
Exercise: A Dynamic Programming Algorithm
for the Knapsack Problem

Introduction to Optimization lecture
MSc in Data Sciences & Business Analytics

at CentraleSupélec / ESSEC Business School

Dimo Brockhoff
firstname.lastname@inria.fr

November 18, 2016

Abstract

In the lecture, we have seen the general concept of dynamic pro-
gramming and it is the purpose of this exercise to apply it to the
knapsack problem. We are going to not only formally define the algo-
rithm but also implement it (like in the previous exercise preferably
in python).

Dynamic Programming for the Knapsack Prob-

lem

We want to develop and implement an exact algorithm for the knapsack
problem based on the idea of dynamic programming. Before you actually
implement the algorithm, answer the following questions about the dynamic
programming formulation of the problem first:

a) What are potential subproblems here? Tip: potential constraints to
restrict the overall problem to subproblems are naturally based on the
problem’s parameters, i.e., the number or types of the items, the profits,
and the weights.

1



b) How do you construct solutions of larger subproblems from already
solved smaller subproblems? Write down the Bellman equation.

c) How do you solve the smallest problems (initialization)?

Finally, implement the algorithm for the knapsack problem and test it. To
this end, follow the tasks below.

d) Implement a first, naive, recursive approach to solving the knapsack
problem using the Bellman equation from part b).

e) Implement the same functionality in terms of a dynamic programming
algorithm which solves the subproblems of the Bellman equation in a
bottom-up approach from the smallest subproblems to the largest while
storing the optimal solutions of the subproblems in a matrix/an array
and not solving a subproblem more than once.

f) Test your implementations of the recursive and the dynamic program-
ming algorithm on a few example instances which you can find via
the lecture’s web page at researchers.lille.inria.fr/~brockhof/
introoptimization/knapsackinstances/.

g) To this end, compare the output of the two algorithms with the exact al-
gorithm from the previous exercise on the provided knapsack instances
(the smallest instances will suffice). In particular check whether both
the brute-force and the dynamic programming approach result in the
same optima (and in particular the same optimal values). Why is the
latter more important to test?

h) Finally also compare the times, the algorithms need to solve the pro-
vided instances. When looking at the influence of the problem dimen-
sion (i.e. the number of items), can you make predictions about larger,
yet un-tested instances?

2


