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 find solutions x which minimize f in the shortest time possible

(maximization is reformulated as minimization)

 find solutions x with as small f(x) as possible in the shortest time 

possible

Optimization problem: find the best solution among all feasible ones!

 “minimize the function f!”

Search problem: output a solution with a given structure!

 “find a tour through a given set of cities shorter than X km!”

Decision problem: is there a solution with a certain property?

 “is n prime?”

 “is there a clique in the graph of size at least 5?”

What is Optimization?

or
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 Aim: Sort a set of cards/words/data

 Re-formulation: minimize the “unsortedness”

 E F C A D B

 B A C F D E

 A B C D E F

Example: Sorting

sortedness increases
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Classical Questions:

 What is the underlying algorithm?

(How do I solve a problem?)

 How long does it take to optimize?

(How long does it take? Which guarantees can I give?)

 Is there a better algorithm or did I find the optimal one?

Example: Sorting
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Date Topic

Fri, 7.10.2016 Introduction

Fri, 28.10.2016 D Greedy algorithms

Fri, 4.11.2016 D Branch and bound

Fri, 18.11.2016 D Dynamic programming

Mon, 21.11.2016

in S103-S105

D Approximation algorithms and heuristics

Fri, 25.11.2016

in S103-S105

C Introduction to Continuous Optimization I

Mon, 28.11.2016 C Introduction to Continuous Optimization II

Mon, 5.12.2016 C Gradient-based Algorithms

Fri, 9.12.2016 C Stochastic Optimization and Derivative Free Optimization I

Mon, 12.12.2016 C Stochastic Optimization and Derivative Free Optimization II

Fri, 16.12.2016 C Benchmarking Optimizers with the COCO platform

Wed, 4.1.2017 Exam

Course Overview

all classes last 3h15 and take place in S115-S117 (see exceptions)
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 possibly not clear yet what the lecture is about in detail

 but there will be always examples and exercises to learn “on-

the-fly” the concepts and fundamentals

Overall goals:

 give a broad overview of where and how optimization is used

 understand the fundamental concepts of optimization algorithms

 be able to apply common optimization algorithms on real-life 

(engineering) problems

Remarks

Please ask questions

if things are unclear throughout the course!
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 Wednesday, 4th January 2017 from 09h45 till 12h45

 open book: take as much material as you want

 (most likely) combination of

 questions on paper (to be handed in)

 practical exercises (send source code and results by e-mail)

The Exam

All information also available at 

http://researchers.lille.inria.fr/~brockhof/introoptimization/

(exercise sheets, lecture slides, additional information, links, ...)
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 included within the lecture (typically 1/3 of it)

 expected to be done in python

 hence, please make sure you have python installed on your 

laptop until the second lecture

 Anaconda is the recommended way to get there:

https://www.continuum.io/downloads

 (basic) example solutions will be made available afterwards

 not graded but please see it as training for the exam

Remarks on Exercises
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 More examples of optimization problems

 introduce some basic concepts of optimization problems 

such as domain, constraint, ...

 Basic notations such as the O-notation

 Beginning of discrete optimization part

 a brief introduction to graphs

 concrete examples of problems used later on in the lecture

Overview of Today’s Lecture
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Given:

set of possible solutions

quality criterion

Objective:

Find the best possible solution for the given criterion

Formally:

Maximize or minimize

General Context Optimization

Search space

Objective function
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Maximize or minimize

Constraints explicitely or implicitely define the feasible solution set

[e.g. ||x|| - 7 ≤ 0 vs. every solution should have at least 5 zero entries]

Hard constraints must be satisfied while soft constraints are preferred 

to hold but are not required to be satisfied

[e.g. constraints related to manufactoring precisions vs. cost constraints]

Constraints

Maximize or minimize

unconstrained example of a

constrained O
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Knapsack Problem

 Given a set of objects with

a given weight and value (profit)

 Find a subset of objects whose

overall mass is below a certain

limit and maximizing the

total value of the objects

[Problem of ressource allocation

with financial constraints]

Example 1: Combinatorial Optimization

Dake

Exercise: how would you formalize this problem?

 what is the search space?

 how do you write down the objective function?

 what are the constraints?
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Knapsack Problem

 Given a set of objects with

a given weight and value (profit)

 Find a subset of objects whose

overall mass is below a certain

limit and maximizing the

total value of the objects

[Problem of ressource allocation

with financial constraints]

Example 1: Combinatorial Optimization

Dake
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Traveling Salesperson Problem (TSP)

 Given a set of cities and their

distances

 Find the shortest path going

through all cities

Example 2: Combinatorial Optimization
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A farmer has 500m of fence to fence off a rectangular field that is 

adjacent to a river. What is the maximal area he can fence off?

Example 3: Continuous Optimization

Exercise: 

 how would you formalize this problem?

 how do you solve it? (it can be done analytically!)
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A farmer has 500m of fence to fence off a rectangular field that is 

adjacent to a river. What is the maximal area he can fence off?

Example 3: Continuous Optimization
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Optimizing a Two-Phase Nozzle [Schwefel 1968+]

 maximize thrust under constant starting conditions

 one of the first examples of Evolution Strategies

copyright Hans-Paul Schwefel

[http://ls11-www.cs.uni-dortmund.de/people/schwefel/EADemos/]

all possible nozzles of given number of slices

initial design:

final design:
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Design of a Launcher

 Scenario: multi-stage launcher brings a 

satellite into orbit

 Minimize the overall cost of a launch

 Parameters: propellant mass of each stage / 

diameter of each stage / flux of each engine / 

parameters of the command law

23 continuous parameters to optimize

+ constraints

Example 5: Constrained Continuous Optimization

Vol atmosphérique
- efforts généraux

- pilotage

retombée d’étage

visibilité

120km

fragmentation

flux thermiquelargage coiffe
(flux thermique)

station 1
station 2

Injection en 
orbite

- position
- vitesse

pas de tir

Séparations
(pression 

dynamique)

Poppy

copyright by Astrium
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One wide class of problems:

 matching existing (historical) data and the output of a simulation

 why? using the (calibrated) model to predict the future

 Most simplest form: minimize mean square error between 

observed data points and simulated data points

Example Applications:

 weather/traffic forecasting

 well-drilling in oil industry

 trading

Example 6: History Matching/Parameter Calibration
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Coffee Tasting Problem

 Find a mixture of coffee in order to keep the coffee taste from 

one year to another

 Objective function = opinion of one expert

Example 7: Interactive Optimization

M. Herdy: “Evolution Strategies with subjective 

selection”, 1996

1
3

2

Quasipalm

4
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Observation:

 Many problems with different properties

 For each, it seems a different algorithm?

In Practice:

 often most important to categorize your problem first in order 

to find / develop the right method

  problem types

Many Problems, Many Algorithms?

Algorithm design is an art, 

what is needed is skill, intuition, luck, experience,

special knowledge and craft

freely translated and adapted from Ingo Wegener (1950-2008)
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 discrete vs. continuous

 discrete: integer (linear) programming vs. combinatorial 

problems

 continuous: linear, quadratic, smooth/nonsmooth, 

blackbox/DFO, ...

 both discrete&continuous variables: mixed integer problem

 constrained vs. unconstrained

Not (or only slightly) covered in this introductory lecture:

 deterministic vs. stochastic

 one or multiple objective functions

Problem Types
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 search domain

 discrete, continuous variables

 finite vs. infinite dimension

 constraints

 bounds

 linear/quadratic/non-linear constraint

 blackbox constraint

Further important aspects (in practice):

 deterministic vs. stochastic algorithms

 exact vs. approximation algorithms vs. heuristics

 anytime algorithms

 simulation-based optimization problem / expensive problem

General Concepts in Optimization
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A problem is a general concept, what needs actually to be solved is 

an instance.

Examples:

 Knapsack Problem:

 the general formulation of slide 14 defines the problem

 an instance is given by the assignment of weights and profits 

to n items and by fixing the knapsack size W

 Convex-quadratic Functions: f(x) = aTx + ½ xTBx

 continuous problem with ellipsoidal level sets / lines of equal 

function value where B is symmetric, positive, and semi-

definite

 an instance is given by a specific rotation of the standard 

ellipses, their shapes (both via ‘B’) and their center (via ‘a’)

Problems and Instances

x1

x2

x1

x2
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Excursion: The O-Notation
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Motivation:

 we often want to characterize how quickly a function f(x) grows 

asymptotically

 e.g. when we say an algorithm takes n2 steps to find the 

optimum of a problem with n (binary) variables, it is never 

exactly n2, but maybe n2+1 or (n+1)2

Big-O Notation

should be known, here mainly restating the definition:

we also view O(g(x)) as the set of all functions growing at most 

as quickly as g(x) and write f(x)O(g(x))

Excursion: The O-Notation
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 f(x) + c = O(f(x))    [as long as f(x) does not converge to zero]

 c·f(x) = O(f(x))

 f(x) · g(x) = O(f(x) · g(x)) 

 3n4 + n2 – 7 = O(n4)

Intuition of the Big-O:

 if f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically) 

for f

 constants don't play a role

 with Big-O, you should have ‘≤’ in mind

Big-O: Examples
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Further definitions to generalize from ‘≤’ to  ‘≥‘ and ‘=‘:

 f(x) = Ω(g(x)) if g(x) = O(f(x))

 f(x) = Θ(g(x)) if f(x) = O(g(x)) and g(x) = O(f(x))

Note: Definitions equivalent to ‘<‘ and ‘>’ exist as well, but are not 

needed in this course

Excursion: The O-Notation
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Please order the following functions in terms of their asymptotic 

behavior (from smallest to largest):

 exp(n2)

 log n

 ln n / ln ln n

 n

 n log n

 exp(n)

 ln( n! )

Give for three of the relations a formal proof.

Exercise O-Notation
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Correct ordering:

= O(log n)           log n = O(n)            n = O(n log n)

n log n = Θ(ln(n!))          ln(n!)= O(en)            en = O(en^2)

but for example en^2 ≠ O(en)

One exemplary proof:

= O(log n):

Exercise O-Notation (Solution)

))ln(ln(

n)ln(

n

))ln(ln(

n)ln(

n

|)log(|3
))ln(ln(

)log(3

))ln(ln()log(

 )log(

))ln(ln(

)ln(
n

n

n

ne

n

n

n


for 𝑛 > 15for 𝑛 > 1
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One more proof: ln n! = O(n log n)

 Stirling’s approximation:                                         or even

 ln 𝑛! ≤ ln(𝑒𝑛𝑛+
1

2𝑒−𝑛) = 1 + 𝑛 +
1

2
ln 𝑛 − 𝑛

≤ 𝑛 +
1

2
ln 𝑛 ≤ 2𝑛 ln 𝑛 = 2𝑛

log 𝑛

log 𝑒
= 𝑐 ∙ 𝑛 log 𝑛

okay for 𝑐 = 2/ log 𝑒 and all 𝑛 ∈ ℕ

 n ln n = O(ln n!) proven in a similar vein

Exercise O-Notation (Solution)
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Introduction to Discrete Optimization
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Discrete optimization:

 discrete variables

 or optimization over discrete structures (e.g. graphs)

 search space often finite, but typically too large for enumeration

  need for smart algorithms

Algorithms for discrete problems:

 typically problem-specific

 but some general concepts are repeatedly used:

 greedy algorithms (lecture 2)

 branch&bound (lecture 3)

 dynamic programming (lecture 4)

 heuristics (lecture 5)

Discrete Optimization
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Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]
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 vertices = nodes

 edges = lines

 Note: edges cover two unordered vertices (undirected graph)

 if they are ordered, we call G a directed graph

Graphs
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 G is called empty if E empty

 u and v are end vertices of an edge {u,v}

 Edges are adjacent if they share an end vertex

 Vertices u and v are adjacent if {u,v} is in E

 The degree of a vertex is the number of times it is an end vertex

 A complete graph contains all possible edges (once):

Graphs: Basic Definitions

a loop

K1 K2 K3 K4
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A walk is

 closed if first and last node coincide

 a trail if each edge traversed at most once

 a path if each vertex is visited at most once

 a closed path is a circuit or cycle

 a closed path involving all vertices of G is a Hamiltonian cycle

Walks, Paths, and Circuits
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 Two vertices are called connected if there is a walk between 

them in G

 If all vertex pairs in G are connected, G is called connected

 The connected components of G are the (maximal) subgraphs 

which are connected.

Graphs: Connectedness
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 A forest is a cycle-free graph

 A tree is a connected forest

A spanning tree of a connected graph G is a tree in G which 

contains all vertices of G

Trees and Forests

root parentchildren
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Sometimes, we need to traverse a graph, e.g. to find certain vertices

Depth-first search and breadth-first search are two algorithms to do so

Depth-first Search (for undirected/acyclic and connected graphs)

 start at any node x; set i=0

 as long as there are unvisited edges {x,y}:

 choose the next unvisited edge {x,y} to a vertex y and mark x 

as the parent of y

 if y has not been visited so far: i=i+1, give y the number i, and 

continue the search at x=y in step 2

 else continue with next unvisited edge of x

 if all edges {x,y} are visited, we continue with x=parent(x) at step 2 

or stop if x==v0

Depth-First Search (DFS)
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Exercise the DFS algorithm on the following graph!

DFS: Stage Exercise

E

B

G

L

F H

C

K

D

I MJ

A
e1 e2

e3

e4

e5

e6 e7
e8

e9

e10

e11

e12 e13

e14 e15

e16

e17

e18

e19

e20 e21 e22
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Breadth-first Search (for undirected/acyclic and connected graphs)

 start at any node x, set i=0, and label x with value i

 as long as there are unvisited edges {x,y} which are adjacent to a 

vertex x that is labeled with value i:

 label all vertices y with value i+1

 set i=i+1 and go to step 2

Breadth-First Search (BFS)

0

1

1

1

1

2

2

2

2

3
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Definition of Some Combinatorial Problems

Used Later on in the Lecture
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Shortest Path problem: 

Given a graph G=(V,E) with edge weights wi for each edge ei. 

Find the shortest path from a vertex v to a vertex u, i.e., the path 

(v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) such that w1 + ... + wk is 

minimized.

Obvious Applications

Google maps

Finding routes for packages in a computer network

...

Shortest Paths (SP)

u v

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1
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Minimum Spanning Tree problem: 

Given a graph G=(V,E) with edge weights wi for each edge ei. 

Find the spanning tree with the smallest weight among all 

spanning trees.

Applications

Setting up a new wired telecommunication/water 

supply/electricity network

Constructing minimal delay trees for broadcasting in networks

Minimum Spanning Trees (MST)

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1
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Set Cover Problem

Given a set U={1, 2, 3, ..., n}, called the universe, and a set 

S={s1, ..., sm} of m subsets of U, the union of which equals U. 

Find the smallest subset of S, the union of which also equals U. 

In other words, find an index I  {1, ..., m} which minimizes ΣiI

|si| such that the union of the si (iI) equals U.

Application example

IBM’s Antivirus use(d) set cover to search for a minimal set of 

code snippets which appear in all known viruses but not in 

“good” code

Set Cover Problem (SCP)

U = {1,2,3,4,5}

S = {{1,2}, {1,3,5}, {1,2,3,5}, {2,3,4}}

minimal set cover: {1,3,5} {2,3,4}
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Bin Packing Problem

Given a set of n items with sizes a1, a2, ..., an. Find an 

assignment of the ai’s to bins of size V such that the number of 

bins is minimal and the sum of the sizes of all items assigned to 

each bin is  ≤ V.

Applications

similar to multiprocessor scheduling of n jobs to m processors

Bin Packing (BP)
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Notations:

 A Boolean expression is built from literals, operators and 

parentheses.

 A literal is either a Boolean variable xi or its negation xi

 Operators are AND (conjunction), OR (disjunction), and NOT 

(negation)

 A formula is satisfiable if there is an assignment  (TRUE/FALSE) 

to each of the variables that makes the whole formula TRUE

The Boolean satisfiability problem (SAT):

Given a Boolean expression E, is E satisfiable?

Satisfiability Problem (SAT)
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The Boolean satisfiability problem (SAT):

Given a Boolean expression E, is E satisfiable?

Example:

(x1 OR x2) AND (x1 OR x2 OR x3) AND (x1 OR x4) AND (x3 OR x4)

Possible truth assignment: x1=TRUE, x2=TRUE, x3=TRUE, x4=FALSE

Applications:

 many, ranging from formal verification over artificial intelligence to 

machine learning and data mining

 examples: equivalence checking of Boolean circuits, automated 

test pattern generation, AI planning

Satisfiability Problem (SAT)
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 rather a problem class

 can be written as ILP: SAT, TSP, Vertex Cover, Set Packing, ...
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 many, many more problems out there

 typically in practice: need to solve very specific instances

 here only possible to provide you

 the basic algorithm design ideas

 applied to a few standard problem classes

 regular training (i.e. exercises) to gain intuition and experience

 a broad overview on optimization topics to potentially draw 

your interest (e.g. towards a PhD on that topic)

Conclusions I
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I hope it became clear...

...what optimization is about

...what is a graph, a node/vertex, an edge, ...

...and that designing a good algorithm is an important task

Conclusions II


