
Exercise: Simple Stochastic Algorithms for the
Knapsack Problem

Introduction to Optimization lecture
at Ecole Centrale Paris / ESSEC Business School

Dimo Brockhoff
firstname.lastname@inria.fr

November 21, 2016

Abstract

In this exercise, we will implement two simple (randomized) search
heuristics for the 0-1-knapsack problem in order to get acquainted to
stochastic algorithms and to show how easy their application can be.

1 Implementing Simple Stochastic Search Al-

gorithms

In the lecture, we have seen a few basic stochastic search algorithms of
which we will implement the randomized local search (RLS) and the so-called
(1+1)-EA here. While RLS boils down to a local search which randomly se-
lects from the 1-bit-flip neighborhood (“first improvement”), the (1+1)-EA
is using a standard bit-flip operator which flips each bit with probability of
1/n with n being the number of bits in each solution. In order to keep the
implementation simple, please follow the instructions below.

a) Implement a basic 1-bit flip mutation operator which takes a solution
and flips a single bit, uniformly chosen at random, in each solution.
Assume thereby that a solution is coded as an array of bits (i.e., each
bit can be either 0 or 1, false or true, . . . , best use a numpy.array).

1



b) Use the implemented 1-bit flip operator to code the most basic ran-
domized local search (RLS). It starts with a randomly sampled search
point, always keeps a single solution with the best-so-far function value,
and replaces it by a randomly chosen neighbor of the 1-bit-flip neigh-
borhood if and only if this is better than the current search point. Note
that, because the knapsack problem is a constrained problem, we have
to deal with potentially infeasible solutions. The possibly easiest way
to do this here is to implement a “repair” method which takes any in-
feasible solution and makes it feasible by removing items until the item
selection fits again into the knapsack (the items are thereby removed
greedily in the order of their profit/weight ratios).

c) Do you think that relying solely on 1-bit flips is a reasonable operator
for the knapsack problem? What do you expect will happen in particu-
lar in the end of the optimization when you only use 1-bit flips? What
do you suggest to circumvent this behavior?

d) Implement now the standard bit-flip operator which takes a solution
and flips each bit with probability 1/n with n being the length of the
solution’s bitstring.

e) Similar to the randomized local search from above, implement the
most basic evolutionary algorithm, the so-called (1+1)-EA which al-
ways keeps the best-so-far solution and replaces it by a newly sampled
solution (with the standard bitflip operator) if and only if it is bet-
ter than the current search point. Again, better here is meant after a
potential repair step to make the new solution feasible.

f) Test your two algorithms now for some of the knapsack instances from
http://researchers.lille.inria.fr/~brockhof/optimizationSaclay/

knapsackinstances/ by using the code of the previous exercise(s) for
evaluating the objective and constraint functions. In particular, com-
pare the number of function evaluations to reach the optimal objective
function value. What do you observe? Can you explain the difference
between the two algorithms?

2


