Introduction to Optimization

October 7
September 26, 2016
École Centrale Paris, Châtenay-Malabry, France

Dimo Brockhoff
Inria Saclay - Ile-de-France

What is Optimization?

What is Optimization?

- find solutions x which minimize f in the shortest time possible (maximization is reformulated as minimization) or
- find solutions x with as small $f(x)$ as possible in the shortest time possible

Optimization problem: find the best solution among all feasible ones!

- "minimize the function f!"

Search problem: output a solution with a given structure!

- "find a tour through a given set of cities shorter than X km!"

Decision problem: is there a solution with a certain property?

- "is n prime?"
- "is there a clique in the graph of size at least 5?"

Example: Sorting

- Aim: Sort a set of cards/words/data
- Re-formulation: minimize the "unsortedness"
- EFCADB
- BACFDE
- ABCDEF

sortedness increases

Classical Questions:

- What is the underlying algorithm?
(How do I solve a problem?)
- How long does it take to optimize?
(How long does it take? Which guarantees can I give?)
- Is there a better algorithm or did I find the optimal one?

Course Overview

Date		Topic
Fri, 7.10.2016		Introduction
Fri, 28.10.2016	D	Greedy algorithms
Fri, 4.11.2016	D	Branch and bound
Fri, 18.11.2016	D	Dynamic programming
Mon, 21.11.2016 in S103-S105	D	Approximation algorithms and heuristics
Fri, 25.11.2016	C	
in S103-S105		
Mon, 28.11.2016	C	Introduction to Continuous Optimization II
Mon, 5.12.2016	C	Gradient-based Algorithms
Fri, 9.12.2016	C	Stochastic Optimization and Derivative Free Optimization I
Mon, 12.12.2016	C	Stochastic Optimization and Derivative Free Optimization II
Fri, 16.12.2016	C	Benchmarking Optimizers with the COCO platform
Wed, 4.1.2017		Exam

all classes last 3h15 and take place in S115-S117 (see exceptions)

Remarks

- possibly not clear yet what the lecture is about in detail
- but there will be always examples and exercises to learn "on-the-fly" the concepts and fundamentals

Overall goals:

(1) give a broad overview of where and how optimization is used
(2) understand the fundamental concepts of optimization algorithms
(3) be able to apply common optimization algorithms on real-life (engineering) problems

Please ask questions
if things are unclear throughout the course!

The Exam

- Wednesday, $4^{\text {th }}$ January 2017 from 09h45 till 12h45
- open book: take as much material as you want
- (most likely) combination of
- questions on paper (to be handed in)
- practical exercises (send source code and results by e-mail)

All information also available at
http://researchers.lille.inria.fr/~brockhof/introoptimization/
(exercise sheets, lecture slides, additional information, links, ...)

Remarks on Exercises

- included within the lecture (typically $1 / 3$ of it)
- expected to be done in python
- hence, please make sure you have python installed on your laptop until the second lecture
- Anaconda is the recommended way to get there: https://www.continuum.io/downloads
- (basic) example solutions will be made available afterwards
- not graded but please see it as training for the exam

Overview of Today's Lecture

- More examples of optimization problems
- introduce some basic concepts of optimization problems such as domain, constraint, ...
- Basic notations such as the O-notation
- Beginning of discrete optimization part
- a brief introduction to graphs
- concrete examples of problems used later on in the lecture

General Context Optimization

Given:
set of possible solutions

Search space

quality criterion
Objective function
Objective:
Find the best possible solution for the given criterion

Formally:
Maximize or minimize

$$
\begin{aligned}
\mathcal{F}: \Omega & \mapsto \mathbb{R} \\
x & \mapsto \mathcal{F}(x)
\end{aligned}
$$

Constraints

Maximize or minimize

$$
\begin{aligned}
\mathcal{F}: \Omega & \mapsto \mathbb{R}, \\
x & \mapsto \mathcal{F}(x)
\end{aligned}
$$

unconstrained
Ω

Maximize or minimize

$$
\begin{aligned}
& \mathcal{F}: \Omega \mapsto \mathbb{R}, \\
& x \mapsto \mathcal{F}(x) \\
& \text { where } \quad g_{i}(x) \leq 0 \\
& h_{j}(x)=0
\end{aligned}
$$

example of a constrained Ω

Constraints explicitely or implicitely define the feasible solution set [e.g. $\|x\|-7 \leq 0$ vs. every solution should have at least 5 zero entries]

Hard constraints must be satisfied while soft constraints are preferred to hold but are not required to be satisfied
[e.g. constraints related to manufactoring precisions vs. cost constraints]

Example 1: Combinatorial Optimization

Knapsack Problem

- Given a set of objects with a given weight and value (profit)
- Find a subset of objects whose overall mass is below a certain limit and maximizing the total value of the objects

Exercise: how would you formalize this problem?
(1) what is the search space?
(2) how do you write down the objective function?

3 what are the constraints?

Example 1: Combinatorial Optimization

Knapsack Problem

- Given a set of objects with a given weight and value (profit)
- Find a subset of objects whose overall mass is below a certain limit and maximizing the total value of the objects

Dake
[Problem of ressource allocation
with financial constraints]

$$
\begin{array}{lll}
\operatorname{max.} & \sum_{j=1}^{n} p_{j} x_{j} \text { with } x_{j} \in\{0,1\} & \\
& \text { s.t. } \sum_{j=1}^{n} w_{j} x_{j} \leq W & \Omega=\{0,1\}^{n}
\end{array}
$$

Example 2: Combinatorial Optimization

Traveling Salesperson Problem (TSP)

- Given a set of cities and their distances
- Find the shortest path going through all cities

$\Omega=S_{n}$ (set of all permutations)

Example 3: Continuous Optimization

A farmer has 500 m of fence to fence off a rectangular field that is adjacent to a river. What is the maximal area he can fence off?

Exercise:

(1) how would you formalize this problem?
(2) how do you solve it? (it can be done analytically!)

Example 3: Continuous Optimization

A farmer has 500 m of fence to fence off a rectangular field that is adjacent to a river. What is the maximal area he can fence off?

($\quad \Omega=\mathbb{R}_{>0}^{2}$:
$\max x y$
where $x+2 y=500$

$$
\begin{gathered}
\text { (2) with } x=500-2 y \\
\text { max } f(x)=-2 y^{2}+500 y \\
\frac{d}{d x} f(x)=-4 y+500 \\
\frac{d}{d x} f(x)=0 \Leftrightarrow\left\{\begin{array}{l}
y=125 \\
(x=250)
\end{array}\right.
\end{gathered}
$$

Example 4: A "Manual" Engineering Problem

Optimizing a Two-Phase Nozzle [Schwefel 1968+]

- maximize thrust under constant starting conditions
- one of the first examples of Evolution Strategies
initial design:

final design:

$\Omega=$ all possible nozzles of given number of slices
copyright Hans-Paul Schwefel
[http://Is11-www.cs.uni-dortmund.de/people/schwefel/EADemos/]

Example 5: Constrained Continuous Optimization

Design of a Launcher

- Scenario: multi-stage launcher brings a satellite into orbit
- Minimize the overall cost of a launch
- Parameters: propellant mass of each stage / diameter of each stage / flux of each engine / parameters of the command law

23 continuous parameters to optimize

+ constraints

Example 6: History Matching/Parameter Calibration

One wide class of problems:

- matching existing (historical) data and the output of a simulation
- why? using the (calibrated) model to predict the future
- Most simplest form: minimize mean square error between observed data points and simulated data points

Example Applications:

- weather/traffic forecasting
- well-drilling in oil industry
- trading

Example 7: Interactive Optimization

Coffee Tasting Problem

- Find a mixture of coffee in order to keep the coffee taste from one year to another
- Objective function = opinion of one expert

M. Herdy: "Evolution Strategies with subjective selection", 1996

Many Problems, Many Algorithms?

Observation:

- Many problems with different properties
- For each, it seems a different algorithm?

In Practice:

- often most important to categorize your problem first in order to find / develop the right method
- \rightarrow problem types

Algorithm design is an art, what is needed is skill, intuition, luck, experience, special knowledge and craft
freely translated and adapted from Ingo Wegener (1950-2008)

Problem Types

- discrete vs. continuous
- discrete: integer (linear) programming vs. combinatorial problems
- continuous: linear, quadratic, smooth/nonsmooth, blackbox/DFO, ...
- both discrete\&continuous variables: mixed integer problem
- constrained vs. unconstrained

Not (or only slightly) covered in this introductory lecture:

- deterministic vs. stochastic
- one or multiple objective functions

General Concepts in Optimization

- search domain
- discrete, continuous variables
- finite vs. infinite dimension
- constraints
- bounds
- linear/quadratic/non-linear constraint
- blackbox constraint

Further important aspects (in practice):

- deterministic vs. stochastic algorithms
- exact vs. approximation algorithms vs. heuristics
- anytime algorithms
- simulation-based optimization problem / expensive problem

Problems and Instances

A problem is a general concept, what needs actually to be solved is an instance.

Examples:

- Knapsack Problem:
- the general formulation of slide 14 defines the problem
- an instance is given by the assignment of weights and profits to n items and by fixing the knapsack size W
- Convex-quadratic Functions: $f(x)=a^{\top} x+1 / 2 x^{\top} B x$
- continuous problem with ellipsoidal level sets / lines of equal function value where B is symmetric, positive, and semidefinite
- an instance is given by a specific rotation of the standard ellipses, their shapes (both via ' B ') and their center (via 'a')

Excursion: The O-Notation

Excursion: The O-Notation

Motivation:

- we often want to characterize how quickly a function $f(x)$ grows asymptotically
- e.g. when we say an algorithm takes n^{2} steps to find the optimum of a problem with n (binary) variables, it is never exactly n^{2}, but maybe $n^{2}+1$ or $(n+1)^{2}$

Big-O Notation

should be known, here mainly restating the definition:
Definition 1 We write $f(x)=O(g(x))$ iff there exists a constant $c>0$ and an $x_{0}>0$ such that $f(x) \leq c|g(x)|$ holds for all $x>x_{0}$.
we also view $O(g(x))$ as the set of all functions growing at most as quickly as $g(x)$ and write $f(x) \in O(g(x))$

Big-O: Examples

- $f(x)+c=O(f(x)) \quad$ [as long as $f(x)$ does not converge to zero]
- $\quad c \cdot f(x)=O(f(x))$
- $f(x) \cdot g(x)=O(f(x) \cdot g(x))$
- $3 n^{4}+n^{2}-7=O\left(n^{4}\right)$

Intuition of the Big-O:

- if $f(x)=O(g(x))$ then $g(x)$ gives an upper bound (asymptotically) for f
- constants don't play a role
- with Big-O, you should have ' \leq ' in mind

Excursion: The O-Notation

Further definitions to generalize from ' \leq ' to ' \geq ' and ' $=$ ':

- $f(x)=\Omega(g(x))$ if $g(x)=O(f(x))$
- $f(x)=\Theta(g(x))$ if $f(x)=O(g(x))$ and $g(x)=O(f(x))$

Note: Definitions equivalent to '<' and '>' exist as well, but are not needed in this course

Exercise O-Notation

Please order the following functions in terms of their asymptotic behavior (from smallest to largest):

- $\exp \left(n^{2}\right)$
- $\log n$
- $\ln n / \ln \ln n$
- n
- $\mathrm{n} \log \mathrm{n}$
- $\exp (n)$
- $\ln (\mathrm{n}!)$

Give for three of the relations a formal proof.

Exercise O-Notation (Solution)

Correct ordering:

$$
\begin{array}{rll}
\frac{\ln (n)}{\ln (\ln (n))}=O(\log n) & \log n=O(n) & n=O(n \log n) \\
n \log n=O(\ln (n!)) & \ln (n!)=O\left(e^{n}\right) & e^{n}=O\left(e^{n \wedge}\right)
\end{array}
$$

but for example $\mathrm{e}^{n \wedge} \neq \mathrm{O}\left(\mathrm{e}^{\mathrm{n}}\right)$
One exemplary proof:
$\frac{\ln (n)}{\ln (\ln (n))}=O(\log n)$:

$$
\frac{\ln (n)}{\ln (\ln (n))}=\frac{\log (n)}{\log (e) \ln (\ln (n))} \leq \frac{3 \log (n)}{\uparrow \ln (\ln (n))} \leftrightarrows 3|\log (n)|
$$

$$
\text { for } n>1 \text { for } n>15
$$

Exercise O-Notation (Solution)

One more proof: In n! = O(n logn)

- Stirling's approximation:

$$
\begin{aligned}
& n!\sim \sqrt{2 \pi n}(n / e)^{n} \quad \text { or even } \\
& \sqrt{2 \pi} n^{n+1 / 2} e^{-n} \leq n!\leq e n^{n+1 / 2} e^{-n}
\end{aligned}
$$

- $\ln n!\leq \ln \left(e n^{n+\frac{1}{2}} e^{-n}\right)=1+\left(n+\frac{1}{2}\right) \ln n-n$

$$
\leq\left(n+\frac{1}{2}\right) \ln n \leq 2 n \ln n=2 n \frac{\log n}{\log e}=c \cdot n \log n
$$ okay for $c=2 / \log e$ and all $n \in \mathbb{N}$

- $\mathrm{n} \ln \mathrm{n}=\mathrm{O}(\mathrm{In} \mathrm{n}!)$ proven in a similar vein

Introduction to Discrete Optimization

Discrete Optimization

Discrete optimization:

- discrete variables
- or optimization over discrete structures (e.g. graphs)
- search space often finite, but typically too large for enumeration
- \rightarrow need for smart algorithms

Algorithms for discrete problems:

- typically problem-specific
- but some general concepts are repeatedly used:
- greedy algorithms (lecture 2)
- branch\&bound (lecture 3)
- dynamic programming (lecture 4)
- heuristics (lecture 5)

Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

Graphs

Definition 1 An undirected graph G is a tupel $G=(V, E)$ of edges $e=\{u, v\} \in$ E over the vertex set V (i.e., $u, v \in V$).

- vertices = nodes
- edges = lines

- Note: edges cover two unordered vertices (undirected graph)
- if they are ordered, we call G a directed graph

Graphs: Basic Definitions

- G is called empty if E empty
- u and v are end vertices of an edge $\{u, v\}$
- Edges are adjacent if they share an end vertex
- Vertices u and v are adjacent if $\{u, v\}$ is in E

a loop
- The degree of a vertex is the number of times it is an end vertex
- A complete graph contains all possible edges (once):

Walks, Paths, and Circuits

Definition $1 A$ walk in a graph $G=(V, E)$ is a sequence

$$
v_{i_{0}}, e_{i_{1}}=\left(v_{i_{0}}, v_{i_{1}}\right), v_{i_{1}}, e_{i_{2}}=\left(v_{i_{1}}, v_{i_{2}}\right), \ldots, e_{i_{k}}, v_{i_{k}}
$$

alternating vertices and adjacent edges of G.

A walk is

- closed if first and last node coincide
- a trail if each edge traversed at most once
- a path if each vertex is visited at most once
- a closed path is a circuit or cycle
- a closed path involving all vertices of G is a Hamiltonian cycle

Graphs: Connectedness

- Two vertices are called connected if there is a walk between them in G
- If all vertex pairs in G are connected, G is called connected
- The connected components of G are the (maximal) subgraphs which are connected.

Trees and Forests

- A forest is a cycle-free graph
- A tree is a connected forest

root children parent
A spanning tree of a connected graph G is a tree in G which contains all vertices of G

Depth-First Search (DFS)

Sometimes, we need to traverse a graph, e.g. to find certain vertices

Depth-first search and breadth-first search are two algorithms to do so

Depth-first Search (for undirected/acyclic and connected graphs)
(1) start at any node x ; set $\mathrm{i}=0$
(2) as long as there are unvisited edges $\{x, y\}$:

- choose the next unvisited edge $\{x, y\}$ to a vertex y and mark x as the parent of y
- if y has not been visited so far: $\mathrm{i}=\mathrm{i}+1$, give y the number i , and continue the search at $\mathrm{x}=\mathrm{y}$ in step 2
- else continue with next unvisited edge of x
(3) if all edges $\{x, y\}$ are visited, we continue with $x=\operatorname{parent}(x)$ at step 2 or stop if $\mathrm{x}==\mathrm{v} 0$

DFS: Stage Exercise

Exercise the DFS algorithm on the following graph!

Breadth-First Search (BFS)

Breadth-first Search (for undirected/acyclic and connected graphs)
(1) start at any node x, set $i=0$, and label x with value i
(2) as long as there are unvisited edges $\{x, y\}$ which are adjacent to a vertex x that is labeled with value i :

- label all vertices y with value $\mathrm{i}+1$
(3) set $\mathrm{i}=\mathrm{i}+1$ and go to step 2

Definition of Some Combinatorial Problems Used Later on in the Lecture

Shortest Paths (SP)

Shortest Path problem:

Given a graph $G=(V, E)$ with edge weights w_{i} for each edge e_{i}. Find the shortest path from a vertex v to a vertex u, i.e., the path ($v, e_{1}=\left\{v, v_{1}\right\}, v_{1}, \ldots, v_{k}, e_{k}=\left\{v_{k}, u\right\}, u$) such that $w_{1}+\ldots+w_{k}$ is minimized.

Obvious Applications
Google maps
Finding routes for packages in a computer network

Minimum Spanning Trees (MST)

Minimum Spanning Tree problem:

Given a graph $G=(V, E)$ with edge weights w_{i} for each edge e_{i}.
Find the spanning tree with the smallest weight among all spanning trees.

Applications

Setting up a new wired telecommunication/water supply/electricity network
Constructing minimal delay trees for broadcasting in networks

Set Cover Problem (SCP)

Set Cover Problem

Given a set $U=\{1,2,3, \ldots, n\}$, called the universe, and a set $S=\left\{s_{1}, \ldots, s_{m}\right\}$ of m subsets of U, the union of which equals U. Find the smallest subset of S , the union of which also equals U . In other words, find an index $\mathrm{I} \subseteq\{1, \ldots, \mathrm{~m}\}$ which minimizes $\Sigma_{\mathrm{i} \in \mathrm{I}}$ $\left|s_{i}\right|$ such that the union of the $\mathrm{s}_{\mathrm{i}}(\mathrm{i} \in \mathrm{l})$ equals U .

$$
\begin{aligned}
& U=\{1,2,3,4,5\} \\
& S=\{1,2\},\{1,3,5\},\{1,2,3,5\},\{2,3,4\}\} \\
& \text { minimal set cover: }\{1,3,5\}\{2,3,4\}
\end{aligned}
$$

Application example

IBM's Antivirus use(d) set cover to search for a minimal set of code snippets which appear in all known viruses but not in "good" code

Bin Packing (BP)

Bin Packing Problem

Given a set of n items with sizes $a_{1}, a_{2}, \ldots, a_{n}$. Find an assignment of the a_{i} 's to bins of size V such that the number of bins is minimal and the sum of the sizes of all items assigned to each bin is $\leq \mathrm{V}$.

Applications

similar to multiprocessor scheduling of n jobs to m processors

Satisfiability Problem (SAT)

Notations:

- A Boolean expression is built from literals, operators and parentheses.
- A literal is either a Boolean variable x_{i} or its negation $\overline{x_{i}}$
- Operators are AND (conjunction), OR (disjunction), and NOT (negation)
- A formula is satisfiable if there is an assignment (TRUE/FALSE) to each of the variables that makes the whole formula TRUE

The Boolean satisfiability problem (SAT):
Given a Boolean expression E, is E satisfiable?

Satisfiability Problem (SAT)

The Boolean satisfiability problem (SAT):

Given a Boolean expression E, is E satisfiable?

Example:

$\left(\mathrm{x}_{1}\right.$ OR $\left.\overline{\mathrm{x}_{2}}\right)$ AND ($\overline{\mathrm{x}_{1}}$ OR x_{2} OR $\left.\overline{\mathrm{x}_{3}}\right)$ AND $\left(\overline{x_{1}}\right.$ OR $\left.\overline{\mathrm{x}_{4}}\right)$ AND (x_{3} OR x_{4})
Possible truth assignment: $x_{1}=$ TRUE, $x_{2}=$ TRUE, $x_{3}=$ TRUE, $x_{4}=$ FALSE

Applications:

- many, ranging from formal verification over artificial intelligence to machine learning and data mining
- examples: equivalence checking of Boolean circuits, automated test pattern generation, Al planning

Integer Linear Programming (ILP)

$$
\begin{aligned}
\operatorname{maximize} & c^{T} x \\
\text { subject to } & A x \leq b \\
& x \geq 0 \\
\text { and } & x \in \mathbb{Z}^{n}
\end{aligned}
$$

- rather a problem class
- can be written as ILP: SAT, TSP, Vertex Cover, Set Packing, ...

Conclusions I

- many, many more problems out there
- typically in practice: need to solve very specific instances
- here only possible to provide you
- the basic algorithm design ideas
- applied to a few standard problem classes
- regular training (i.e. exercises) to gain intuition and experience
- a broad overview on optimization topics to potentially draw your interest (e.g. towards a PhD on that topic)

Conclusions II

I hope it became clear...
...what optimization is about
...what is a graph, a node/vertex, an edge, ...
...and that designing a good algorithm is an important task

