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What is Optimization?
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What is Optimization?

= find solutions x which minimize f in the shortest time possible
(maximization is reformulated as minimization) or

= find solutions x with as small f(x) as possible in the shortest time
possible

Optimization problem: find the best solution among all feasible ones!
=  “minimize the function f!”

Search problem: output a solution with a given structure!
* “find a tour through a given set of cities shorter than X km!”

Decision problem: is there a solution with a certain property?
= “is nprime?”
= “is there a clique in the graph of size at least 57"
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Example: Sorting

=  Aim: Sort a set of cards/words/data
=  Re-formulation: minimize the “unsortedness”

« EFCADB
= BACFDE sortedness increases
= ABCDEF
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Example: Sorting

Classical Questions:
= What is the underlying algorithm?
(How do | solve a problem?)
= How long does it take to optimize?
(How long does it take? Which guarantees can | give?)
» |s there a better algorithm or did | find the optimal one?
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Course Overview

Date | |Topic

Fri, 7.10.2016 Introduction

Fri, 28.10.2016 D Greedy algorithms

Fri, 4.11.2016 D Branch and bound

Fri, 18.11.2016 D Dynamic programming

Mon, 21.11.2016 D Approximation algorithms and heuristics

in S103-S105

Fri, 25.11.2016  C Introduction to Continuous Optimization |
in S103-S105

Mon, 28.11.2016
Mon, 5.12.2016
Fri, 9.12.2016
Mon, 12.12.2016
Fri, 16.12.2016 Benchmarking Optimizers with the COCO platform
Wed, 4.1.2017 Exam

Introduction to Continuous Optimization Il

Gradient-based Algorithms

Stochastic Optimization and Derivative Free Optimization |
Stochastic Optimization and Derivative Free Optimization Il

O O 0O 0O O

all classes last 3h15 and take place in S115-S117 (see exceptions)

© Dimo Brockhoff, Inria 2015-2016 Introduction to Optimization, ECP, Oct 7, 2016



= possibly not clear yet what the lecture is about in detall

= but there will be always examples and exercises to learn “on-
the-fly” the concepts and fundamentals

Overall goals:
© give a broad overview of where and how optimization is used
® understand the fundamental concepts of optimization algorithms

©® Dbe able to apply common optimization algorithms on real-life
(engineering) problems

Please ask questions
If things are unclear throughout the course!
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= Wednesday, 4" January 2017 from 09h45 till 12h45
= open book: take as much material as you want
= (most likely) combination of
= questions on paper (to be handed in)
= practical exercises (send source code and results by e-mail)

All information also available at

http://researchers.lille.inria.fr/~brockhof/introoptimization/

(exercise sheets, lecture slides, additional information, links, ...)
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Remarks on Exercises

* included within the lecture (typically 1/3 of it)
= expected to be done in python

* hence, please make sure you have python installed on your
laptop until the second lecture

= Anaconda is the recommended way to get there:
https://www.continuum.io/downloads

» (basic) example solutions will be made available afterwards

= not graded but please see it as training for the exam
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Overview of Today’s Lecture

» More examples of optimization problems

* |ntroduce some basic concepts of optimization problems
such as domain, constraint, ...

= Basic notations such as the O-notation
= Beginning of discrete optimization part
= a brief introduction to graphs
= concrete examples of problems used later on in the lecture
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General Context Optimization

Given:

set of possible solutions Search space

quality criterion Objective function
Objective:

Find the best possible solution for the given criterion
Formally: nl

Maximize or minimize ’ \Z o
F . Q — R’ n local minimum

global minimum

xr — F(x) .1

0 0.2 0.4 0.6 0.8 1
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Maximize or minimize Maximize or minimize
F:Q— R, F: Q= R,
r — F(x) r — F(x)
where g;(z) <0
hj(x) =0
unconstrained example of a
0O constrained ()

Constraints explicitely or implicitely define the feasible solution set
[e.g. ||X|| - 7 = 0 vs. every solution should have at least 5 zero entries]

Hard constraints must be satisfied while soft constraints are preferred
to hold but are not required to be satisfied

[e.g. constraints related to manufactoring precisions vs. cost constraints]
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Example 1. Combinatorial Optimization

Knapsack Problem
= Given a set of objects with
a given weight and value (profit)
= Find a subset of objects whose
overall mass is below a certain
limit and maximizing the
total value of the objects

Dake

Exercise: how would you formalize this problem?
© what is the search space?
® how do you write down the objective function?
© what are the constraints?
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Example 1. Combinatorial Optimization

Knapsack Problem
= (Given a set of objects with
a given weight and value (profit)
= Find a subset of objects whose
overall mass is below a certain
limit and maximizing the
total value of the objects

Dake

max. ijil’)j with € j S {O, 1}
j=1

S.t.i'wjacj < W Q — {07 ]‘}nJ

g=1
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Example 2: Combinatorial Optimization

Traveling Salesperson Problem (TSP)
= Given a set of cities and their
distances
= Find the shortest path going
through all cities
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Example 3. Continuous Optimization

A farmer has 500m of fence to fence off a rectangular field that is
adjacent to a river. What is the maximal area he can fence off?

X

Y

Exercise:
© how would you formalize this problem?
® how do you solve it? (it can be done analytically!)

/
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Example 3. Continuous Optimization

A farmer has 500m of fence to fence off a rectangular field that is
adjacent to a river. What is the maximal area he can fence off?

x
Y
-
0 O=RZ,: - @ with z =500 — 2y:
max Ty ma;cf(a:) = —2y* + 500y
where x + 2y = 500 s — 4 500
» ") da:f(w) YT

d
o (x)=0<:>{ (x:%y
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Example 4: A “Manual” Engineering Problem

Optimizing a Two-Phase Nozzle [Schwefel 1968+]
* maximize thrust under constant starting conditions
= one of the first examples of Evolution Strategies

initial design: &= .

() = all possible nozzles of given number of slices

copyright Hans-Paul Schwefel
[http://Is11-www.cs.uni-dortmund.de/people/schwefel/EADemos/]
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Example 5. Constrained Continuous Optimiz

Injection en
orbite ~

Design of a Launcher position

- vitesse

largage coiffe flux thermique
(flux thermiqug)

11111

Séparations
(pression ~
dynamique) —

Vol atmosphérique ST
- efforts généraux —
- pilotage o cotr \I/

<> <

copyriaht by Astrium
= Scenario: multi-stage launcher brings a
satellite into orbit

=  Minimize the overall cost of a launch

» Parameters: propellant mass of each stage /
diameter of each stage / flux of each engine /
parameters of the command law

O = IE{23 23 continuous parameters to optimize
+ constraints
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Example 6: History Matching/Parameter Calik

One wide class of problems:
= matching existing (historical) data and the output of a simulation
= why? using the (calibrated) model to predict the future

= Most simplest form: minimize mean square error between
observed data points and simulated data points

Example Applications:

= weather/traffic forecasting
= well-drilling in oil industry
= trading
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Example 7: Interactive Optimization

Coffee Tasting Problem

= Find a mixture of coffee in order to keep the coffee taste from
one year to another

= QObjective function = opinion of one expert

CEEN O3

Quasipalm

M. Herdy: “Evolution Strategies with subjective
selection”, 1996

© Dimo Brockhoff, Inria 2015-2016



Many Problems, Many Algorithms?

Observation:
= Many problems with different properties
* For each, it seems a different algorithm?

In Practice:

= often most important to categorize your problem first in order
to find / develop the right method

= - problem types

Algorithm design is an art,
what is needed is skill, intuition, luck, experience,
special knowledge and craft

freely translated and adapted from Ingo Wegener (1950-2008)
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Problem Types

= discrete vs. continuous
= discrete: integer (linear) programming vs. combinatorial

problems
= continuous: linear, quadratic, smooth/nonsmooth,
blackbox/DFO, ...

= both discrete&continuous variables: mixed integer problem
= constrained vs. unconstrained

Not (or only slightly) covered in this introductory lecture:
» deterministic vs. stochastic
= one or multiple objective functions
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General Concepts in Optimization

= search domain
= discrete, continuous variables
= finite vs. infinite dimension
= constraints
= pounds
» |inear/quadratic/non-linear constraint
= plackbox constraint

Further important aspects (in practice):

= deterministic vs. stochastic algorithms

= exact vs. approximation algorithms vs. heuristics

= anytime algorithms

= simulation-based optimization problem / expensive problem
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Problems and Instances

A problem is a general concept, what needs actually to be solved is
an instance.

Examples:
= Knapsack Problem:

= the general formulation of slide 14 defines the problem

= an instance is given by the assignment of weights and profits
to n items and by fixing the knapsack size W

= Convex-quadratic Functions: f(x) = a™ + ¥2 x"Bx

= continuous problem with ellipsoidal level sets / lines of equal

function value where B Is symmetric, positive, and semi-
definite

*= aninstance is given by a specific rotation of the standard
ellipses, their shapes (both via ‘B’) and their center (via ‘a’)

1 ==

>X, >X;
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Excursion: The O-Notation
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Excursion: The O-Notation

Motivation:

= we often want to characterize how quickly a function f(x) grows
asymptotically

= e.g. when we say an algorithm takes n? steps to find the
optimum of a problem with n (binary) variables, it is never
exactly n?, but maybe n?+1 or (n+1)>?

Big-O Notation
should be known, here mainly restating the definition:

Definition 1 We write f(x) = O(g(x)) iff there exists a constant ¢ > 0 and an
xo > 0 such that f(x) < c|g(z)| holds for all x > xg.

we also view O(g(x)) as the set of all functions growing at most
as quickly as g(x) and write f(x) eO(g(x))
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Big-O: Examples

= f(x) +c=0(f(x)) [aslong as f(x) does not converge to zero]
= c-f(x) = O(f(X))

= f(x) - 9(x) = O(f(x) - 9(x))
= 3n*+n?-7=0(n%

Intuition of the Big-O:

= |f f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically)
for f

= constants don't play a role
= with Big-O, you should have ‘<’ in mind
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Excursion: The O-Notation

Further definitions to generalize from ‘<’ to 2" and ‘="

= 1(x) =Q(g(x)) 1t g(x) = O(f(x))
= f(x) = 0(g(x)) If f(x) = O(g(x)) and g(x) = O(f(x))

Note: Definitions equivalent to ‘< and >’ exist as well, but are not
needed in this course
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Exercise O-Notation

Please order the following functions in terms of their asymptotic
behavior (from smallest to largest):

" exp(n?)

= Jogn

" Inn/Ininn
" n

= nlogn

= exp(n)

= |n(n!)

Give for three of the relations a formal proof.
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Exercise O-Notation (Solution)

Correct ordering:

|
n log n = O(In(n')) In(n!)= O(e") e" = O(e"?)

but for example e"? # O(e")

One exemplary proof:
In(n)

In(In(n))

= O(log n):

In(n) _ log(n) < 3log(n) <3[log(n) |
In(In(n)) log(e) In(In(n)) Tln(ln(n))T

forn>1 forn> 15
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Exercise O-Notation (Solution)

One more proof: In n! =O(n log n)
= Stirling’s approximation: n! ~V2mn(n/e)" or even

V2rn T 2e™ < nl < enntl/2e™n

n+= 1
* |nn!<In(en "2e7™") =1+ (n+§) Inn—n

logn

1
S(n+§)lnn32nlnn=2n =c-nlogn

loge
okay forc = 2/loge and alln € N

= nlnn=0O(nn!) proven in a similar vein
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Introduction to Discrete Optimization
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Discrete Optimization

Discrete optimization:

= discrete variables

= Or optimization over discrete structures (e.g. graphs)

= search space often finite, but typically too large for enumeration
= - need for smart algorithms

Algorithms for discrete problems:
= typically problem-specific
= but some general concepts are repeatedly used:
= greedy algorithms (lecture 2)
= pbranch&bound (lecture 3)
= dynamic programming (lecture 4)
» heuristics (lecture 5)
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Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]
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Definition 1 An undirected graph G is a tupel G = (V, E) of edges e = {u,v} €
E over the vertex set V (i.e., u,v € V).

= vertices = nodes

= edges =lines

= Note: edges cover two unordered vertices (undirected graph)
= |f they are ordered, we call G a directed graph
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Graphs: Basic Definitions

= G s called empty if E empty

= uandyv are end vertices of an edge {u,v} Q
» Edges are adjacent if they share an end vertex
= Vertices u and v are adjacent if {u,v}isin E

» The degree of a vertex is the number of times it is an end vertex
= A complete graph contains all possible edges (once):

Cote &% &
O o—@

a loop
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Walks, Paths, and Circuits

Definition 1 A walk in a graph G = (V, E) is a sequence

alternating vertices and adjacent edges of G.

A walk 1s

Vigs €i; = (U’imvil)avilaeiz — (Uilaviz): ceey €40y Uiy

closed if first and last node coincide
a trail if each edge traversed at most once
a path if each vertex is visited at most once

a closed path is a circuit or cycle
a closed path involving all vertices of G is a Hamiltonian cycle

© Dimo Brockhoff, Inria 2015-2016 Introduction to Optimizati



Graphs: Connectedness

= Two vertices are called connected if there is a walk between
themin G

= |f all vertex pairs in G are connected, G is called connected

= The connected components of G are the (maximal) subgraphs
which are connected.

o(0®
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Trees and Forests

= A forestis a cycle-free graph
= Atree is a connected forest

root children parent

A spanning tree of a connected graph G is a tree in G which
contains all vertices of G
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Depth-First Search (DFS)

Sometimes, we need to traverse a graph, e.g. to find certain vertices
Depth-first search and breadth-first search are two algorithms to do so

Depth-first Search (for undirected/acyclic and connected graphs)
O start at any node x; set i=0
® as long as there are unvisited edges {X,y}-

= choose the next unvisited edge {x,y} to a vertex y and mark x
as the parent of y

» if y has not been visited so far: i=i+1, give y the number i, and
continue the search at x=y in step 2

= else continue with next unvisited edge of x

©® if all edges {x,y} are visited, we continue with x=parent(x) at step 2
or stop if x==v0
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DFS: Stage Exercise

Exercise the DFS algorithm on the following graph!
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Breadth-First Search (BFS)

Breadth-first Search (for undirected/acyclic and connected graphs)
O start at any node x, set i=0, and label x with value |

® as long as there are unvisited edges {x,y} which are adjacent to a
vertex x that is labeled with value i:

= |abel all vertices y with value i+1
® seti=i+1 and go to step 2
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Definition of Some Combinatorial Problems
Used Later on in the Lecture
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Shortest Paths (SP)

Shortest Path problem:
Given a graph G=(V,E) with edge weights w; for each edge e..
Find the shortest path from a vertex v to a vertex u, I.e., the path
(v, e,={v, V{}, Vq, --nh Vi €,={V,, U}, U) Such that wy + ... + w IS
minimized.

Obvious Applications
Google maps
Finding routes for packages in a computer network
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Minimum Spanning Trees (MST)

Minimum Spanning Tree problem:
Given a graph G=(V,E) with edge weights w; for each edge e..
Find the spanning tree with the smallest weight among all
spanning trees.

Applications

Setting up a new wired telecommunication/water
supply/electricity network

Constructing minimal delay trees for broadcasting in networks
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Set Cover Problem (SCP)

Set Cover Problem

Given a set U={1, 2, 3, ..., n}, called the universe, and a set
S={sy, ..., Sy, of m subsets of U, the union of which equals U.
Find the smallest subset of S, the union of which also equals U.
In other words, find an index | < {1, ..., m} which minimizes 2,_,
|s;| such that the union of the s; (i€l) equals U.

U={1,2,3,4,5)
S = {{1,2}, {1,3,5}, {1,2,3,5}, {2,3,4}}

minimal set cover: {1,3,5} {2,3,4}
Application example

IBM’s Antivirus use(d) set cover to search for a minimal set of

code snippets which appear in all known viruses but not in
“good” code
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Bin Packing (BP)

Bin Packing Problem

Given a set of n items with sizes a,, a,, ..., &,. Find an
assignment of the a;'s to bins of size V such that the number of
bins is minimal and the sum of the sizes of all items assigned to
each binis s V.

|

Applications
similar to multiprocessor scheduling of n jobs to m processors
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Satisfiability Problem (SAT)

Notations:

A Boolean expression is built from literals, operators and
parentheses.

A literal is either a Boolean variable x; or its negation X;
Operators are AND (conjunction), OR (disjunction), and NOT
(negation)

A formula is satisfiable if there is an assignment (TRUE/FALSE)
to each of the variables that makes the whole formula TRUE

The Boolean satisfiability problem (SAT):

Given a Boolean expression E, is E satisfiable?

© Dimo Brockhoff, Inria 2015-2016 Introduction to Optimization, ECP, Oct 7, 2016



Satisfiability Problem (SAT)

The Boolean satisfiability problem (SAT):
Given a Boolean expression E, is E satisfiable?

Example:
(Xx; OR'X;) AND {X; OR x, ORX3) AND {X; ORX,) AND (X; OR X,)

Possible truth assignment: x,;=TRUE, x,=TRUE, x;=TRUE, x,=FALSE

Applications:

= many, ranging from formal verification over artificial intelligence to
machine learning and data mining

= examples: equivalence checking of Boolean circuits, automated
test pattern generation, Al planning
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Integer Linear Programming (ILP)

maximize clx

subject to  Ax <b
x>0
and x¢&Z"

rather a problem class

can be written as ILP: SAT, TSP, Vertex Cover, Set Packing, ...
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Conclusions |

= many, many more problems out there
= typically in practice: need to solve very specific instances
= here only possible to provide you
» the basic algorithm design ideas
= applied to a few standard problem classes
= regular training (i.e. exercises) to gain intuition and experience

= a broad overview on optimization topics to potentially draw
your interest (e.g. towards a PhD on that topic)
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Conclusions |l

| hope it became clear...

...what optimization is about
...what is a graph, a node/vertex, an edge, ...
...and that designing a good algorithm is an important task
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