Introduction to Optimization

October 7 September 26, 2016 École Centrale Paris, Châtenay-Malabry, France

Dimo Brockhoff Inria Saclay – Ile-de-France

What is Optimization?

060515/1800V018 NAM 500 MB HGT, GEO ABS VORTICITY

- find solutions x which minimize f in the shortest time possible (maximization is reformulated as minimization) or
- find solutions x with as small f(x) as possible in the shortest time possible

Optimization problem: find the best solution among all feasible ones!

"minimize the function f!"

Search problem: output a solution with a given structure!

"find a tour through a given set of cities shorter than X km!"

Decision problem: is there a solution with a certain property?

- "is n prime?"
- "is there a clique in the graph of size at least 5?"

Example: Sorting

- Aim: Sort a set of cards/words/data
- Re-formulation: minimize the "unsortedness"

- EFCADB
- BACFDE

sortedness increases

ABCDEF

Classical Questions:

- What is the underlying algorithm? (How do I solve a problem?)
- How long does it take to optimize? (How long does it take? Which guarantees can I give?)
- Is there a better algorithm or did I find the optimal one?

Course Overview

Date		Торіс
Fri, 7.10.2016		Introduction
Fri, 28.10.2016	D	Greedy algorithms
Fri, 4.11.2016	D	Branch and bound
Fri, 18.11.2016	D	Dynamic programming
Mon, 21.11.2016 in S103-S105	D	Approximation algorithms and heuristics
	-	
Fri, 25.11.2016 in S103-S105	С	Introduction to Continuous Optimization I
Mon, 28.11.2016	С	Introduction to Continuous Optimization II
Mon, 5.12.2016	С	Gradient-based Algorithms
Fri, 9.12.2016	С	Stochastic Optimization and Derivative Free Optimization I
Mon, 12.12.2016	С	Stochastic Optimization and Derivative Free Optimization II
Fri, 16.12.2016	С	Benchmarking Optimizers with the COCO platform
Wed, 4.1.2017		Exam

all classes last 3h15 and take place in S115-S117 (see exceptions)

Remarks

- possibly not clear yet what the lecture is about in detail
- but there will be always examples and exercises to learn "onthe-fly" the concepts and fundamentals

Overall goals:

- give a broad overview of where and how optimization is used
- Output the second se
- B be able to apply common optimization algorithms on real-life (engineering) problems

Please ask questions if things are unclear throughout the course!

The Exam

- Wednesday, 4th January 2017 from 09h45 till 12h45
- open book: take as much material as you want
- (most likely) combination of
 - questions on paper (to be handed in)
 - practical exercises (send source code and results by e-mail)

All information also available at

http://researchers.lille.inria.fr/~brockhof/introoptimization/

(exercise sheets, lecture slides, additional information, links, ...)

- included within the lecture (typically 1/3 of it)
- expected to be done in python
- hence, please make sure you have python installed on your laptop until the second lecture
- Anaconda is the recommended way to get there:

https://www.continuum.io/downloads

- (basic) example solutions will be made available afterwards
- not graded but please see it as training for the exam

Overview of Today's Lecture

- More examples of optimization problems
 - introduce some basic concepts of optimization problems such as domain, constraint, ...
- Basic notations such as the O-notation
- Beginning of discrete optimization part
 - a brief introduction to graphs
 - concrete examples of problems used later on in the lecture

General Context Optimization

Given:

set of possible solutions

quality criterion

Objective function

Search space

Objective:

Find the best possible solution for the given criterion

Formally:

Maximize or minimize

$$\mathcal{F}: \Omega \mapsto \mathbb{R},$$

Constraints explicitly or implicitly define the feasible solution set [e.g. $||x|| - 7 \le 0$ vs. every solution should have at least 5 zero entries]

Hard constraints *must* be satisfied while soft constraints are preferred to hold but are not required to be satisfied

[e.g. constraints related to manufactoring precisions vs. cost constraints]

Example 1: Combinatorial Optimization

Knapsack Problem

- Given a set of objects with a given weight and value (profit)
- Find a subset of objects whose overall mass is below a certain limit and maximizing the total value of the objects

[Problem of ressource allocation with financial constraints]

Dake

Exercise: how would you formalize this problem?
• what is the search space?
• how do you write down the objective function?
• what are the constraints?

Example 1: Combinatorial Optimization

Knapsack Problem

- Given a set of objects with a given weight and value (profit)
- Find a subset of objects whose overall mass is below a certain limit and maximizing the total value of the objects

[Problem of ressource allocation with financial constraints]

 $\Omega = \{0, 1\}^n$

Dake

Example 2: Combinatorial Optimization

Traveling Salesperson Problem (TSP)

- Given a set of cities and their distances
- Find the shortest path going through all cities

$\Omega = S_n$ (set of all permutations)

Example 3: Continuous Optimization

A farmer has 500m of fence to fence off a rectangular field that is adjacent to a river. What is the maximal area he can fence off?

Exercise: how would you formalize this problem? how do you solve it? (it can be done analytically!)

Example 3: Continuous Optimization

A farmer has 500m of fence to fence off a rectangular field that is adjacent to a river. What is the maximal area he can fence off?

•
$$\Omega = \mathbb{R}_{>0}^2 :$$

max xy
where $x + 2y = 500$

with
$$x = 500 - 2y$$
:

$$\max f(x) = -2y^2 + 500y$$

$$\frac{d}{dx}f(x) = -4y + 500$$

$$\frac{d}{dx}f(x) = 0 \Leftrightarrow \begin{cases} y = 125\\ (x = 250) \end{cases}$$

Example 4: A "Manual" Engineering Problem

Optimizing a Two-Phase Nozzle [Schwefel 1968+]

- maximize thrust under constant starting conditions
- one of the first examples of Evolution Strategies

 $\Omega =$ all possible nozzles of given number of slices

copyright Hans-Paul Schwefel

[http://ls11-www.cs.uni-dortmund.de/people/schwefel/EADemos/]

Example 5: Constrained Continuous Optimization

Design of a Launcher

- Scenario: multi-stage launcher brings a satellite into orbit
- Minimize the overall cost of a launch
- Parameters: propellant mass of each stage / diameter of each stage / flux of each engine / parameters of the command law
 23 continuous parameters to optimize

+ constraints

© Dimo Brockhoff, Inria 2015-2016

Example 6: History Matching/Parameter Calibration

One wide class of problems:

- matching existing (historical) data and the output of a simulation
- why? using the (calibrated) model to predict the future

 Most simplest form: minimize mean square error between observed data points and simulated data points

Example Applications:

- weather/traffic forecasting
- well-drilling in oil industry
- trading

Example 7: Interactive Optimization

Coffee Tasting Problem

- Find a mixture of coffee in order to keep the coffee taste from one year to another
- Objective function = opinion of one expert

M. Herdy: "Evolution Strategies with subjective selection", 1996

Many Problems, Many Algorithms?

Observation:

- Many problems with different properties
- For each, it seems a different algorithm?

In Practice:

- often most important to categorize your problem first in order to find / develop the right method
- \rightarrow problem types

Algorithm design is an art, what is needed is skill, intuition, luck, experience, special knowledge and craft

freely translated and adapted from Ingo Wegener (1950-2008)

Problem Types

- discrete vs. continuous
 - discrete: integer (linear) programming vs. combinatorial problems
 - continuous: linear, quadratic, smooth/nonsmooth, blackbox/DFO, ...
 - both discrete&continuous variables: mixed integer problem
- constrained vs. unconstrained

Not (or only slightly) covered in this introductory lecture:

- deterministic vs. stochastic
- one or multiple objective functions

General Concepts in Optimization

- search domain
 - discrete, continuous variables
 - finite vs. infinite dimension
- constraints
 - bounds
 - linear/quadratic/non-linear constraint
 - blackbox constraint

Further important aspects (in practice):

- deterministic vs. stochastic algorithms
- exact vs. approximation algorithms vs. heuristics
- anytime algorithms
- simulation-based optimization problem / expensive problem

Problems and Instances

A *problem* is a general concept, what needs actually to be solved is an *instance*.

Examples:

- Knapsack Problem:
 - the general formulation of slide 14 defines the problem
 - an instance is given by the assignment of weights and profits to n items and by fixing the knapsack size W
- Convex-quadratic Functions: $f(x) = a^T x + \frac{1}{2} x^T B x$
 - continuous problem with ellipsoidal level sets / lines of equal function value where B is symmetric, positive, and semidefinite
 - an instance is given by a specific rotation of the standard ellipses, their shapes (both via 'B') and their center (via 'a')

Excursion: The O-Notation

Motivation:

- we often want to characterize how quickly a function f(x) grows asymptotically
- e.g. when we say an algorithm takes n² steps to find the optimum of a problem with n (binary) variables, it is never exactly n², but maybe n²+1 or (n+1)²

Big-O Notation

should be known, here mainly restating the definition:

Definition 1 We write f(x) = O(g(x)) iff there exists a constant c > 0 and an $x_0 > 0$ such that $f(x) \le c|g(x)|$ holds for all $x > x_0$.

we also view O(g(x)) as the set of all functions growing at most as quickly as g(x) and write $f(x) \in O(g(x))$

Big-O: Examples

- f(x) + c = O(f(x)) [as long as f(x) does not converge to zero]
- $c \cdot f(x) = O(f(x))$
- $f(x) \cdot g(x) = O(f(x) \cdot g(x))$
- $3n^4 + n^2 7 = O(n^4)$

Intuition of the Big-O:

- if f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically) for f
- constants don't play a role
- with Big-O, you should have '≤' in mind

Excursion: The O-Notation

Further definitions to generalize from ' \leq ' to ' \geq ' and '=':

- $f(x) = \Omega(g(x))$ if g(x) = O(f(x))
- $f(x) = \Theta(g(x))$ if f(x) = O(g(x)) and g(x) = O(f(x))

Note: Definitions equivalent to '<' and '>' exist as well, but are not needed in this course

Please order the following functions in terms of their asymptotic behavior (from smallest to largest):

- exp(n²)
- log n
- In n / In In n
- n
- n log n
- exp(n)
- In(n!)

Give for three of the relations a formal proof.

Exercise O-Notation (Solution)

Correct ordering:

$$\frac{\ln(n)}{\ln(\ln(n))} = O(\log n) \qquad \log n = O(n) \qquad n = O(n \log n)$$

n log n = $\Theta(\ln(n!))$ ln(n!)= $O(e^n)$ $e^n = O(e^{n^2})$

but for example $e^{n^2} \neq O(e^n)$

One exemplary proof: $\frac{\ln(n)}{\ln(\ln(n))} = O(\log n):$

$$\frac{\ln(n)}{\ln(\ln(n))} = \frac{\log(n)}{\log(e)\ln(\ln(n))} \leq \frac{3\log(n)}{\ln(\ln(n))} \leq 3|\log(n)|$$
for $n > 1$ for $n > 15$

Exercise O-Notation (Solution)

One more proof: In n! = O(n log n)

• Stirling's approximation: $n! \sim \sqrt{2\pi n} (n/e)^n$ or even

$$\sqrt{2\pi} n^{n+1/2} e^{-n} \le n! \le e n^{n+1/2} e^{-n}$$

•
$$\ln n! \leq \ln(en^{n+\frac{1}{2}}e^{-n}) = 1 + \left(n + \frac{1}{2}\right)\ln n - n$$

 $\leq \left(n + \frac{1}{2}\right)\ln n \leq 2n\ln n = 2n\frac{\log n}{\log e} = c \cdot n\log n$
okay for $c = 2/\log e$ and all $n \in \mathbb{N}$

n ln n = O(ln n!) proven in a similar vein

Introduction to Discrete Optimization

Discrete optimization:

- discrete variables
- or optimization over discrete structures (e.g. graphs)
- search space often finite, but typically too large for enumeration
- → need for smart algorithms

Algorithms for discrete problems:

- typically problem-specific
- but some general concepts are repeatedly used:
 - greedy algorithms (lecture 2)
 - branch&bound (lecture 3)
 - dynamic programming (lecture 4)
 - heuristics (lecture 5)

Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

Graphs

Definition 1 An undirected graph G is a tupel G = (V, E) of edges $e = \{u, v\} \in E$ over the vertex set V (i.e., $u, v \in V$).

- vertices = nodes
- edges = lines
- Note: edges cover two unordered vertices (undirected graph)
 - if they are *ordered*, we call G a *directed* graph

Graphs: Basic Definitions

- G is called *empty* if E empty
- u and v are end vertices of an edge {u,v}
- Edges are *adjacent* if they share an end vertex
- Vertices u and v are *adjacent* if {u,v} is in E
- The *degree* of a vertex is the number of times it is an end vertex
- A complete graph contains all possible edges (once):

Walks, Paths, and Circuits

Definition 1 A walk in a graph G = (V, E) is a sequence

$$v_{i_0}, e_{i_1} = (v_{i_0}, v_{i_1}), v_{i_1}, e_{i_2} = (v_{i_1}, v_{i_2}), \dots, e_{i_k}, v_{i_k},$$

alternating vertices and adjacent edges of G.

A walk is

- closed if first and last node coincide
- a trail if each edge traversed at most once
- a path if each vertex is visited at most once
- a closed path is a *circuit* or *cycle*
- a closed path involving all vertices of G is a *Hamiltonian cycle*

Graphs: Connectedness

- Two vertices are called *connected* if there is a walk between them in G
- If all vertex pairs in G are connected, G is called connected
- The connected components of G are the (maximal) subgraphs which are connected.

Trees and Forests

- A forest is a cycle-free graph
- A *tree* is a connected forest

A spanning tree of a connected graph G is a tree in G which contains all vertices of G

Sometimes, we need to traverse a graph, e.g. to find certain vertices

Depth-first search and breadth-first search are two algorithms to do so

Depth-first Search (for undirected/acyclic and connected graphs)

- start at any node x; set i=0
- e as long as there are unvisited edges {x,y}:
 - choose the next unvisited edge {x,y} to a vertex y and mark x as the parent of y
 - if y has not been visited so far: i=i+1, give y the number i, and continue the search at x=y in step 2
 - else continue with next unvisited edge of x
- If all edges {x,y} are visited, we continue with x=parent(x) at step 2 or stop if x==v0

DFS: Stage Exercise

Exercise the DFS algorithm on the following graph!

Breadth-First Search (BFS)

Breadth-first Search (for undirected/acyclic and connected graphs)

- start at any node x, set i=0, and label x with value i
- e as long as there are unvisited edges {x,y} which are adjacent to a vertex x that is labeled with value i:
 - Iabel all vertices y with value i+1
- set i=i+1 and go to step 2

Definition of Some Combinatorial Problems Used Later on in the Lecture

Shortest Paths (SP)

Shortest Path problem:

Given a graph G=(V,E) with edge weights w_i for each edge e_i . Find the shortest path from a vertex v to a vertex u, i.e., the path $(v, e_1 = \{v, v_1\}, v_1, ..., v_k, e_k = \{v_k, u\}, u)$ such that $w_1 + ... + w_k$ is minimized.

Obvious Applications

Google maps

Finding routes for packages in a computer network

Minimum Spanning Trees (MST)

Minimum Spanning Tree problem:

Given a graph G=(V,E) with edge weights w_i for each edge e_i . Find the spanning tree with the smallest weight among all spanning trees.

Applications

Setting up a new wired telecommunication/water supply/electricity network

Constructing minimal delay trees for broadcasting in networks

Set Cover Problem

Given a set U={1, 2, 3, ..., n}, called the universe, and a set S={s₁, ..., s_m} of m subsets of U, the union of which equals U. Find the smallest subset of S, the union of which also equals U. In other words, find an index I \subseteq {1, ..., m} which minimizes $\Sigma_{i \in I}$ |s_i| such that the union of the s_i (i \in I) equals U.

 $\begin{array}{l} U = \{1,2,3,4,5\} \\ S = \{\{1,2\},\,\{1,3,5\},\,\{1,2,3,5\},\,\{2,3,4\}\} \end{array} \\ \end{array} \\$

minimal set cover: {1,3,5} {2,3,4}

Application example

IBM's Antivirus use(d) set cover to search for a minimal set of code snippets which appear in all known viruses but not in "good" code

Bin Packing Problem

Given a set of n items with sizes $a_1, a_2, ..., a_n$. Find an assignment of the a_i 's to bins of size V such that the number of bins is minimal and the sum of the sizes of all items assigned to each bin is $\leq V$.

Applications

similar to multiprocessor scheduling of n jobs to m processors

Notations:

- A Boolean expression is built from literals, operators and parentheses.
- A *literal* is either a Boolean variable x_i or its negation $\overline{x_i}$
- Operators are AND (conjunction), OR (disjunction), and NOT (negation)
- A formula is satisfiable if there is an assignment (TRUE/FALSE) to each of the variables that makes the whole formula TRUE

The Boolean satisfiability problem (SAT):

Given a Boolean expression E, is E satisfiable?

Satisfiability Problem (SAT)

The Boolean satisfiability problem (SAT):

Given a Boolean expression E, is E satisfiable?

Example:

 $(x_1 \text{ OR } \overline{x_2}) \text{ AND } (\overline{x_1} \text{ OR } x_2 \text{ OR } \overline{x_3}) \text{ AND } (\overline{x_1} \text{ OR } \overline{x_4}) \text{ AND } (x_3 \text{ OR } x_4)$

Possible truth assignment: x_1 =TRUE, x_2 =TRUE, x_3 =TRUE, x_4 =FALSE

Applications:

- many, ranging from formal verification over artificial intelligence to machine learning and data mining
- examples: equivalence checking of Boolean circuits, automated test pattern generation, AI planning

Integer Linear Programming (ILP)

- $\begin{array}{ll} \text{maximize} & c^T x\\ \text{subject to} & Ax \leq b\\ & x \geq 0\\ & \text{and} & x \in \mathbb{Z}^n \end{array}$
- rather a problem class
- can be written as ILP: SAT, TSP, Vertex Cover, Set Packing, ...

Conclusions I

- many, many more problems out there
- typically in practice: need to solve very specific instances
- here only possible to provide you
 - the basic algorithm design ideas
 - applied to a few standard problem classes
 - regular training (i.e. exercises) to gain intuition and experience
 - a broad overview on optimization topics to potentially draw your interest (e.g. towards a PhD on that topic)

I hope it became clear...

...what optimization is about ...what is a graph, a node/vertex, an edge,and that designing a good algorithm is an important task