
Introduction to Optimization

Branch and Bound

Dimo Brockhoff

INRIA Lille – Nord Europe

November 4, 2016

École Centrale Paris, Châtenay-Malabry, France

2Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 2

Date Topic

Fri, 7.10.2016 Introduction

Fri, 28.10.2016 D Introduction to Discrete Optimization + Greedy algorithms I

Fri, 4.11.2016 D Greedy algorithms II + Branch and bound

Fri, 18.11.2016 D Dynamic programming

Mon, 21.11.2016

in S103-S105

D Approximation algorithms and heuristics

Fri, 25.11.2016

in S103-S105

C Introduction to Continuous Optimization I

Mon, 28.11.2016 C Introduction to Continuous Optimization II

Mon, 5.12.2016 C Gradient-based Algorithms

Fri, 9.12.2016 C Stochastic Optimization and Derivative Free Optimization I

Mon, 12.12.2016 C Stochastic Optimization and Derivative Free Optimization II

Fri, 16.12.2016 C Benchmarking Optimizers with the COCO platform

Wed, 4.1.2017 Exam

Course Overview

all classes last 3h15 and take place in S115-S117 (see exceptions)

Greedy Algorithms (cont'd)

4Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 4

 Example 1: Money Change

 Example 2: Packing Circles in Triangles

 Example 3: Minimal Spanning Trees (MST) and the algorithm of

Kruskal

 The theory behind greedy algorithms: a brief introduction to

matroids

We will finally continue with the exercise "A Greedy Algorithm for

the Knapsack Problem" after the branch and bound part

Greedy Algorithms: Lecture Overview

5Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 5

Outline:

 reminder of problem definition

 Kruskal’s algorithm

 including correctness proofs and analysis of running time

Example 3: Minimal Spanning Trees (MST)

6Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 6

A spanning tree of a connected graph G is a tree in G which

contains all vertices of G

Minimum Spanning Tree Problem (MST):

Given a (connected) graph G=(V,E) with edge weights wi for

each edge ei. Find a spanning tree T that minimizes the weights

of the contained edges, i.e. where

Σ wi

ei T

is minimized.

MST: Reminder of Problem Definition

7Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 7

Algorithm, see [1]

 Create forest F = (V,{}) with n components and no edge

 Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

 While S non-empty and F not spanning:

 delete cheapest edge from S

 add it to F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the

traveling salesman problem". Proceedings of the American Mathematical

Society 7: 48–50. doi:10.1090/S0002-9939-1956-0078686-7

Kruskal’s Algorithm

8Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 8

Kruskal’s Algorithm: Example

E

B

G

L

F H

C

K

D

I MJ

A
4 12

7
22

2
21 17

16

3 6

11

20 8

10 19

9

1

18

13

15 14 5

9Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 9

Kruskal’s Algorithm: Example

E

B

G

L

F H

C

K

D

I MJ

A
4 12

7
22

2
21 17

16

3 6

11

20 8

10 19

9

1

18

13

15 14 5

10Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 10

First question: how to implement the algorithm?

 sorting of edges needs O(|E| log |E|)

Kruskal’s Algorithm: Runtime Considerations

Algorithm

Create forest F = (V,{}) with n components and no edge

Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

While S non-empty and F not spanning:

delete cheapest edge from S

add it to F if no cycle is introduced

simple ?
forest implementation:

Disjoint-set

data structure

11Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 11

Data structure: ground set 1...N grouped to disjoint sets

Operations:

 FIND(i): to which set (“tree”) does i belong?

 UNION(i,j): union the sets of i and j!

(“join the two trees of i and j”)

Implemented as trees:

 UNION(T1, T2): hang root node of smaller tree under root node of

larger tree (constant time), thus

 FIND(u): traverse tree from u to root (to return a representative of

u’s set) takes logarithmic time in total number of nodes

Disjoint-set Data Structure (“Union&Find”)

1 2 3 4

1 2 3 4

1

2

3

4

5

6

12Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 12

Algorithm, rewritten with UNION-FIND:

 Create initial disjoint-set data structure, i.e. for each vertex vi,

store vi as representative of its set

 Create empty forest F = {}

 Sort edges such that w.l.o.g. w1 < w2 < ... < w|E|

 for each edge ei={u,v} starting from i=1:

 if FIND(u) ≠ FIND(v): # no cycle introduced

 F = F ∪ {{u,v}}

 UNION(u,v)

 return F

Implementation of Kruskal’s Algorithm

13Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 13

 Sorting of edges needs O(|E| log |E|)

 forest: Disjoint-set data structure

 initialization: O(|V|)

 log |V| to find out whether the minimum-cost edge {u,v}

connects two sets (no cycle induced) or is within a set (cycle

would be induced)

 2x FIND + potential UNION needs to be done O(|E|) times

 total O(|E| log |V|)

 Overall: O(|E| log |E|)

Back to Runtime Considerations

14Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 14

Two parts needed:

 Algo always produces a spanning tree

final F contains no cycle and is connected by definition

 Algo always produces a minimum spanning tree

 argument by induction

 P: If F is forest at a given stage of the algorithm, then there

is some minimum spanning tree that contains F.

 clearly true for F = (V, {})

 assume that P holds when new edge e is added to F and

be T a MST that contains F

 if e in T, fine

 if e not in T: T + e has cycle C with edge f in C but not

in F (otherwise e would have introduced a cycle in F)

 now T – f + e is a tree with same weight as T (since

T is a MST and f was not chosen to F)

 hence T – f + e is MST including F + e (i.e. P holds)

Kruskal’s Algorithm: Proof of Correctness

15Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 15

 Another greedy approach to the MST problem is Prim’s algorithm

 Somehow like the one of Kruskal but:

 always keeps a tree instead of a forest

 thus, take always the cheapest edge which connects to the

current tree

 Runtime more or less the same for both algorithms, but analysis of

Prim’s algorithm a bit more involved because it needs (even) more

complicated data structures to achieve it (hence not shown here)

Another Greedy Algorithm for MST

16Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 16

What we have seen so far:

 three problems where a greedy algorithm was optimal

 money change

 three circles in a triangle

 minimum spanning tree (Kruskal’s and Prim’s algorithms)

 but also: greedy not always optimal

 in particular for NP-hard problems

Obvious Question:

 when is greedy good?

 answer: matroids

Intermediate Conclusion

17Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 17

Note: slides with blue background like the following have not been

covered in the lecture and will therefore not been used in the exam.

18Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 18

from Wikipedia:

“[...] a matroid is a structure that captures and generalizes the

notion of linear independence in vector spaces.”

Reminder: linear independence in vector spaces

again from Wikipedia:

“A set of vectors is said to be linearly dependent if one of the

vectors in the set can be defined as a linear combination of the

other vectors. If no vector in the set can be written in this way,

then the vectors are said to be linearly independent.”

Matroids

19Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 19

 Various equivalent definitions of matroids exist

 Here, we define a matroid via independent sets

Definition of a Matroid:

A matroid is a tuple 𝑀 = (𝐸, ℑ) with

 𝐸 being the finite ground set and

 ℑ being a collection of (so-called) independent subsets of 𝐸
satisfying these two axioms:

 (I1) if 𝑋 ⊆ 𝑌 and 𝑌 ∈ ℑ then 𝑋 ∈ ℑ,

 (I2) if 𝑋 ∈ ℑ and 𝑌 ∈ ℑ and 𝑌 > |𝑋| then there exists an

e ∈ 𝑌 \ X such that 𝑋 ∪ e ∈ ℑ.

Note: (I2) implies that all maximal independent sets have the

same cardinality (maximal independent = adding an item of E

makes the set dependent)

Each maximal independent set is called a basis for M.

Matroid: Definition

20Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 20

 A matroid 𝑀 = (𝐸, ℑ) in which ℑ = {𝑋 ⊆ 𝐸: |𝑋| ≤ 𝑘} is called a

uniform matroid.

 The bases of uniform matroids are the sets of cardinality 𝑘 (in

case 𝑘 ≤ |𝐸|).

Example: Uniform Matroids

21Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 21

 Given a graph 𝐺 = (𝑉, 𝐸), its corresponding graphic matroid is

defined by 𝑀 = (𝐸, ℑ) where ℑ contains all subsets of edges

which are forests.

 If 𝐺 is connected, the bases are the spanning trees of 𝐺.

 If 𝐺 is unconnected, a basis contains a spanning tree in each

connected component of 𝐺.

Example: Graphic Matroids

22Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 22

Given a matroid 𝑀 = (𝐸, ℑ) and a cost function 𝑐: 𝐸 → ℝ, the

matroid optimization problem asks for an independent set 𝑆 with

the maximal total cost 𝑐(𝑆) = 𝑒∈𝑆 𝑐(𝑒).

 If all costs are non-negative, we search for a maximal cost basis.

 In case of a graphic matroid, the above problem is equivalent to

the Maximum Spanning Tree problem (use Kruskal’s algorithm,

where the costs are negated, to solve it).

Matroid Optimization

23Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 23

Greedy algorithm on 𝑴 = (𝑬,ℑ)

 sort elements by their cost (w.l.o.g. 𝑐(𝑒1) ≥ 𝑐(𝑒2) ≥ ⋯ ≥ 𝑐(𝑒|𝑀|))

 𝑆0 = {}, 𝑘 = 0

 for 𝑗 = 1 to |𝐸| do

 if 𝑆𝑘 ∪ 𝑒𝑗 ℑ then

 𝑘 = 𝑘 + 1

 𝑆𝑘 = 𝑆𝑘−1 ∪ 𝑒𝑗

 output the sets 𝑆1, … , 𝑆𝑘 or max{𝑆1, … , 𝑆𝑘}

Theorem: The greedy algorithm on the independence system

𝑀 = (𝐸, ℑ), which satisfies (I1), outputs the optimum for any cost

function iff M is a matroid.

Proof not shown here.

Greedy Optimization of a Matroid

24Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 24

I hope it became clear...

...what a greedy algorithm is

...that it not always results in the optimal solution

...but that it does if and only if the problem is a matroid

Conclusions

Branch and Bound

26Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 26

Branch:

 Systematic enumeration of candidate solutions in a rooted tree

 Each tree node corresponds to a set of solutions; the whole

search space on the root

 At each tree node, the corresponding subset of the search space

is split into (non-overlapping) sub-subsets:

 the optimum of the larger problem must be contained in at

least one of the subproblems

 If tree nodes correspond to small enough subproblems, they are

solved exhaustively

Bound:

 smart part: estimation of upper and lower bounds on the optimal

function value achieved by solutions in the tree nodes

 the exploration of a tree node is stopped if a node’s upper bound

is already lower than the lower bound of an already explored

node (assuming maximization)

Branch and Bound: General Ideas

27Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 27

Needed for successful application of branch and bound:

 optimization problem

 finite set of solutions

 clear idea of how to split problem into smaller subproblems

 efficient calculation of the following modules:

 upper bound calculation

 lower bound calculation

Applying Branch and Bound

28Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 28

Assume w.l.o.g. maximization of f(x) here

Lower Bounds

 any actual feasible solution will give a lower bound (which will be

exact if the solution is the optimal one for the subproblem)

 hence, sampling a (feasible) solution can be one strategy

 using a heuristic to solve the subproblem another one

Upper Bounds

 upper bounds can be achieved by solving a relaxed version of

the problem formulations (i.e. by either loosening or removing

constraints)

Note: the better/tighter the bounds, the quicker the branch and

bound tree can be pruned

Computing Bounds (Maximization Problems)

29Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 29

 Exact, global solver

 Can be slow; only exponential worst-case runtime

 due to the exhaustive search behavior if no pruning of the

search tree is possible

 but might work well in some cases

Advantages:

 can be stopped if lower and upper bound are “close enough” in

practice (not necessarily exact anymore then)

 can be combined with other techniques, e.g. “branch and cut”

(not covered here)

Properties of Branch and Bound Algorithms

30Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 30

0-1 problems:

 choose unfixed variable xi

 one subproblem defined by setting xi to 0

 one subproblem defined by setting xi to 1

General integer problem:

 choose unfixed variable xi

 choose a value c that xi can take

 one subproblem defined by restricting xi ≤ c

 one subproblem defined by restricting xi > c

Combinatorial Problems:

 branching on certain discrete choices, e.g. an edge/vertex is

chosen or not chosen

The branching decisions are then induced as additional constraints

when defining the subproblems.

Example Branching Decisions

31Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 31

Several strategies (again assuming maximization):

 choose the subproblem with highest upper bound

 gain the most in reducing overall upper bound

 if upper bound not the optimal value, this problem needs to

be branched upon anyway sooner or later

 choose the subproblem with lowest lower bound

 simple DFS or BFS

 problem-specific approach most likely to be a good choice

Which Tree Node to Branch on?

32Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 32

Concrete steps when designing a branch and bound algorithm:

 How to split a problem into subproblems (“branching”)?

 How to compute upper bounds (assuming maximization)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

4 Steps Towards a Branch and Bound Algorithm

now: example of integer linear programming

example of knapsack problem (small exercise)

33Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 33

The ILP formalization covers many problems such as

 Traveling Salesperson Person (TSP)

 Vertex Cover and other covering problems

 Set packing and other packing problems

 Boolean satisfiability (SAT)

Application to ILPs

34Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 34

 Do not restrict the solutions to integers and round the solution

found of the relaxed problem (=remove the integer constraints)

by a continuous solver (i.e. solving the so-called LP relaxation)

 no guarantee to be exact

 Exploiting the instance property of A being total unimodular:

 feasible solutions are guaranteed to be integer in this case

 algorithms for continuous relaxation can be used (e.g. the

simplex algorithm)

 Using heuristic methods (typically without any quality guarantee)

 we’ll see these types of algorithms in one of the next lectures

 Using exact algorithms such as branch and bound

Ways of Solving an ILP

35Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 35

Here, we just give an idea instead of a concrete algorithm...

 How to split a problem into subproblems (“branching”)?

 How to compute upper bounds (assuming maximization)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

Branch and Bound for ILPs

36Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 36

Here, we just give an idea instead of a concrete algorithm...

 How to compute upper bounds (assuming maximization)?

 How to split a problem into subproblems (“branching”)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

Branch and Bound for ILPs

37Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 37

How to compute upper bounds (assuming maximization)?

 drop the integer constraints and solve the so-called LP-

relaxation

 can be done by standard LP algorithms such as
scipy.optimize.linprog or Matlab’s linprog

What’s then?

 The LP has no feasible solution. Fine. Prune.

 We found an integer solution. Fine as well. Might give us a

new lower bound to the overall problem.

 The LP problem has an optimal solution which is worse than

the highest lower bound over all already explored

subproblems. Fine. Prune.

 Otherwise: Branch on this subproblem: e.g. if optimal

solution has xi=2.7865, use xi≤2 and xi≥3 as new constraints

Branch and Bound for ILPs

38Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 38

How to split a problem into subproblems (“branching”)?

 mainly needed if the solution of the LP-relaxation is not

integer

 branch on a variable which is rational

Not discussed here in depth due to time:

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

 seems to be good choice: subproblem with largest upper

bound of LP-relaxation

Branch and Bound for ILPs

39Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 39

Branch and Bound for the 0-1 Knapsack Problem

How would you implement a

branch-and-bound algorithm

for the 0-1 knapsack problem?

what are the subproblems?

how to split a problem?

how to compute upper bounds?

how to compute lower bounds?

40Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 40

Ideas:

 define subproblems by choosing one variable and setting it to

either 0 or 1 (those fixed values are then ensured by additional

constraints in the problem formulation)

 for computing upper bounds for each subproblem, we can relax

the binary values constraints and use a greedy algorithm that

can pack items “partially”

 good lower bounds can be computed by a simple greedy

algorithm (see today’s exercise)

Branch and Bound for the Knapsack Problem

41Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 41

I hope it became clear...

...what the basic algorithm design ideas of branch and bound are

...and for which problem types it is supposed to be suitable

Conclusions

42Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 42

back to the exercise:

A Greedy Algorithm for the Knapsack Problem

http://researchers.lille.inria.fr/

~brockhof/optimizationSaclay/

