Introduction to Optimization
Branch and Bound

November 4, 2016
Ecole Centrale Paris, Chatenay-Malabry, France

2 Dimo Brockhoff
24— |NRIA Lille — Nord Europe

TTTTTTTTTTTTTTTTTTTTTTTTTTT

Course Overview

Date | |Topic

Fri, 4.11.2016 D Greedy algorithms Il + Branch and bound
Fri, 18.11.2016 D Dynamic programming

Mon, 21.11.2016 D Approximation algorithms and heuristics
in S103-S105

Fri, 25.11.2016 C Introduction to Continuous Optimization |
in S103-S105

Mon, 28.11.2016
Mon, 5.12.2016
Fri, 9.12.2016
Mon, 12.12.2016
Fri, 16.12.2016 Benchmarking Optimizers with the COCO platform
Wed, 4.1.2017 Exam

Introduction to Continuous Optimization Il

Gradient-based Algorithms

Stochastic Optimization and Derivative Free Optimization |
Stochastic Optimization and Derivative Free Optimization Il

O O 0O 0O O

all classes last 3h15 and take place in S115-S117 (see exceptions)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Greedy Algorithms (cont'd)

Greedy Algorithms: Lecture Overview

= Example 1: Money Change

= Example 2: Packing Circles in Triangles

= Example 3: Minimal Spanning Trees (MST) and the algorithm of
Kruskal

= The theory behind greedy algorithms: a brief introduction to
matroids

We will finally continue with the exercise "A Greedy Algorithm for
the Knapsack Problem" after the branch and bound part

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Example 3: Minimal Spanning Trees (MST)

QOutline:
= reminder of problem definition
= Kruskal's algorithm
* Including correctness proofs and analysis of running time

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

MST: Reminder of Problem Definition

A spanning tree of a connected graph G is a tree in G which
contains all vertices of G

Minimum Spanning Tree Problem (MST):

Given a (connected) graph G=(V,E) with edge weights w; for
each edge e,. Find a spanning tree T that minimizes the weights
of the contained edges, i.e. where

> w
e el
IS minimized.

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Kruskal’s Algorithm

Algorithm, see [1]

= (Create forest F = (V,{}) with n components and no edge
Put sorted edges (such that w.l.o.g. w; <w, < ... <wg) into set S
= While S non-empty and F not spanning:

= (delete cheapest edge from S

= additto F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the
traveling salesman problem". Proceedings of the American Mathematical
Society 7: 48-50. doi:10.1090/S0002-9939-1956-0078686-7

© Dimo Brockhoff, Inria

Introduction to Optimization @ ECP, Nov. 4, 2016

Kruskal’s Algorithm: Example

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Kruskal’s Algorithm: Example

A

A

7

3
20
11

E

© Dimo Brockhoff, Inria

C

H

Introduction to Optimization @ ECP, Nov. 4, 2016

16

13

O (0

Kruskal’s Algorithm: Runtime Consideratio

First question: how to implement the algorithm?
= sorting of edges needs O(|E| log |E])

Algorithm
Create forest F = (V,{}) with n components and no edge

Put sorted edges (SUC%% <..<Wpg)intosetS
While S non-empty and\&_not spanning-

delete\cheapest

add it t @(ﬁ%

simple P,
forest implementation:
Disjoint-set
data structure

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Disjoint-set Data Structure (“Union&Find”)

Data structure: ground set 1...N grouped to disjoint sets

Operations: @ @ @ @
= FIND(I): to which set (“tree”) does | belong?
= UNION(l,j): union the sets of i and |!

(“join the two trees of i and |”) @ @ @

Implemented as trees:

= UNION(T1, T2): hang root node of smaller tree under root node of
larger tree (constant time), thus

= FIND(u): traverse tree from u to root (to return a representative of
u’s set) takes logarithmic time in total number of nodes

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Implementation of Kruskal’s Algorithm

Algorithm, rewritten with UNION-FIND:

Create initial disjoint-set data structure, i.e. for each vertex v,
store v; as representative of its set

Create empty forest F = {}
Sort edges such that w.l.o.g. wy <w, < ... <Wg
for each edge e={u,v} starting from i=1:
= if FIND(u) # FIND(v): # no cycle introduced
» F=FuU{{uv}}
= UNION(u,v)
return F

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Back to Runtime Considerations

= Sorting of edges needs O(|E| log |E|)
= forest: Disjoint-set data structure
= |nitialization: O(|V|)
= |og |V| to find out whether the minimum-cost edge {u,v}

connects two sets (no cycle induced) or is within a set (cycle
would be induced)

= 2X FIND + potential UNION needs to be done O(|E]|) times
= total O(|E| log |V])
= Qverall: O(|E| log |E|)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Kruskal’s Algorithm: Proof of Correctness

Two parts needed:
© Algo always produces a spanning tree
final F contains no cycle and is connected by definition v/
® Algo always produces a minimum spanning tree
= argument by induction

= P:If Fis forest at a given stage of the algorithm, then there
IS some minimum spanning tree that contains F.

= clearly true for F = (V, {})

= assume that P holds when new edge e is added to F and
be T a MST that contains F

= feinT, fine
= jfenotinT: T+ e has cycle C with edge fin C but not
In F (otherwise e would have introduced a cycle in F)

= now T —f+ eisatree with same weight as T (since
Ti1s a MST and f was not chosen to F)

* henceT-f+eis MST including F +e (i.e. P h?I/ds)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Another Greedy Algorithm for MST

= Another greedy approach to the MST problem is Prim’s algorithm
= Somehow like the one of Kruskal but:
= always keeps a tree instead of a forest

= thus, take always the cheapest edge which connects to the
current tree

= Runtime more or less the same for both algorithms, but analysis of
Prim’s algorithm a bit more involved because it needs (even) more
complicated data structures to achieve it (hence not shown here)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Intermediate Conclusion

What we have seen so far:
= three problems where a greedy algorithm was optimal
= money change
= three circles in a triangle
= minimum spanning tree (Kruskal’s and Prim’s algorithms)
= put also: greedy not always optimal
= |n particular for NP-hard problems

Obvious Question:
= when is greedy good?
= answer: matroids

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Note: slides with blue background like the following have not been
covered in the lecture and will therefore not been used in the exam.

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

from Wikipedia:

“[...] @ matroid is a structure that captures and generalizes the
notion of linear independence in vector spaces.”

Reminder: linear independence in vector spaces
again from Wikipedia:
“A set of vectors is said to be linearly dependent if one of the
vectors in the set can be defined as a linear combination of the

other vectors. If no vector in the set can be written in this way,
then the vectors are said to be linearly independent.”

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4

Matroid: Definition

» Various equivalent definitions of matroids exist
= Here, we define a matroid via independent sets

Definition of a Matroid:
A matroid is a tuple M = (E,3J) with
= F being the finite ground set and

= 3 being a collection of (so-called) independent subsets of E
satisfying these two axioms:

» (IpifXcYandY e 3Jthen X €3,

= (I)ifXeJandY € 3 and |Y| > |X]| then there exists an
e€Y\Xsuchthat XU {e} €S.

Note: (l,) implies that all maximal independent sets have the
same cardinality (maximal independent = adding an item of E
makes the set dependent)

Each maximal independent set is called a basis for M.

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, No

Example: Uniform Matroids

= Amatroid M = (E,3J) inwhich 3 ={X € E: |X| < k}is called a
uniform matroid.

= The bases of uniform matroids are the sets of cardinality k (in
case k < |E]).

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Example: Graphic Matroids

» Givenagraph ¢ = (V,E), its corresponding graphic matroid is
defined by M = (E,J) where 3 contains all subsets of edges
which are forests.

= If G Is connected, the bases are the spanning trees of G.

= |f G IS unconnected, a basis contains a spanning tree in each
connected component of G.

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2

Matroid Optimization

Given a matroid M = (E,3J) and a cost function c: E - R, the
matroid optimization problem asks for an independent set S with

the maximal total cost c(S) =) .esc(e).

= |f all costs are non-negative, we search for a maximal cost basis.

= In case of a graphic matroid, the above problem is equivalent to
the Maximum Spanning Tree problem (use Kruskal’s algorithm,
where the costs are negated, to solve it).

Introduction to Optimization @ ECP, Nov. 4

© Dimo Brockhoff, Inria

Greedy Optimization of a Matroid

Greedy algorithmon M = (E,J)
= sort elements by their cost (w.l.o.g. c(e;) = c(ez) =+ = c(em)))
" So={hLk=0
= forj=1to|E|do
= if S, Uej € Jthen

» k=k+1

" S =5k_1Veg
= output the sets Sy, ..., S; or max{S, ..., Sy}

Theorem: The greedy algorithm on the independence system
M = (E,), which satisfies (lI,), outputs the optimum for any cost
function iff M is a matroid.

Proof not shown here.

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4

Conclusions

| hope it became clear...

...what a greedy algorithm is
...that it not always results in the optimal solution
...but that it does if and only if the problem is a matroid

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Branch and Bound

Branch and Bound: General Ideas

Branch:
= Systematic enumeration of candidate solutions in a rooted tree

= Each tree node corresponds to a set of solutions; the whole
search space on the root

= At each tree node, the corresponding subset of the search space
IS split into (non-overlapping) sub-subsets:

= the optimum of the larger problem must be contained in at
least one of the subproblems

If tree nodes correspond to small enough subproblems, they are
solved exhaustively

Bound:

= smart part: estimation of upper and lower bounds on the optimal
function value achieved by solutions in the tree nodes

» the exploration of a tree node is stopped if a node’s upper bound
Is already lower than the lower bound of an already explored
node (assuming maximization)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Applying Branch and Bound

Needed for successful application of branch and bound:
= optimization problem
= finite set of solutions
= clear idea of how to split problem into smaller subproblems
= efficient calculation of the following modules:
* upper bound calculation
= |ower bound calculation

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Computing Bounds (Maximization Problem

Assume w.l.0.g. maximization of f(x) here

Lower Bounds

= any actual feasible solution will give a lower bound (which will be
exact if the solution is the optimal one for the subproblem)

= hence, sampling a (feasible) solution can be one strategy
* using a heuristic to solve the subproblem another one

Upper Bounds

= upper bounds can be achieved by solving a relaxed version of

the problem formulations (i.e. by either loosening or removing
constraints)

Note: the better/tighter the bounds, the quicker the branch and
bound tree can be pruned

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Properties of Branch and Bound Algorithms

= Exact, global solver
= (Can be slow; only exponential worst-case runtime

= due to the exhaustive search behavior if no pruning of the
search tree is possible

= but might work well in some cases

Advantages:

= can be stopped if lower and upper bound are “close enough” in
practice (not necessarily exact anymore then)

= can be combined with other techniques, e.g. “branch and cut”
(not covered here)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Example Branching Decisions

0-1 problems:
= choose unfixed variable x.
= one subproblem defined by setting x; to O
= one subproblem defined by setting x; to 1

General integer problem:
= choose unfixed variable x;
= choose a value c that x; can take
= one subproblem defined by restricting x, < c
= one subproblem defined by restricting x, > ¢

Combinatorial Problems:

= pranching on certain discrete choices, e.g. an edge/vertex Is
chosen or not chosen

The branching decisions are then induced as additional constraints
when defining the subproblems.

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Which Tree Node to Branch on?

Several strategies (again assuming maximization):
= choose the subproblem with highest upper bound
= gain the most in reducing overall upper bound

= |f upper bound not the optimal value, this problem needs to
be branched upon anyway sooner or later

» choose the subproblem with lowest lower bound
= simple DFS or BFS
= problem-specific approach most likely to be a good choice

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

4 Steps Towards a Branch and Bound Algo

Concrete steps when designing a branch and bound algorithm:
= How to split a problem into subproblems (“branching”)?

= How to compute upper bounds (assuming maximization)?
= Optional: how to compute lower bounds?

= How to decide which next tree node to split?

now: example of integer linear programming
example of knapsack problem (small exercise)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Application to ILPs

maximize clx

subject to Ax <b
x>0
and x¢&Z"

The ILP formalization covers many problems such as
= Traveling Salesperson Person (TSP)

= Vertex Cover and other covering problems

= Set packing and other packing problems

= Boolean satisfiability (SAT)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Ways of Solving an ILP

Do not restrict the solutions to integers and round the solution
found of the relaxed problem (=remove the integer constraints)
by a continuous solver (i.e. solving the so-called LP relaxation)

—> NOo guarantee to be exact
Exploiting the instance property of A being total unimodular:
» feasible solutions are guaranteed to be integer in this case

= algorithms for continuous relaxation can be used (e.g. the
simplex algorithm)

Using heuristic methods (typically without any quality guarantee)
= we'll see these types of algorithms in one of the next lectures
Using exact algorithms such as branch and bound

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Branch and Bound for ILPs

Here, we just give an idea instead of a concrete algorithm...

= How to split a problem into subproblems (“branching”)?

= How to compute upper bounds (assuming maximization)?
= Optional: how to compute lower bounds?

= How to decide which next tree node to split?

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Branch and Bound for ILPs

Here, we just give an idea instead of a concrete algorithm...

= How to compute upper bounds (assuming maximization)?
= How to split a problem into subproblems (“branching”)?

= Optional: how to compute lower bounds?

= How to decide which next tree node to split?

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Branch and Bound for ILPs

How to compute upper bounds (assuming maximization)?

= drop the integer constraints and solve the so-called LP-
relaxation

= canh be done by standard LP algorithms such as
scipy.optimize.linprog or Matlab’s linprog

What’s then?
= The LP has no feasible solution. Fine. Prune.

= We found an integer solution. Fine as well. Might give us a
new lower bound to the overall problem.

» The LP problem has an optimal solution which is worse than
the highest lower bound over all already explored
subproblems. Fine. Prune.

= Otherwise: Branch on this subproblem: e.g. if optimal
solution has x=2.7865, use x<2 and x;=3 as new constraints

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Branch and Bound for ILPs

How to split a problem into subproblems (“branching’)?
= mainly needed if the solution of the LP-relaxation is not
Integer
= branch on a variable which is rational

Not discussed here in depth due to time:
= Optional: how to compute lower bounds?
= How to decide which next tree node to split?

= seems to be good choice: subproblem with largest upper
bound of LP-relaxation

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Branch and Bound for the 0-1 Knapsack

How would you implement a
branch-and-bound algorithm
for the 0-1 knapsack problem?

what are the subproblems?
how to split a problem?

how to compute upper bounds?

how to compute lower bounds?

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

Branch and Bound for the Knapsack P

ldeas:

= define subproblems by choosing one variable and setting it to
either O or 1 (those fixed values are then ensured by additional
constraints in the problem formulation)

= for computing upper bounds for each subproblem, we can relax
the binary values constraints and use a greedy algorithm that
can pack items “partially”

= good lower bounds can be computed by a simple greedy
algorithm (see today’s exercise)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2

Conclusions

| hope it became clear...

...what the basic algorithm design ideas of branch and bound are
...and for which problem types it is supposed to be suitable

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

back to the exercise:
A Greedy Algorithm for the Knapsack Problem

http://researchers.lille.inria.fr/
~brockhof/optimizationSaclay/

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 4, 2016

