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Date Topic

Mon, 21.9.2015 Introduction

Mon, 28.9.2015 D Basic Flavors of Complexity Theory

Mon, 5.10.2015 D Greedy algorithms

Mon, 12.10.2015 D Branch and bound (switched w/ dynamic programming)

Mon, 2.11.2015 D Dynamic programming [salle Proto]

Fri, 6.11.2015 D Approximation algorithms and heuristics [S205/S207]

Mon, 9.11.2015 C Introduction to Continuous Optimization I [S118]

Fri, 13.11.2015 C Introduction to Continuous Optimization II

[from here onwards always: S205/S207]

Fri, 20.11.2015 C Gradient-based Algorithms [+ finishing the intro]

Fri, 27.11.2015 C End of Gradient-based Algorithms + Linear Programming

Stochastic Optimization and Derivative Free Optimization I

Fri, 4.12.2015 C Stochastic Optimization and Derivative Free Optimization II

Tue, 15.12.2015 Exam (in salle Proto)

Course Overview
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Introduction to Continuous Optimization

 examples (from ML / black-box problems)

 typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

 reminders about differentiability, gradient, Hessian matrix

 unconstrained optimization

 first and second order conditions

 convexity

 constrained optimization

Gradient-based Algorithms

 quasi-Newton method (BFGS)

Derivative-free Optimization/ Stochastic Blackbox Optimization 

 CMA-ES

 PhD thesis possible on this topic
strongly related to ML, new promising research area, interesting open questions

Lecture Overview Continuous Optimization
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CMA-ES in a Nutshell

Goal:

Understand the main principles

of this state-of-the-art algorithm.
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 Last slide was taken from 
https://www.lri.fr/~hansen/copenhagen-cma-es.pdf

(copyright by Nikolaus Hansen, one of the main inventors of the 

CMA-ES algorithms)

 In the following, I will borrow more slides from there and from 
http://researchers.lille.inria.fr/~brockhof/optimiza

tionSaclay/slides/20151106-continuousoptIV.pdf

(by Anne Auger)

 In the following and the online material in particular, I refer to 

these pdfs as [Hansen, p. X] and [Auger, p. Y] respectively.

Copyright Notice
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A stochastic blackbox search template to minimize 𝒇:ℝ𝒏 → ℝ

Initialize distribution parameters 𝜃, set population size 𝜆 ∈ ℕ

While happy do:

 Sample distribution 𝑃 𝒙 𝜃 → 𝒙1, … , 𝒙𝜆 ∈ ℝ𝑛

 Evaluate 𝒙1, … , 𝒙𝜆 on 𝑓

 Update parameters 𝜃 ← 𝐹𝜃(𝜃, 𝒙1, … , 𝒙𝜆, 𝑓 𝒙1 , … , 𝑓 𝒙𝜆 )

For CMA-ES and evolution strategies in general: 

sample distributions = multivariate Gaussian distributions

CMA-ES: Stochastic Search Template
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it remains to show how to adapt the parameters, but for now: normal 

distributions

Sampling New Candidate Solutions (Offspring)

from [Auger, p. 10]
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Excursion: Normal Distributions

from [Auger, p. 11]
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Excursion: Normal Distributions

from [Auger, p. 12]
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Excursion: Normal Distributions

from [Auger, p. 13]
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Excursion: Normal Distributions

from [Auger, p. 13]
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Excursion: Normal Distributions

from [Auger, p. 13]
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Covariance Matrix: Lines of Equal Density

from [Auger, p. 14]
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Covariance Matrix: Lines of Equal Density

from [Auger, p. 14]



15Introduction to Optimization @ ECP, Dec. 4, 2015© Dimo Brockhoff, INRIA 15

Covariance Matrix: Lines of Equal Density

from [Auger, p. 14]
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Adaptation of Sample Distribution Parameters

from [Auger, p. 16]
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Adaptation of the Mean
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Plus and Comma Selection

from [Hansen, p. 35]
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Non-Elitism and Weighted Recombination

from [Hansen, p. 34]
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Invariance Against Order-Preserving 𝑓-Transformations

from [Hansen, p. 37]
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Invariance Against Translations in Search Space

from [Hansen, p. 38]
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Invariance Against Search Space Rotations

from [Hansen, p. 39]
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Invariance Against Search Space Rotations

from [Hansen, p. 39]

mainly Nelder-Mead and CMA-ES

have this property
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Invariances: Summary

from [Hansen, p. 43]
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Step-Size Adaptation
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Recap CMA-ES: What We Have So Far

from [Hansen, p. 45]
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Why At All Step-Size Adaptation?

What do you think will happen for a

(1+1)-ES with constant step-size?

from [Auger, p. 22]
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Why Step-Size Adaptation?

from [Auger, p. 22]
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Optimal Step-Size

from [Hansen, p. 47]
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Optimal Step-Size vs. Step-Size Control 

from [Hansen, p. 48]
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Optimal Step-Size vs. Step-Size Control 

from [Hansen, p. 49]
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 How to actually adapt the step-size during the optimization?

Most common:

 1/5 success rule

 Cumulative Step-Size Adaptation (CSA, as in standard CMA-ES)

 others possible (Two-Point Adaptation, self-adaptive step-size, ...) 

Adapting the Step-Size
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One-Fifth Success Rule

from [Auger, p. 32]
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One-Fifth Success Rule

from [Auger, p. 33]
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One-Fifth Success Rule

from [Auger, p. 34]
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One-Fifth Success Rule

from [Auger, p. 35]
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Cumulative Step-Size Adaptation (CSA)

from [Auger, p. 36]



38Introduction to Optimization @ ECP, Dec. 4, 2015© Dimo Brockhoff, INRIA 38

Cumulative Step-Size Adaptation (CSA)

from [Auger, p. 37]
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Cumulative Step-Size Adaptation (CSA)

from [Auger, p. 38]
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Covariance Matrix Adaptation
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Recap CMA-ES: What We Have So Far

from [Auger, p. 40]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 42]
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Rank-One Update: Summary

from [Hansen, p. 71]
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Evolution Path

from [Auger, p. 44]
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Utilizing the Evolution Path

from [Auger, p. 45]
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Utilizing the Evolution Path

from [Auger, p. 45
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Utilizing the Evolution Path

from [Auger, p. 45]
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Rank-𝝁 Update

from [Auger, p. 47]
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Rank-𝝁 Update

from [Auger, p. 47]
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Rank-𝝁 Update

from [Auger, p. 47]
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Illustration of Rank-𝝁 Update

from [Auger, p. 48]
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Illustration of Rank-𝝁 Update

from [Auger, p. 48]
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Illustration of Rank-𝝁 Update

from [Auger, p. 48]
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The rank-𝝁 update

 increases the possible learning rate for large populations

"large" when 𝜆 ≥ 3𝑛 + 10

 is the primary mechanism whenever a large population size 

is used

 can be easily combined with rank-one update

Rank-𝝁 Update: Summary
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CMA-ES in a Nutshell

Promised:

Understand the main principles

of this state-of-the-art algorithm.
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CMA-ES in a Nutshell



66Introduction to Optimization @ ECP, Dec. 4, 2015© Dimo Brockhoff, INRIA 66

CMA-ES: Almost Parameterless

from [Hansen, p. 90]
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Experimental Considerations
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Experimentum Crucis with CMA-ES

from [Hansen, p. 91]
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Experimentum Crucis with CMA-ES

from [Hansen, p. 92]
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Experimentum Crucis with CMA-ES

from [Hansen, p. 93]
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Influence of Condition Number + Invariance
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Influence of Condition Number + Invariance



73Introduction to Optimization @ ECP, Dec. 4, 2015© Dimo Brockhoff, INRIA 73

Influence of Condition Number + Invariance
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Performance on BBOB Testbed: Data Profile
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Summary CMA-ES I
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Summary CMA-ES II
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I hope it became clear...

...that CMA-ES samples according to multivariate normal distributions

...how CMA-ES updates its mean, stepsize, and covariance matrix

...and what are the invariance properties of CMA-ES

Conclusions
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Date Topic

Mon, 21.9.2015 Introduction

Mon, 28.9.2015 D Basic Flavors of Complexity Theory

Mon, 5.10.2015 D Greedy algorithms

Mon, 12.10.2015 D Branch and bound (switched w/ dynamic programming)

Mon, 2.11.2015 D Dynamic programming [salle Proto]

Fri, 6.11.2015 D Approximation algorithms and heuristics

Mon, 9.11.2015 C Introduction to Continuous Optimization I

Fri, 13.11.2015 C Introduction to Continuous Optimization II

Fri, 20.11.2015 C Gradient-based Algorithms [+ finishing the intro]

Fri, 27.11.2015 C End of Gradient-based Algorithms + Linear Programming

Stochastic Optimization and Derivative Free Optimization I

Fri, 4.12.2015 C Stochastic Optimization and Derivative Free Optimization II

Tue, 15.12.2015 Exam (in salle Proto)

Course Overview
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Exam on Tuesday, December 15, 2015 in Salle "Proto"

Reminder: potential Master's thesis subjects

Good luck!

Outlook


