
Introduction to Optimization

Greedy Algorithms

Dimo Brockhoff

Inria Saclay – Ile-de-France

October 28, 2016

École Centrale Paris, Châtenay-Malabry, France

2Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 2

Date Topic

Fri, 7.10.2016 Introduction

Fri, 28.10.2016 D Introduction to Discrete Optimization + Greedy algorithms I

Fri, 4.11.2016 D Greedy algorithms II + Branch and bound

Fri, 18.11.2016 D Dynamic programming

Mon, 21.11.2016

in S103-S105

D Approximation algorithms and heuristics

Fri, 25.11.2016

in S103-S105

C Introduction to Continuous Optimization I

Mon, 28.11.2016 C Introduction to Continuous Optimization II

Mon, 5.12.2016 C Gradient-based Algorithms

Fri, 9.12.2016 C Stochastic Optimization and Derivative Free Optimization I

Mon, 12.12.2016 C Stochastic Optimization and Derivative Free Optimization II

Fri, 16.12.2016 C Benchmarking Optimizers with the COCO platform

Wed, 4.1.2017 Exam

Course Overview

all classes last 3h15 and take place in S115-S117 (see exceptions)

3Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 3

Introduction to Discrete Optimization

4Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 4

Discrete optimization:

 discrete variables

 or optimization over discrete structures (e.g. graphs)

 search space often finite, but typically too large for enumeration

  need for smart algorithms

Algorithms for discrete problems:

 typically problem-specific

 but some general concepts are repeatedly used:

 greedy algorithms (lecture 2 today)

 branch&bound (lecture 3)

 dynamic programming (lecture 4)

 heuristics (lecture 5)

Discrete Optimization

5Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 5

Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

6Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 6

 vertices = nodes

 edges = lines

 Note: edges cover two unordered vertices (undirected graph)

 if they are ordered, we call G a directed graph

Graphs

7Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 7

 G is called empty if E empty

 u and v are end vertices of an edge {u,v}

 Edges are adjacent if they share an end vertex

 Vertices u and v are adjacent if {u,v} is in E

 The degree of a vertex is the number of times it is an end vertex

 A complete graph contains all possible edges (once):

Graphs: Basic Definitions

a loop

K1 K2 K3 K4

8Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 8

A walk is

 closed if first and last node coincide

 a trail if each edge traversed at most once

 a path if each vertex is visited at most once

 a closed path is a circuit or cycle

 a closed path involving all vertices of G is a Hamiltonian cycle

Walks, Paths, and Circuits

9Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 9

 Two vertices are called connected if there is a walk between

them in G

 If all vertex pairs in G are connected, G is called connected

 The connected components of G are the (maximal) subgraphs

which are connected.

Graphs: Connectedness

10Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 10

 A forest is a cycle-free graph

 A tree is a connected forest

A spanning tree of a connected graph G is a tree in G which

contains all vertices of G

Trees and Forests

root parentchildren

11Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 11

Sometimes, we need to traverse a graph, e.g. to find certain vertices

Depth-first search and breadth-first search are two algorithms to do so

Depth-first Search (for undirected/acyclic and connected graphs)

 start at any node x; set i=0

 as long as there are unvisited edges {x,y}:

 choose the next unvisited edge {x,y} to a vertex y and mark x

as the parent of y

 if y has not been visited so far: i=i+1, give y the number i, and

continue the search at x=y in step 2

 else continue with next unvisited edge of x

 if all edges {x,y} are visited, we continue with x=parent(x) at step 2

or stop if x==v0

Depth-First Search (DFS)

12Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 12

Exercise the DFS algorithm on the following graph!

DFS: Stage Exercise

E

B

G

L

F H

C

K

D

I MJ

A
e1 e2

e3

e4

e5

e6 e7
e8

e9

e10

e11

e12 e13

e14 e15

e16

e17

e18

e19

e20 e21 e22

13Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 13

Breadth-first Search (for undirected/acyclic and connected graphs)

 start at any node x, set i=0, and label x with value i

 as long as there are unvisited edges {x,y} which are adjacent to a

vertex x that is labeled with value i:

 label all vertices y with value i+1

 set i=i+1 and go to step 2

Breadth-First Search (BFS)

0

1

1

1

1

2

2

2

2

3

14Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 14

Definition of Some Combinatorial Problems

Used Later on in the Lecture

15Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 15

Shortest Path problem:

Given a graph G=(V,E) with edge weights wi for each edge ei.

Find the shortest path from a vertex v to a vertex u, i.e., the path

(v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) such that w1 + ... + wk is

minimized.

Obvious Applications

Google maps

Finding routes for packages in a computer network

...

Shortest Paths (SP)

u v

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1

16Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 16

Minimum Spanning Tree problem:

Given a graph G=(V,E) with edge weights wi for each edge ei.

Find the spanning tree with the smallest weight among all

spanning trees.

Applications

Setting up a new wired telecommunication/water

supply/electricity network

Constructing minimal delay trees for broadcasting in networks

Minimum Spanning Trees (MST)

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1

17Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 17

Set Cover Problem

Given a set U={1, 2, 3, ..., n}, called the universe, and a set

S={s1, ..., sm} of m subsets of U, the union of which equals U.

Find the smallest subset of S, the union of which also equals U.

In other words, find an index I  {1, ..., m} which minimizes

ΣiI |si| such that the union of the si (iI) equals U.

Application example

IBM’s Antivirus use(d) set cover to search for a minimal set of

code snippets which appear in all known viruses but not in

“good” code

Set Cover Problem (SCP)

U = {1,2,3,4,5}

S = {{1,2}, {1,3,5}, {1,2,3,5}, {2,3,4}}

minimal set cover: {1,3,5} {2,3,4}

18Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 18

Bin Packing Problem

Given a set of n items with sizes a1, a2, ..., an. Find an

assignment of the ai’s to bins of size V such that the number of

bins is minimal and the sum of the sizes of all items assigned to

each bin is ≤ V.

Applications

similar to multiprocessor scheduling of n jobs to m processors

Bin Packing (BP)

19Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 19

Integer Linear Programming (ILP)

 rather a problem class

 can be written as ILP: SAT, TSP, Vertex Cover, Set Packing, ...

20Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 20

 many, many more problems out there

 typically in practice: need to solve very specific instances

 here only possible to provide you

 the basic algorithm design ideas

 applied to a few standard problem classes

 regular training (i.e. exercises) to gain intuition and experience

 a broad overview on optimization topics to potentially draw

your interest (e.g. towards a PhD on that topic)

Conclusions I

21Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 21

I hope it became clear so far...

...what optimization is about

...what is a graph, a node/vertex, an edge, ...

...and that designing a good algorithm is an important task

Conclusions II

22Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 22

Greedy Algorithms

23Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 23

From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem

solving heuristic of making the locally optimal choice at each

stage with the hope of finding a global optimum.”

 Note: typically greedy algorithms do not find the global optimum

 We will see later when this is the case

Greedy Algorithms

24Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 24

 Example 1: Money Change

 Example 2: Packing Circles in Triangles

 Example 3: Minimal Spanning Trees (MST) and the algorithm of

Kruskal

 The theory behind greedy algorithms: a brief introduction to

matroids

 Exercise: A Greedy Algorithm for the Knapsack Problem

Greedy Algorithms: Lecture Overview

25Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 25

Change-making problem

 Given n coins of distinct values w1=1, w2, ..., wn and a total

change W (where w1, ..., wn, and W are integers).

 Minimize the total amount of coins Σxi such that Σwixi = W and

where xi is the number of times, coin i is given back as change.

Greedy Algorithm

Unless total change not reached:

add the largest coin which is not larger than the remaining

amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:

finishing darts (from 501 to 0 with 9 darts)

Example 1: Money Change

26Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 26

G. F. Malfatti posed the following problem in 1803:

 how to cut three cylindrical columns out of a triangular prism of

marble such that their total volume is maximized?

 his best solutions were so-called Malfatti circles in the triangular

cross-section:

 all circles are tangent to each other

 two of them are tangent to each side of the triangle

Example 2: Packing Circles in Triangles

27Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 27

What would a greedy algorithm do?

Example 2: Packing Circles in Triangles

28Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 28

What would a greedy algorithm do?

Note that Zalgaller and Los' showed in 1994 that the greedy

algorithm is optimal [1]

[1] Zalgaller, V.A.; Los', G.A. (1994), "The solution of Malfatti's problem", Journal of

Mathematical Sciences 72 (4): 3163–3177, doi:10.1007/BF01249514.

Example 2: Packing Circles in Triangles

29Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 29

Outline:

 reminder of problem definition

 Kruskal’s algorithm

 including correctness proofs and analysis of running time

Example 3: Minimal Spanning Trees (MST)

30Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 30

A spanning tree of a connected graph G is a tree in G which

contains all vertices of G

Minimum Spanning Tree Problem (MST):

Given a (connected) graph G=(V,E) with edge weights wi for

each edge ei. Find a spanning tree T that minimizes the weights

of the contained edges, i.e. where

Σ wi

ei  T

is minimized.

MST: Reminder of Problem Definition

31Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 31

Algorithm, see [1]

 Create forest F = (V,{}) with n components and no edge

 Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

 While S non-empty and F not spanning:

 delete cheapest edge from S

 add it to F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the

traveling salesman problem". Proceedings of the American Mathematical

Society 7: 48–50. doi:10.1090/S0002-9939-1956-0078686-7

Kruskal’s Algorithm

32Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 32

Kruskal’s Algorithm: Example

E

B

G

L

F H

C

K

D

I MJ

A
4 12

7
22

2
21 17

16

3 6

11

20 8

10 19

9

1

18

13

15 14 5

33Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 33

Kruskal’s Algorithm: Example

E

B

G

L

F H

C

K

D

I MJ

A
4 12

7
22

2
21 17

16

3 6

11

20 8

10 19

9

1

18

13

15 14 5

34Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 34

First question: how to implement the algorithm?

 sorting of edges needs O(|E| log |E|)

Kruskal’s Algorithm: Runtime Considerations

Algorithm

Create forest F = (V,{}) with n components and no edge

Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

While S non-empty and F not spanning:

delete cheapest edge from S

add it to F if no cycle is introduced

simple ?
forest implementation:

Disjoint-set

data structure

35Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 35

Data structure: ground set 1...N grouped to disjoint sets

Operations:

 FIND(i): to which set (“tree”) does i belong?

 UNION(i,j): union the sets of i and j!

(“join the two trees of i and j”)

Implemented as trees:

 UNION(T1, T2): hang root node of smaller tree under root node of

larger tree (constant time), thus

 FIND(u): traverse tree from u to root (to return a representative of

u’s set) takes logarithmic time in total number of nodes

Disjoint-set Data Structure (“Union&Find”)

1 2 3 4

1 2 3 4

1

2

3

4

5

6

36Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 36

Algorithm, rewritten with UNION-FIND:

 Create initial disjoint-set data structure, i.e. for each vertex vi,

store vi as representative of its set

 Create empty forest F = {}

 Sort edges such that w.l.o.g. w1 < w2 < ... < w|E|

 for each edge ei={u,v} starting from i=1:

 if FIND(u) ≠ FIND(v): # no cycle introduced

 F = F ∪ {{u,v}}

 UNION(u,v)

 return F

Implementation of Kruskal’s Algorithm

37Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 37

 Sorting of edges needs O(|E| log |E|)

 forest: Disjoint-set data structure

 initialization: O(|V|)

 log |V| to find out whether the minimum-cost edge {u,v}

connects two sets (no cycle induced) or is within a set (cycle

would be induced)

 2x FIND + potential UNION needs to be done O(|E|) times

 total O(|E| log |V|)

 Overall: O(|E| log |E|)

Back to Runtime Considerations

38Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 38

Two parts needed:

 Algo always produces a spanning tree

final F contains no cycle and is connected by definition 

 Algo always produces a minimum spanning tree

 argument by induction

 P: If F is forest at a given stage of the algorithm, then there

is some minimum spanning tree that contains F.

 clearly true for F = (V, {})

 assume that P holds when new edge e is added to F and

be T a MST that contains F

 if e in T, fine

 if e not in T: T + e has cycle C with edge f in C but not

in F (otherwise e would have introduced a cycle in F)

 now T – f + e is a tree with same weight as T (since

T is a MST and f was not chosen to F)

 hence T – f + e is MST including T + e (i.e. P holds)

Kruskal’s Algorithm: Proof of Correctness



39Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 39

 Another greedy approach to the MST problem is Prim’s algorithm

 Somehow like the one of Kruskal but:

 always keeps a tree instead of a forest

 thus, take always the cheapest edge which connects to the

current tree

 Runtime more or less the same for both algorithms, but analysis of

Prim’s algorithm a bit more involved because it needs (even) more

complicated data structures to achieve it (hence not shown here)

Another Greedy Algorithm for MST

40Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 40

What we have seen so far:

 three problems where a greedy algorithm was optimal

 money change

 three circles in a triangle

 minimum spanning tree (Kruskal’s and Prim’s algorithms)

 but also: greedy not always optimal

 in particular for NP-hard problems

Obvious Question:

 when is greedy good?

 answer: matroids

Intermediate Conclusion

41Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 41

from Wikipedia:

“[...] a matroid is a structure that captures and generalizes the

notion of linear independence in vector spaces.”

Reminder: linear independence in vector spaces

again from Wikipedia:

“A set of vectors is said to be linearly dependent if one of the

vectors in the set can be defined as a linear combination of the

other vectors. If no vector in the set can be written in this way,

then the vectors are said to be linearly independent.”

Matroids

42Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 42

 Various equivalent definitions of matroids exist

 Here, we define a matroid via independent sets

Definition of a Matroid:

A matroid is a tuple 𝑀 = (𝐸, ℑ) with

 𝐸 being the finite ground set and

 ℑ being a collection of (so-called) independent subsets of 𝐸
satisfying these two axioms:

 (I1) if 𝑋 ⊆ 𝑌 and 𝑌 ∈ ℑ then 𝑋 ∈ ℑ,

 (I2) if 𝑋 ∈ ℑ and 𝑌 ∈ ℑ and 𝑌 > |𝑋| then there exists an

e ∈ 𝑌 \ X such that 𝑋 ∪ e ∈ ℑ.

Note: (I2) implies that all maximal independent sets have the

same cardinality (maximal independent = adding an item of E

makes the set dependent)

Each maximal independent set is called a basis for M.

Matroid: Definition

43Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 43

 A matroid 𝑀 = (𝐸, ℑ) in which ℑ = {𝑋 ⊆ 𝐸: |𝑋| ≤ 𝑘} is called a

uniform matroid.

 The bases of uniform matroids are the sets of cardinality 𝑘 (in

case 𝑘 ≤ |𝐸|).

Example: Uniform Matroids

44Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 44

 Given a graph 𝐺 = (𝑉, 𝐸), its corresponding graphic matroid is

defined by 𝑀 = (𝐸, ℑ) where ℑ contains all subsets of edges

which are forests.

 If 𝐺 is connected, the bases are the spanning trees of 𝐺.

 If 𝐺 is unconnected, a basis contains a spanning tree in each

connected component of 𝐺.

Example: Graphic Matroids

45Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 45

Given a matroid 𝑀 = (𝐸, ℑ) and a cost function 𝑐: 𝐸 → ℝ, the

matroid optimization problem asks for an independent set 𝑆 with

the maximal total cost 𝑐(𝑆) = 𝑒∈𝑆 𝑐(𝑒).

 If all costs are non-negative, we search for a maximal cost basis.

 In case of a graphic matroid, the above problem is equivalent to

the Maximum Spanning Tree problem (use Kruskal’s algorithm,

where the costs are negated, to solve it).

Matroid Optimization

46Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 46

Greedy algorithm on 𝑴 = (𝑬,ℑ)

 sort elements by their cost (w.l.o.g. 𝑐(𝑒1) ≥ 𝑐(𝑒2) ≥ ⋯ ≥ 𝑐(𝑒|𝑀|))

 𝑆0 = {}, 𝑘 = 0

 for 𝑗 = 1 to |𝐸| do

 if 𝑆𝑘 ∪ 𝑒𝑗  ℑ then

 𝑘 = 𝑘 + 1

 𝑆𝑘 = 𝑆𝑘−1 ∪ 𝑒𝑗

 output the sets 𝑆1, … , 𝑆𝑘 or max{𝑆1, … , 𝑆𝑘}

Theorem: The greedy algorithm on the independence system

𝑀 = (𝐸, ℑ), which satisfies (I1), outputs the optimum for any cost

function iff M is a matroid.

Proof not shown here.

Greedy Optimization of a Matroid

47Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 47

Exercise:

A Greedy Algorithm for the Knapsack Problem

49Introduction to Optimization @ ECP, Oct. 28, 2016© Dimo Brockhoff, Inria 49

I hope it became clear...

...what a greedy algorithm is

...that it not always results in the optimal solution

...but that it does if and only if the problem is a matroid

Conclusions

