Exercise: A Greedy Algorithm for the
Knapsack Problem

Introduction to Optimization lecture
at Ecole Centrale Paris / ESSEC Business School

Dimo Brockhoff

firstname.lastname@inria.fr

October 28, 2016

Abstract

In the lecture, the general concept of greedy algorithms has been
introduced in which locally optimal choices are made. In this exer-
cise, we apply this idea to the knapsack problem. We are not only
going to formally define the algorithm but also to implement it. The
programming language should thereby be python (exceptionally, also
MATLAB/Octave is okay).

1 Part I: Implementing the Knapsack Prob-
lem

Given a set of n items with weights w; € R and profit p; € R (1 < i < n)
and a weight restriction W € R, the knapsack problem asks for a packing of
items into the knapsack which (a) total weight does not exceed the weight
restriction and (b) has the maximum profit. Here, we are focusing on the
0-1 knapsack problem variant where each item is allowed only once (or not
at all) in the knapsack:

max. f(z)= ijmj with z; € {0,1}

i=1



n
s.t. Z W;T; S w

j=1

Questions and Tasks

a) Start with implementing the objective function. Given a 0-1 vector of
length n, it shall give back the f-value for a given knapsack problem
instance, specified in a text file.

b) To this end, write the code which initializes the objective function by
reading in the weights and profits of the items from a file of the format:

n = 100 # number of items

W =78 # maximum weight of knapsack (capacity)
w_1lp_1

w_2 p_2

W_n p_n

with the w_i and p_i being the weights and profits of the item i re-
spectively. The separators between weights and profits can be assumed
to be blanks.

¢) Then write a function for the constraint violation in the same manner.

2 Part II: A Greedy Algorithm for the Knap-
sack Problem

In the second part of the exercise, we want to develop and implement a
greedy algorithm for the knapsack problem. We cannot expect that the
greedy approach will be able to find the optimal function value reliably®.

LOtherwise, a whole bunch of brilliant scientists would have been wrong for quite some
time and/or we would be already rich: https://en.wikipedia.org/wiki/P_versus_NP_
problem



Instead, we want to investigate experimentally how far the quality of the
produced solution of the greedy algorithm is in terms of the true optimal
function value. To compute the optimal function value (for small instances
at least), we also implement an exact brute-force algorithm which enumerates
all potential solutions.

d)

e)

3

Think about which greedy choice you can make when you have to come
up with a solution for the knapsack problem.

Implement your greedy algorithm and test it on a few example instances
which you can find at researchers.lille.inria.fr/~brockhof/
introoptimization/knapsackinstances/.

In order to double-check that your algorithm is doing the right thing,
write a simple brute-force algorithm which enumerates all solutions of
the search space and returns the best (feasible) solution it has seen.

Compare the output of the two algorithms on the knapsack instances
provided at the above link. In particular check how often the greedy
algorithm finds the optimal solution of the brute-force approach.

Part III: Optional

The following questions and tasks are optional but can be taken as additional
exercises to prepare for the exam.

a)

Write a random search algorithm which randomly picks a new assign-
ment of items to the knapsack at each step and keeps track of the best-
so-far f-value. It should have the number of iterations (or the number
of times, it samples the objective function) as an input parameter.

Compare all algorithms on instances with increasing difficulties in order
to see the scaling with the input length. For example, create random
instances with different numbers of items and plot the runtime to reach
the optimal solution over this “measure” of problem difficulty. Do you
observe differences between runs on the same instance? How large are
the variances between instances of the same dimension? How large
between different dimensions? In case you observe differences, think
about what you actually display best to keep the most information.



