PPSN VI

