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Date Topic

Fri, 7.10.2016 Introduction

Fri, 28.10.2016 D Introduction to Discrete Optimization + Greedy algorithms I

Fri, 4.11.2016 D Greedy algorithms II + Branch and bound

Fri, 18.11.2016 D Dynamic programming

Mon, 21.11.2016

in S103-S105

D Approximation algorithms and heuristics

Fri, 25.11.2016

in S103-S105

C Introduction to Continuous Optimization I

Mon, 28.11.2016 C Introduction to Continuous Optimization II

Mon, 5.12.2016 C Gradient-based Algorithms

Fri, 9.12.2016 C Stochastic Optimization and Derivative Free Optimization I

Mon, 12.12.2016 C Stochastic Optimization and Derivative Free Optimization II

Fri, 16.12.2016 C Benchmarking Optimizers with the COCO platform

Wed, 4.1.2017 Exam

Course Overview

all classes last 3h15 and take place in S115-S117 (see exceptions)
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Introduction to Discrete Optimization
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Discrete optimization:

 discrete variables

 or optimization over discrete structures (e.g. graphs)

 search space often finite, but typically too large for enumeration

  need for smart algorithms

Algorithms for discrete problems:

 typically problem-specific

 but some general concepts are repeatedly used:

 greedy algorithms (lecture 2 today)

 branch&bound (lecture 3)

 dynamic programming (lecture 4)

 heuristics (lecture 5)

Discrete Optimization
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Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]



6Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 6

 vertices = nodes

 edges = lines

 Note: edges cover two unordered vertices (undirected graph)

 if they are ordered, we call G a directed graph

Graphs
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 G is called empty if E empty

 u and v are end vertices of an edge {u,v}

 Edges are adjacent if they share an end vertex

 Vertices u and v are adjacent if {u,v} is in E

 The degree of a vertex is the number of times it is an end vertex

 A complete graph contains all possible edges (once):

Graphs: Basic Definitions

a loop

K1 K2 K3 K4
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A walk is

 closed if first and last node coincide

 a trail if each edge traversed at most once

 a path if each vertex is visited at most once

 a closed path is a circuit or cycle

 a closed path involving all vertices of G is a Hamiltonian cycle

Walks, Paths, and Circuits
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 Two vertices are called connected if there is a walk between 

them in G

 If all vertex pairs in G are connected, G is called connected

 The connected components of G are the (maximal) subgraphs 

which are connected.

Graphs: Connectedness
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 A forest is a cycle-free graph

 A tree is a connected forest

A spanning tree of a connected graph G is a tree in G which 

contains all vertices of G

Trees and Forests

root parentchildren
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Sometimes, we need to traverse a graph, e.g. to find certain vertices

Depth-first search and breadth-first search are two algorithms to do so

Depth-first Search (for undirected/acyclic and connected graphs)

 start at any node x; set i=0

 as long as there are unvisited edges {x,y}:

 choose the next unvisited edge {x,y} to a vertex y and mark x 

as the parent of y

 if y has not been visited so far: i=i+1, give y the number i, and 

continue the search at x=y in step 2

 else continue with next unvisited edge of x

 if all edges {x,y} are visited, we continue with x=parent(x) at step 2 

or stop if x==v0

Depth-First Search (DFS)
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Exercise the DFS algorithm on the following graph!

DFS: Stage Exercise
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e6 e7
e8
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e11

e12 e13
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e17
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Breadth-first Search (for undirected/acyclic and connected graphs)

 start at any node x, set i=0, and label x with value i

 as long as there are unvisited edges {x,y} which are adjacent to a 

vertex x that is labeled with value i:

 label all vertices y with value i+1

 set i=i+1 and go to step 2

Breadth-First Search (BFS)

0

1

1

1
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2

2

2

2

3



14Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 14

Definition of Some Combinatorial Problems

Used Later on in the Lecture



15Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 15

Shortest Path problem: 

Given a graph G=(V,E) with edge weights wi for each edge ei. 

Find the shortest path from a vertex v to a vertex u, i.e., the path 

(v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) such that w1 + ... + wk is 

minimized.

Obvious Applications

Google maps

Finding routes for packages in a computer network

...

Shortest Paths (SP)

u v
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Minimum Spanning Tree problem: 

Given a graph G=(V,E) with edge weights wi for each edge ei. 

Find the spanning tree with the smallest weight among all 

spanning trees.

Applications

Setting up a new wired telecommunication/water 

supply/electricity network

Constructing minimal delay trees for broadcasting in networks

Minimum Spanning Trees (MST)
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Set Cover Problem

Given a set U={1, 2, 3, ..., n}, called the universe, and a set 

S={s1, ..., sm} of m subsets of U, the union of which equals U. 

Find the smallest subset of S, the union of which also equals U. 

In other words, find an index I  {1, ..., m} which minimizes

ΣiI |si| such that the union of the si (iI) equals U.

Application example

IBM’s Antivirus use(d) set cover to search for a minimal set of 

code snippets which appear in all known viruses but not in 

“good” code

Set Cover Problem (SCP)

U = {1,2,3,4,5}

S = {{1,2}, {1,3,5}, {1,2,3,5}, {2,3,4}}

minimal set cover: {1,3,5} {2,3,4}
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Bin Packing Problem

Given a set of n items with sizes a1, a2, ..., an. Find an 

assignment of the ai’s to bins of size V such that the number of 

bins is minimal and the sum of the sizes of all items assigned to 

each bin is  ≤ V.

Applications

similar to multiprocessor scheduling of n jobs to m processors

Bin Packing (BP)



19Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 19

Integer Linear Programming (ILP)

 rather a problem class

 can be written as ILP: SAT, TSP, Vertex Cover, Set Packing, ...
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 many, many more problems out there

 typically in practice: need to solve very specific instances

 here only possible to provide you

 the basic algorithm design ideas

 applied to a few standard problem classes

 regular training (i.e. exercises) to gain intuition and experience

 a broad overview on optimization topics to potentially draw 

your interest (e.g. towards a PhD on that topic)

Conclusions I
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I hope it became clear so far...

...what optimization is about

...what is a graph, a node/vertex, an edge, ...

...and that designing a good algorithm is an important task

Conclusions II
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Greedy Algorithms
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From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem 

solving heuristic of making the locally optimal choice at each 

stage with the hope of finding a global optimum.”

 Note: typically greedy algorithms do not find the global optimum

 We will see later when this is the case

Greedy Algorithms
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 Example 1: Money Change

 Example 2: Packing Circles in Triangles

 Example 3: Minimal Spanning Trees (MST) and the algorithm of 

Kruskal

 The theory behind greedy algorithms: a brief introduction to 

matroids

 Exercise: A Greedy Algorithm for the Knapsack Problem

Greedy Algorithms: Lecture Overview
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Change-making problem

 Given n coins of distinct values w1=1, w2, ..., wn and a total 

change W (where w1, ..., wn, and W are integers). 

 Minimize the total amount of coins Σxi such that Σwixi = W and 

where xi is the number of times, coin i is given back as change. 

Greedy Algorithm

Unless total change not reached:

add the largest coin which is not larger than the remaining 

amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:

finishing darts (from 501 to 0 with 9 darts)

Example 1: Money Change
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G. F. Malfatti posed the following problem in 1803:

 how to cut three cylindrical columns out of a triangular prism of 

marble such that their total volume is maximized?

 his best solutions were so-called Malfatti circles in the triangular 

cross-section:

 all circles are tangent to each other

 two of them are tangent to each side of the triangle 

Example 2: Packing Circles in Triangles



27Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 27

What would a greedy algorithm do?

Example 2: Packing Circles in Triangles
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What would a greedy algorithm do?

Note that Zalgaller and Los' showed in 1994 that the greedy 

algorithm is optimal [1]

[1] Zalgaller, V.A.; Los', G.A. (1994), "The solution of Malfatti's problem", Journal of 

Mathematical Sciences 72 (4): 3163–3177, doi:10.1007/BF01249514.

Example 2: Packing Circles in Triangles
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Outline:

 reminder of problem definition

 Kruskal’s algorithm

 including correctness proofs and analysis of running time

Example 3: Minimal Spanning Trees (MST)
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A spanning tree of a connected graph G is a tree in G which 

contains all vertices of G

Minimum Spanning Tree Problem (MST):

Given a (connected) graph G=(V,E) with edge weights wi for 

each edge ei. Find a spanning tree T that minimizes the weights 

of the contained edges, i.e. where

Σ wi

ei  T

is minimized.

MST: Reminder of Problem Definition
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Algorithm, see [1]

 Create forest F = (V,{}) with n components and no edge

 Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

 While S non-empty and F not spanning:

 delete cheapest edge from S

 add it to F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the 

traveling salesman problem". Proceedings of the American Mathematical 

Society 7: 48–50. doi:10.1090/S0002-9939-1956-0078686-7

Kruskal’s Algorithm



32Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 32

Kruskal’s Algorithm: Example
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Kruskal’s Algorithm: Example

E

B

G

L

F H

C

K

D

I MJ

A
4 12

7
22

2
21 17

16

3 6

11

20 8

10 19

9

1

18

13

15 14 5



34Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 34

First question: how to implement the algorithm?

 sorting of edges needs O(|E| log |E|)

Kruskal’s Algorithm: Runtime Considerations

Algorithm

Create forest F = (V,{}) with n components and no edge

Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

While S non-empty and F not spanning:

delete cheapest edge from S

add it to F if no cycle is introduced

simple ?
forest implementation:

Disjoint-set

data structure
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Data structure: ground set 1...N grouped to disjoint sets

Operations:

 FIND(i): to which set (“tree”) does i belong?

 UNION(i,j): union the sets of i and j!

(“join the two trees of i and j”)

Implemented as trees:

 UNION(T1, T2): hang root node of smaller tree under root node of 

larger tree (constant time), thus

 FIND(u): traverse tree from u to root (to return a representative of 

u’s set) takes logarithmic time in total number of nodes

Disjoint-set Data Structure (“Union&Find”)

1 2 3 4

1      2 3 4
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Algorithm, rewritten with UNION-FIND:

 Create initial disjoint-set data structure, i.e. for each vertex vi, 

store vi as representative of its set

 Create empty forest F = {}

 Sort edges such that w.l.o.g. w1 < w2 < ... < w|E|

 for each edge ei={u,v} starting from i=1:

 if FIND(u) ≠ FIND(v): # no cycle introduced

 F = F ∪ {{u,v}}

 UNION(u,v)

 return F

Implementation of Kruskal’s Algorithm
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 Sorting of edges needs O(|E| log |E|)

 forest: Disjoint-set data structure

 initialization: O(|V|)

 log |V| to find out whether the minimum-cost edge {u,v} 

connects two sets (no cycle induced) or is within a set (cycle 

would be induced)

 2x FIND + potential UNION needs to be done O(|E|) times

 total O(|E| log |V|)

 Overall: O(|E| log |E|)

Back to Runtime Considerations
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Two parts needed:

 Algo always produces a spanning tree

final F contains no cycle and is connected by definition 

 Algo always produces a minimum spanning tree

 argument by induction

 P: If F is forest at a given stage of the algorithm, then there 

is some minimum spanning tree that contains F.

 clearly true for F = (V, {})

 assume that P holds when new edge e is added to F and 

be T a MST that contains F

 if e in T, fine

 if e not in T: T + e has cycle C with edge f in C but not 

in F (otherwise e would have introduced a cycle in F)

 now T – f + e is a tree with same weight as T (since 

T is a MST and f was not chosen to F)

 hence T – f + e is MST including T + e (i.e. P holds)

Kruskal’s Algorithm: Proof of Correctness


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 Another greedy approach to the MST problem is Prim’s algorithm

 Somehow like the one of Kruskal but:

 always keeps a tree instead of a forest

 thus, take always the cheapest edge which connects to the 

current tree

 Runtime more or less the same for both algorithms, but analysis of 

Prim’s algorithm a bit more involved because it needs (even) more 

complicated data structures to achieve it (hence not shown here)

Another Greedy Algorithm for MST
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What we have seen so far:

 three problems where a greedy algorithm was optimal

 money change

 three circles in a triangle

 minimum spanning tree (Kruskal’s and Prim’s algorithms)

 but also: greedy not always optimal

 in particular for NP-hard problems

Obvious Question:

 when is greedy good?

 answer: matroids

Intermediate Conclusion
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from Wikipedia:

“[...] a matroid is a structure that captures and generalizes the 

notion of linear independence in vector spaces.”

Reminder: linear independence in vector spaces

again from Wikipedia:

“A set of vectors is said to be linearly dependent if one of the 

vectors in the set can be defined as a linear combination of the 

other vectors. If no vector in the set can be written in this way, 

then the vectors are said to be linearly independent.”

Matroids
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 Various equivalent definitions of matroids exist

 Here, we define a matroid via independent sets

Definition of a Matroid:

A matroid is a tuple 𝑀 = (𝐸, ℑ) with

 𝐸 being the finite ground set and

 ℑ being a collection of (so-called) independent subsets of 𝐸
satisfying these two axioms:

 (I1) if 𝑋 ⊆ 𝑌 and 𝑌 ∈ ℑ then 𝑋 ∈ ℑ,

 (I2) if 𝑋 ∈ ℑ and 𝑌 ∈ ℑ and  𝑌 > |𝑋| then there exists an  

e ∈ 𝑌 \ X such that 𝑋 ∪ e ∈ ℑ.

Note: (I2) implies that all maximal independent sets have the 

same cardinality (maximal independent = adding an item of E 

makes the set dependent)

Each maximal independent set is called a basis for M.

Matroid: Definition
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 A matroid 𝑀 = (𝐸, ℑ) in which ℑ = {𝑋 ⊆ 𝐸: |𝑋| ≤ 𝑘} is called a 

uniform matroid.

 The bases of uniform matroids are the sets of cardinality 𝑘 (in 

case 𝑘 ≤ |𝐸|).

Example: Uniform Matroids
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 Given a graph 𝐺 = (𝑉, 𝐸), its corresponding graphic matroid is 

defined by 𝑀 = (𝐸, ℑ) where ℑ contains all subsets of edges 

which are forests.

 If 𝐺 is connected, the bases are the spanning trees of 𝐺.

 If 𝐺 is unconnected, a basis contains a spanning tree in each 

connected component of 𝐺.

Example: Graphic Matroids
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Given a matroid 𝑀 = (𝐸, ℑ) and a cost function 𝑐: 𝐸 → ℝ, the 

matroid optimization problem asks for an independent set 𝑆 with 

the maximal total cost 𝑐(𝑆) =  𝑒∈𝑆 𝑐(𝑒).

 If all costs are non-negative, we search for a maximal cost basis.

 In case of a graphic matroid, the above problem is equivalent to 

the Maximum Spanning Tree problem (use Kruskal’s algorithm, 

where the costs are negated, to solve it).

Matroid Optimization
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Greedy algorithm on 𝑴 = (𝑬,ℑ)

 sort elements by their cost (w.l.o.g. 𝑐(𝑒1) ≥ 𝑐(𝑒2) ≥ ⋯ ≥ 𝑐(𝑒|𝑀|))

 𝑆0 = {}, 𝑘 = 0

 for 𝑗 = 1 to |𝐸| do

 if 𝑆𝑘 ∪ 𝑒𝑗  ℑ then

 𝑘 = 𝑘 + 1

 𝑆𝑘 = 𝑆𝑘−1 ∪ 𝑒𝑗

 output the sets 𝑆1, … , 𝑆𝑘 or max{𝑆1, … , 𝑆𝑘}

Theorem: The greedy algorithm on the independence system 

𝑀 = (𝐸, ℑ), which satisfies (I1), outputs the optimum for any cost 

function iff M is a matroid.

Proof not shown here.

Greedy Optimization of a Matroid
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Exercise:

A Greedy Algorithm for the Knapsack Problem
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I hope it became clear...

...what a greedy algorithm is

...that it not always results in the optimal solution

...but that it does if and only if the problem is a matroid

Conclusions


