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Date Topic

Fri, 7.10.2016 Introduction

Fri, 28.10.2016 D Introduction to Discrete Optimization + Greedy algorithms I

Fri, 4.11.2016 D Greedy algorithms II + Branch and bound

Fri, 18.11.2016 D Dynamic programming

Mon, 21.11.2016

in S103-S105

D Approximation algorithms and heuristics

Fri, 25.11.2016

in S103-S105

C Introduction to Continuous Optimization I

Mon, 28.11.2016 C Introduction to Continuous Optimization II

Mon, 5.12.2016 C Gradient-based Algorithms

Fri, 9.12.2016 C Stochastic Optimization and Derivative Free Optimization I

Mon, 12.12.2016 C Stochastic Optimization and Derivative Free Optimization II

Fri, 16.12.2016 C Benchmarking Optimizers with the COCO platform

Wed, 4.1.2017 Exam

Course Overview

all classes last 3h15 and take place in S115-S117 (see exceptions)



Greedy Algorithms (cont'd)
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 Example 1: Money Change

 Example 2: Packing Circles in Triangles

 Example 3: Minimal Spanning Trees (MST) and the algorithm of 

Kruskal

 The theory behind greedy algorithms: a brief introduction to 

matroids

We will finally continue with the exercise "A Greedy Algorithm for 

the Knapsack Problem" after the branch and bound part

Greedy Algorithms: Lecture Overview
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Outline:

 reminder of problem definition

 Kruskal’s algorithm

 including correctness proofs and analysis of running time

Example 3: Minimal Spanning Trees (MST)
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A spanning tree of a connected graph G is a tree in G which 

contains all vertices of G

Minimum Spanning Tree Problem (MST):

Given a (connected) graph G=(V,E) with edge weights wi for 

each edge ei. Find a spanning tree T that minimizes the weights 

of the contained edges, i.e. where

Σ wi

ei  T

is minimized.

MST: Reminder of Problem Definition
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Algorithm, see [1]

 Create forest F = (V,{}) with n components and no edge

 Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

 While S non-empty and F not spanning:

 delete cheapest edge from S

 add it to F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the 

traveling salesman problem". Proceedings of the American Mathematical 

Society 7: 48–50. doi:10.1090/S0002-9939-1956-0078686-7

Kruskal’s Algorithm
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Kruskal’s Algorithm: Example
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Kruskal’s Algorithm: Example
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First question: how to implement the algorithm?

 sorting of edges needs O(|E| log |E|)

Kruskal’s Algorithm: Runtime Considerations

Algorithm

Create forest F = (V,{}) with n components and no edge

Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

While S non-empty and F not spanning:

delete cheapest edge from S

add it to F if no cycle is introduced

simple ?
forest implementation:

Disjoint-set

data structure
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Data structure: ground set 1...N grouped to disjoint sets

Operations:

 FIND(i): to which set (“tree”) does i belong?

 UNION(i,j): union the sets of i and j!

(“join the two trees of i and j”)

Implemented as trees:

 UNION(T1, T2): hang root node of smaller tree under root node of 

larger tree (constant time), thus

 FIND(u): traverse tree from u to root (to return a representative of 

u’s set) takes logarithmic time in total number of nodes

Disjoint-set Data Structure (“Union&Find”)

1 2 3 4
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Algorithm, rewritten with UNION-FIND:

 Create initial disjoint-set data structure, i.e. for each vertex vi, 

store vi as representative of its set

 Create empty forest F = {}

 Sort edges such that w.l.o.g. w1 < w2 < ... < w|E|

 for each edge ei={u,v} starting from i=1:

 if FIND(u) ≠ FIND(v): # no cycle introduced

 F = F ∪ {{u,v}}

 UNION(u,v)

 return F

Implementation of Kruskal’s Algorithm
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 Sorting of edges needs O(|E| log |E|)

 forest: Disjoint-set data structure

 initialization: O(|V|)

 log |V| to find out whether the minimum-cost edge {u,v} 

connects two sets (no cycle induced) or is within a set (cycle 

would be induced)

 2x FIND + potential UNION needs to be done O(|E|) times

 total O(|E| log |V|)

 Overall: O(|E| log |E|)

Back to Runtime Considerations
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Two parts needed:

 Algo always produces a spanning tree

final F contains no cycle and is connected by definition 

 Algo always produces a minimum spanning tree

 argument by induction

 P: If F is forest at a given stage of the algorithm, then there 

is some minimum spanning tree that contains F.

 clearly true for F = (V, {})

 assume that P holds when new edge e is added to F and 

be T a MST that contains F

 if e in T, fine

 if e not in T: T + e has cycle C with edge f in C but not 

in F (otherwise e would have introduced a cycle in F)

 now T – f + e is a tree with same weight as T (since 

T is a MST and f was not chosen to F)

 hence T – f + e is MST including F + e (i.e. P holds)

Kruskal’s Algorithm: Proof of Correctness


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 Another greedy approach to the MST problem is Prim’s algorithm

 Somehow like the one of Kruskal but:

 always keeps a tree instead of a forest

 thus, take always the cheapest edge which connects to the 

current tree

 Runtime more or less the same for both algorithms, but analysis of 

Prim’s algorithm a bit more involved because it needs (even) more 

complicated data structures to achieve it (hence not shown here)

Another Greedy Algorithm for MST
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What we have seen so far:

 three problems where a greedy algorithm was optimal

 money change

 three circles in a triangle

 minimum spanning tree (Kruskal’s and Prim’s algorithms)

 but also: greedy not always optimal

 in particular for NP-hard problems

Obvious Question:

 when is greedy good?

 answer: matroids

Intermediate Conclusion
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Note: slides with blue background like the following have not been 

covered in the lecture and will therefore not been used in the exam.
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from Wikipedia:

“[...] a matroid is a structure that captures and generalizes the 

notion of linear independence in vector spaces.”

Reminder: linear independence in vector spaces

again from Wikipedia:

“A set of vectors is said to be linearly dependent if one of the 

vectors in the set can be defined as a linear combination of the 

other vectors. If no vector in the set can be written in this way, 

then the vectors are said to be linearly independent.”

Matroids
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 Various equivalent definitions of matroids exist

 Here, we define a matroid via independent sets

Definition of a Matroid:

A matroid is a tuple 𝑀 = (𝐸, ℑ) with

 𝐸 being the finite ground set and

 ℑ being a collection of (so-called) independent subsets of 𝐸
satisfying these two axioms:

 (I1) if 𝑋 ⊆ 𝑌 and 𝑌 ∈ ℑ then 𝑋 ∈ ℑ,

 (I2) if 𝑋 ∈ ℑ and 𝑌 ∈ ℑ and  𝑌 > |𝑋| then there exists an  

e ∈ 𝑌 \ X such that 𝑋 ∪ e ∈ ℑ.

Note: (I2) implies that all maximal independent sets have the 

same cardinality (maximal independent = adding an item of E 

makes the set dependent)

Each maximal independent set is called a basis for M.

Matroid: Definition



20Introduction to Optimization @ ECP, Nov. 4, 2016© Dimo Brockhoff, Inria 20

 A matroid 𝑀 = (𝐸, ℑ) in which ℑ = {𝑋 ⊆ 𝐸: |𝑋| ≤ 𝑘} is called a 

uniform matroid.

 The bases of uniform matroids are the sets of cardinality 𝑘 (in 

case 𝑘 ≤ |𝐸|).

Example: Uniform Matroids
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 Given a graph 𝐺 = (𝑉, 𝐸), its corresponding graphic matroid is 

defined by 𝑀 = (𝐸, ℑ) where ℑ contains all subsets of edges 

which are forests.

 If 𝐺 is connected, the bases are the spanning trees of 𝐺.

 If 𝐺 is unconnected, a basis contains a spanning tree in each 

connected component of 𝐺.

Example: Graphic Matroids
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Given a matroid 𝑀 = (𝐸, ℑ) and a cost function 𝑐: 𝐸 → ℝ, the 

matroid optimization problem asks for an independent set 𝑆 with 

the maximal total cost 𝑐(𝑆) =  𝑒∈𝑆 𝑐(𝑒).

 If all costs are non-negative, we search for a maximal cost basis.

 In case of a graphic matroid, the above problem is equivalent to 

the Maximum Spanning Tree problem (use Kruskal’s algorithm, 

where the costs are negated, to solve it).

Matroid Optimization
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Greedy algorithm on 𝑴 = (𝑬,ℑ)

 sort elements by their cost (w.l.o.g. 𝑐(𝑒1) ≥ 𝑐(𝑒2) ≥ ⋯ ≥ 𝑐(𝑒|𝑀|))

 𝑆0 = {}, 𝑘 = 0

 for 𝑗 = 1 to |𝐸| do

 if 𝑆𝑘 ∪ 𝑒𝑗  ℑ then

 𝑘 = 𝑘 + 1

 𝑆𝑘 = 𝑆𝑘−1 ∪ 𝑒𝑗

 output the sets 𝑆1, … , 𝑆𝑘 or max{𝑆1, … , 𝑆𝑘}

Theorem: The greedy algorithm on the independence system 

𝑀 = (𝐸, ℑ), which satisfies (I1), outputs the optimum for any cost 

function iff M is a matroid.

Proof not shown here.

Greedy Optimization of a Matroid
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I hope it became clear...

...what a greedy algorithm is

...that it not always results in the optimal solution

...but that it does if and only if the problem is a matroid

Conclusions



Branch and Bound
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Branch:

 Systematic enumeration of candidate solutions in a rooted tree

 Each tree node corresponds to a set of solutions; the whole 

search space on the root

 At each tree node, the corresponding subset of the search space 

is split into (non-overlapping) sub-subsets:

 the optimum of the larger problem must be contained in at 

least one of the subproblems

 If tree nodes correspond to small enough subproblems, they are 

solved exhaustively

Bound:

 smart part: estimation of upper and lower bounds on the optimal 

function value achieved by solutions in the tree nodes

 the exploration of a tree node is stopped if a node’s upper bound 

is already lower than the lower bound of an already explored 

node (assuming maximization)

Branch and Bound: General Ideas
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Needed for successful application of branch and bound:

 optimization problem

 finite set of solutions

 clear idea of how to split problem into smaller subproblems

 efficient calculation of the following modules:

 upper bound calculation

 lower bound calculation

Applying Branch and Bound
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Assume w.l.o.g. maximization of f(x) here

Lower Bounds

 any actual feasible solution will give a lower bound (which will be 

exact if the solution is the optimal one for the subproblem)

 hence, sampling a (feasible) solution can be one strategy

 using a heuristic to solve the subproblem another one

Upper Bounds

 upper bounds can be achieved by solving a relaxed version of 

the problem formulations (i.e. by either loosening or removing 

constraints)

Note: the better/tighter the bounds, the quicker the branch and 

bound tree can be pruned

Computing Bounds (Maximization Problems)
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 Exact, global solver

 Can be slow; only exponential worst-case runtime

 due to the exhaustive search behavior if no pruning of the 

search tree is possible

 but might work well in some cases

Advantages:

 can be stopped if lower and upper bound are “close enough” in 

practice (not necessarily exact anymore then)

 can be combined with other techniques, e.g. “branch and cut” 

(not covered here)

Properties of Branch and Bound Algorithms
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0-1 problems:

 choose unfixed variable xi

 one subproblem defined by setting xi to 0

 one subproblem defined by setting xi to 1

General integer problem:

 choose unfixed variable xi

 choose a value c that xi can take

 one subproblem defined by restricting xi ≤ c

 one subproblem defined by restricting xi > c

Combinatorial Problems:

 branching on certain discrete choices, e.g. an edge/vertex is 

chosen or not chosen

The branching decisions are then induced as additional constraints 

when defining the subproblems.

Example Branching Decisions
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Several strategies (again assuming maximization):

 choose the subproblem with highest upper bound

 gain the most in reducing overall upper bound

 if upper bound not the optimal value, this problem needs to 

be branched upon anyway sooner or later

 choose the subproblem with lowest lower bound

 simple DFS or BFS

 problem-specific approach most likely to be a good choice

Which Tree Node to Branch on?
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Concrete steps when designing a branch and bound algorithm:

 How to split a problem into subproblems (“branching”)?

 How to compute upper bounds (assuming maximization)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

4 Steps Towards a Branch and Bound Algorithm

now: example of integer linear programming

example of knapsack problem (small exercise)
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The ILP formalization covers many problems such as

 Traveling Salesperson Person (TSP)

 Vertex Cover and other covering problems

 Set packing and other packing problems

 Boolean satisfiability (SAT)

Application to ILPs
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 Do not restrict the solutions to integers and round the solution 

found of the relaxed problem (=remove the integer constraints) 

by a continuous solver (i.e. solving the so-called LP relaxation)

 no guarantee to be exact

 Exploiting the instance property of A being total unimodular:

 feasible solutions are guaranteed to be integer in this case

 algorithms for continuous relaxation can be used (e.g. the 

simplex algorithm)

 Using heuristic methods (typically without any quality guarantee)

 we’ll see these types of algorithms in one of the next lectures

 Using exact algorithms such as branch and bound

Ways of Solving an ILP
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Here, we just give an idea instead of a concrete algorithm...

 How to split a problem into subproblems (“branching”)?

 How to compute upper bounds (assuming maximization)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

Branch and Bound for ILPs
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Here, we just give an idea instead of a concrete algorithm...

 How to compute upper bounds (assuming maximization)?

 How to split a problem into subproblems (“branching”)?

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

Branch and Bound for ILPs
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How to compute upper bounds (assuming maximization)?

 drop the integer constraints and solve the so-called LP-

relaxation

 can be done by standard LP algorithms such as 
scipy.optimize.linprog or Matlab’s linprog

What’s then?

 The LP has no feasible solution. Fine. Prune.

 We found an integer solution. Fine as well. Might give us a 

new lower bound to the overall problem. 

 The LP problem has an optimal solution which is worse than 

the highest lower bound over all already explored 

subproblems. Fine. Prune.

 Otherwise: Branch on this subproblem: e.g. if optimal 

solution has xi=2.7865, use xi≤2 and xi≥3 as new constraints

Branch and Bound for ILPs
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How to split a problem into subproblems (“branching”)?

 mainly needed if the solution of the LP-relaxation is not 

integer

 branch on a variable which is rational

Not discussed here in depth due to time:

 Optional: how to compute lower bounds?

 How to decide which next tree node to split?

 seems to be good choice: subproblem with largest upper 

bound of LP-relaxation

Branch and Bound for ILPs
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Branch and Bound for the 0-1 Knapsack Problem

How would you implement a

branch-and-bound algorithm

for the 0-1 knapsack problem?

what are the subproblems?

how to split a problem?

how to compute upper bounds?

how to compute lower bounds?
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Ideas:

 define subproblems by choosing one variable and setting it to 

either 0 or 1 (those fixed values are then ensured by additional 

constraints in the problem formulation)

 for computing upper bounds for each subproblem, we can relax 

the binary values constraints and use a greedy algorithm that 

can pack items “partially” 

 good lower bounds can be computed by a simple greedy 

algorithm (see today’s exercise)

Branch and Bound for the Knapsack Problem
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I hope it became clear...

...what the basic algorithm design ideas of branch and bound are

...and for which problem types it is supposed to be suitable

Conclusions
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back to the exercise:

A Greedy Algorithm for the Knapsack Problem

http://researchers.lille.inria.fr/

~brockhof/optimizationSaclay/


