Introduction to Optimization
Greedy Algorithms

October 28, 2016
Ecole Centrale Paris, Chatenay-Malabry, France

2 Dimo Brockhoff
7iA— Inria Saclay — Ile-de-France

TTTTTTTTTTTTTTTTTTTTTTTTTTT

Course Overview

Fri, 28.10.2016
Fri, 4.11.2016
Fri, 18.11.2016

Mon, 21.11.2016
in S103-S105

D
D
D
D

Fri, 25.11.2016 C
in S103-S105

Mon, 28.11.2016
Mon, 5.12.2016
Fri, 9.12.2016
Mon, 12.12.2016
Fri, 16.12.2016
Wed, 4.1.2017

O O 0O 0O O

Date | |Topic

Introduction to Discrete Optimization + Greedy algorithms |
Greedy algorithms Il + Branch and bound

Dynamic programming

Approximation algorithms and heuristics

Introduction to Continuous Optimization |

Introduction to Continuous Optimization Il

Gradient-based Algorithms

Stochastic Optimization and Derivative Free Optimization |
Stochastic Optimization and Derivative Free Optimization Il
Benchmarking Optimizers with the COCO platform

Exam

all classes last 3h15 and take place in S115-S117 (see exceptions)

© Dimo Brockhoff, Inria

Introduction to Optimization @ ECP, Oct. 28, 2016

Introduction to Discrete Optimization

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Oct. 28

Discrete Optimization

Discrete optimization:

= discrete variables

= Or optimization over discrete structures (e.g. graphs)

= search space often finite, but typically too large for enumeration
= - need for smart algorithms

Algorithms for discrete problems:
= typically problem-specific
= but some general concepts are repeatedly used:
= greedy algorithms (lecture 2 today)
= pbranch&bound (lecture 3)
= dynamic programming (lecture 4)
» heuristics (lecture 5)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Definition 1 An undirected graph G is a tupel G = (V, E) of edges e = {u,v} €
E over the vertex set V (i.e., u,v € V).

= vertices = nodes

= edges =lines

= Note: edges cover two unordered vertices (undirected graph)
= |f they are ordered, we call G a directed graph

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Graphs: Basic Definitions

= G s called empty if E empty

= uandyv are end vertices of an edge {u,v} Q
» Edges are adjacent if they share an end vertex
= Vertices u and v are adjacent if {u,v}isin E

» The degree of a vertex is the number of times it is an end vertex
= A complete graph contains all possible edges (once):

a loop

Ky K,

O —0

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Walks, Paths, and Circuits

Definition 1 A walk in a graph G = (V, E) is a sequence

alternating vertices and adjacent edges of G.

A walk 1s

Vigs €i; = (U’imvil)avilaeiz — (Uilaviz): ceey €40y Uiy

closed if first and last node coincide
a trail if each edge traversed at most once
a path if each vertex is visited at most once

a closed path is a circuit or cycle
a closed path involving all vertices of G is a Hamiltonian cycle

© Dimo Brockhoff, Inria Introduction to Optimization @

Graphs: Connectedness

= Two vertices are called connected if there is a walk between
themin G

= |f all vertex pairs in G are connected, G is called connected

= The connected components of G are the (maximal) subgraphs
which are connected.

o(0®

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Trees and Forests

= A forestis a cycle-free graph
= Atree is a connected forest

root children parent

A spanning tree of a connected graph G is a tree in G which
contains all vertices of G

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Depth-First Search (DFS)

Sometimes, we need to traverse a graph, e.g. to find certain vertices
Depth-first search and breadth-first search are two algorithms to do so

Depth-first Search (for undirected/acyclic and connected graphs)
O start at any node x; set i=0
® as long as there are unvisited edges {X,y}-

= choose the next unvisited edge {x,y} to a vertex y and mark x
as the parent of y

» if y has not been visited so far: i=i+1, give y the number i, and
continue the search at x=y in step 2

= else continue with next unvisited edge of x

©® if all edges {x,y} are visited, we continue with x=parent(x) at step 2
or stop if x==v0

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Oct. 28

DFS: Stage Exercise

Exercise the DFS algorithm on the following graph!

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Oct. 28

Breadth-First Search (BFS)

Breadth-first Search (for undirected/acyclic and connected graphs)
O start at any node x, set i=0, and label x with value |

® as long as there are unvisited edges {x,y} which are adjacent to a
vertex x that is labeled with value i:

= |abel all vertices y with value i+1
® seti=i+1 and go to step 2

© Dimo Brockhoff, Inria Introduction to Optimization @

Definition of Some Combinatorial Problems
Used Later on in the Lecture

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Shortest Paths (SP)

Shortest Path problem:
Given a graph G=(V,E) with edge weights w; for each edge e..
Find the shortest path from a vertex v to a vertex u, I.e., the path
(v, e,={v, V{}, Vq, --nh Vi €,={V,, U}, U) Such that wy + ... + w IS
minimized.

Obvious Applications
Google maps
Finding routes for packages in a computer network

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Minimum Spanning Trees (MST)

Minimum Spanning Tree problem:
Given a graph G=(V,E) with edge weights w; for each edge e..
Find the spanning tree with the smallest weight among all
spanning trees.

Applications

Setting up a new wired telecommunication/water
supply/electricity network

Constructing minimal delay trees for broadcasting in networks

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Set Cover Problem (SCP)

Set Cover Problem

Given a set U={1, 2, 3, ..., n}, called the universe, and a set

S={sy, ..., Sy, of m subsets of U, the union of which equals U.
Find the smallest subset of S, the union of which also equals U.
In other words, find an index | c {1, ..., m} which minimizes

2., |si| such that the union of the s; (icl) equals U.

U={1,2,3,4,5)
S = {{1,2}, {1,3,5}, {1,2,3,5}, {2,3,4}}

minimal set cover: {1,3,5} {2,3,4}
Application example

IBM’s Antivirus use(d) set cover to search for a minimal set of
code snippets which appear in all known viruses but not in
“good” code

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Oct. 28

Bin Packing (BP)

Bin Packing Problem

Given a set of n items with sizes a,, a,, ..., &,. Find an
assignment of the a;'s to bins of size V such that the number of
bins is minimal and the sum of the sizes of all items assigned to
each binis s V.

|

Applications
similar to multiprocessor scheduling of n jobs to m processors

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Integer Linear Programming (ILP)

maximize clx

subject to Ax <b
x>0
and x¢&Z"

rather a problem class

can be written as ILP: SAT, TSP, Vertex Cover, Set Packing, ...

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Oct. 28

Conclusions |

= many, many more problems out there
= typically in practice: need to solve very specific instances
= here only possible to provide you
» the basic algorithm design ideas
= applied to a few standard problem classes
= regular training (i.e. exercises) to gain intuition and experience

= a broad overview on optimization topics to potentially draw
your interest (e.g. towards a PhD on that topic)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Conclusions |l

| hope it became clear so far...

...what optimization is about
...what is a graph, a node/vertex, an edge, ...
...and that designing a good algorithm is an important task

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Oct. 28

Greedy Algorithms

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Oct. 28

Greedy Algorithms

From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem
solving heuristic of making the locally optimal choice at each
stage with the hope of finding a global optimum.”

= Note: typically greedy algorithms do not find the global optimum

= \We will see later when this is the case

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Greedy Algorithms: Lecture Overview

= Example 1. Money Change
= Example 2: Packing Circles in Triangles

= Example 3: Minimal Spanning Trees (MST) and the algorithm of
Kruskal

= The theory behind greedy algorithms: a brief introduction to
matroids

= Exercise: A Greedy Algorithm for the Knapsack Problem

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Example 1. Money Change

Change-making problem

= Given n coins of distinct values w;=1, w,, ..., w,, and a total
change W (where wy, ..., w,, and W are integers).

= Minimize the total amount of coins 2x; such that 2wx = W and
where Xx; is the number of times, coin i is given back as change.

Greedy Algorithm
Unless total change not reached:

add the largest coin which is not larger than the remaining
amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:
finishing darts (from 501 to O with 9 darts)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Example 2: Packing Circles in Triangles

G. F. Malfatti posed the following problem in 1803:

= how to cut three cylindrical columns out of a triangular prism of
marble such that their total volume is maximized?

» his best solutions were so-called Malfatti circles in the triangular
cross-section:

= all circles are tangent to each other
= two of them are tangent to each side of the triangle

PUBLIC
DOMAIN

© Dimo Brockhoff, Inria

Example 2: Packing Circles in Triangles

PUBLIC
DOMAIN

What would a greedy algorithm do?

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Oct. 28

Example 2: Packing Circles in Triangles

PUBLIC
DOMAIN

What would a greedy algorithm do?

Note that Zalgaller and Los' showed in 1994 that the greedy
algorithm is optimal [1]

[1] Zalgaller, V.A.; Los', G.A. (1994), "The solution of Malfatti's problem", Journal of
Mathematical Sciences 72 (4): 3163-3177, doi:10.1007/BF01249514.

© Dimo Brockhoff, Inria Introduction to Optimization @

Example 3: Minimal Spanning Trees (MST)

QOutline:
= reminder of problem definition
= Kruskal's algorithm
* Including correctness proofs and analysis of running time

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Oct. 28

MST: Reminder of Problem Definition

A spanning tree of a connected graph G is a tree in G which
contains all vertices of G

Minimum Spanning Tree Problem (MST):

Given a (connected) graph G=(V,E) with edge weights w; for
each edge e,. Find a spanning tree T that minimizes the weights
of the contained edges, i.e. where

> w
e el
IS minimized.

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Kruskal’s Algorithm

Algorithm, see [1]

= (Create forest F = (V,{}) with n components and no edge
Put sorted edges (such that w.l.o.g. w; <w, < ... <wg) into set S
= While S non-empty and F not spanning:

= (delete cheapest edge from S

= additto F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the
traveling salesman problem". Proceedings of the American Mathematical
Society 7: 48-50. doi:10.1090/S0002-9939-1956-0078686-7

© Dimo Brockhoff, Inria

Introduction to Optimization @

Kruskal’s Algorithm: Example

© Dimo Brockhoff, Inria

Kruskal’s Algorithm: Example

© Dimo Brockhoff, Inria

Kruskal’s Algorithm: Runtime Consideratio

First question: how to implement the algorithm?
= sorting of edges needs O(|E| log |E])

Algorithm
Create forest F = (V,{}) with n components and no edge

Put sorted edges (SUC%% <..<Wpg)intosetS
While S non-empty and\&_not spanning-

delete\cheapest

add it t @(ﬁ%

simple P,
forest implementation:
Disjoint-set
data structure

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Disjoint-set Data Structure (“Union&Find”)

Data structure: ground set 1...N grouped to disjoint sets

Operations: @ @ @ @
= FIND(I): to which set (“tree”) does | belong?
= UNION(l,j): union the sets of i and |!

(“join the two trees of i and |”) @ @ @

Implemented as trees:

= UNION(T1, T2): hang root node of smaller tree under root node of
larger tree (constant time), thus

= FIND(u): traverse tree from u to root (to return a representative of
u’s set) takes logarithmic time in total number of nodes

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Oct. 28

Implementation of Kruskal’s Algorithm

Algorithm, rewritten with UNION-FIND:

Create initial disjoint-set data structure, i.e. for each vertex v,
store v; as representative of its set

Create empty forest F = {}
Sort edges such that w.l.o.g. wy <w, < ... <Wg
for each edge e={u,v} starting from i=1:
= if FIND(u) # FIND(v): # no cycle introduced
» F=FuU{{uv}}
= UNION(u,v)
return F

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Back to Runtime Considerations

= Sorting of edges needs O(|E| log |E|)
= forest: Disjoint-set data structure
= |nitialization: O(|V|)
= |og |V| to find out whether the minimum-cost edge {u,v}

connects two sets (no cycle induced) or is within a set (cycle
would be induced)

= 2X FIND + potential UNION needs to be done O(|E]|) times
= total O(|E| log |V])
= Qverall: O(|E| log |E|)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Kruskal’s Algorithm: Proof of Correctness

Two parts needed:
© Algo always produces a spanning tree
final F contains no cycle and is connected by definition v/
® Algo always produces a minimum spanning tree
= argument by induction

= P:If Fis forest at a given stage of the algorithm, then there
IS some minimum spanning tree that contains F.

= clearly true for F = (V, {})

= assume that P holds when new edge e is added to F and
be T a MST that contains F

= feinT, fine
= jfenotinT: T+ e has cycle C with edge fin C but not
In F (otherwise e would have introduced a cycle in F)

= now T —f+ eisatree with same weight as T (since
Ti1s a MST and f was not chosen to F)

" henceT-f+eisMSTincluding T +e (i.e. P h?I/ds)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Oct. 28, 2016

Another Greedy Algorithm for MST

= Another greedy approach to the MST problem is Prim’s algorithm
= Somehow like the one of Kruskal but:
= always keeps a tree instead of a forest

= thus, take always the cheapest edge which connects to the
current tree

= Runtime more or less the same for both algorithms, but analysis of
Prim’s algorithm a bit more involved because it needs (even) more
complicated data structures to achieve it (hence not shown here)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Intermediate Conclusion

What we have seen so far:
= three problems where a greedy algorithm was optimal
= money change
= three circles in a triangle
= minimum spanning tree (Kruskal’s and Prim’s algorithms)
= put also: greedy not always optimal
= |n particular for NP-hard problems

Obvious Question:
= when is greedy good?
= answer: matroids

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

from Wikipedia:

“[...] @ matroid is a structure that captures and generalizes the
notion of linear independence in vector spaces.”

Reminder: linear independence in vector spaces
again from Wikipedia:
“A set of vectors is said to be linearly dependent if one of the
vectors in the set can be defined as a linear combination of the

other vectors. If no vector in the set can be written in this way,
then the vectors are said to be linearly independent.”

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Matroid: Definition

= Various equivalent definitions of matroids exist
= Here, we define a matroid via independent sets

Definition of a Matroid:
A matroid is a tuple M = (E,) with
= F being the finite ground set and

= 3 being a collection of (so-called) independent subsets of E
satisfying these two axioms:

= (IpifXcYandY eJthenX €S,

= (I)ifXeJandY € 3 and |Y| > |X]| then there exists an
e €Y\ Xsuchthat XU {e} € S.

Note: (l,) implies that all maximal independent sets have the
same cardinality (maximal independent = adding an item of E
makes the set dependent)

Each maximal independent set is called a basis for M.

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Oct. 28

Example: Uniform Matroids

= Amatroid M = (E,3J) inwhich 3 ={X C E: |X| < k}is called a
uniform matroid.

» The bases of uniform matroids are the sets of cardinality k (in
case k < |E]).

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Oct. 28

Example: Graphic Matroids

» Givenagraph ¢ = (V,E), its corresponding graphic matroid is
defined by M = (E,J) where 3 contains all subsets of edges
which are forests.

= If G Is connected, the bases are the spanning trees of G.

= |If G IS unconnected, a basis contains a spanning tree in each
connected component of G.

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Matroid Optimization

Given a matroid M = (E,3) and a cost function c: E - R, the
matroid optimization problem asks for an independent set S with

the maximal total cost c(S) =), .esc(e).

= |f all costs are non-negative, we search for a maximal cost basis.

* In case of a graphic matroid, the above problem is equivalent to
the Maximum Spanning Tree problem (use Kruskal’s algorithm,
where the costs are negated, to solve it).

Introduction to Optimization @ ECP

© Dimo Brockhoff, Inria

Greedy Optimization of a Matroid

Greedy algorithmon M = (E,J)
= sort elements by their cost (w.l.o.g. c(e;) = c(ez) =+ = c(em)))
» So={}Lk=0
= forj=1to|E|do
= if S, Uej e Jthen

» k=k+1

" S =51 Ve
= output the sets Sy, ..., S, or max{Sy, ..., Sy}

Theorem: The greedy algorithm on the independence system
M = (E,3), which satisfies (I,), outputs the optimum for any cost
function iff M is a matroid.

Proof not shown here.

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Exercise:
A Greedy Algorithm for the Knapsack Problem

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Oct. 28

Conclusions

| hope it became clear...

...what a greedy algorithm is
...that it not always results in the optimal solution
...but that it does if and only if the problem is a matroid

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Oct. 28

