Introduction to Optimization
Dynamic Programming

November 18, 2016
Ecole Centrale Paris, Chatenay-Malabry, France

2 Dimo Brockhoff
7iA— Inria Saclay — Ile-de-France

TTTTTTTTTTTTTTTTTTTTTTTTTTT

Course Overview

Fri, 18.11.2016 D

Mon, 21.11.2016 D
in S103-S105

Fri, 25.11.2016 C
in S103-S105

Mon, 28.11.2016
Mon, 5.12.2016
Fri, 9.12.2016
Mon, 12.12.2016
Fri, 16.12.2016
Wed, 4.1.2017

O O 0O 0O O

Date | |Topic

Dynamic programming
Approximation algorithms and heuristics

Introduction to Continuous Optimization |

Introduction to Continuous Optimization Il

Gradient-based Algorithms

Stochastic Optimization and Derivative Free Optimization |
Stochastic Optimization and Derivative Free Optimization Il
Benchmarking Optimizers with the COCO platform

Exam

all classes last 3h15 and take place in S115-S117 (see exceptions)

© Dimo Brockhoff, Inria

Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming

Wikipedia:
“[...] dynamic programming is a method for solving a complex

problem by breaking it down into a collection of simpler
subproblems.”

But that’s not all:

= dynamic programming also makes sure that the subproblems
are not solved too often but only once by keeping the solutions
of simpler subproblems in memory (“trading space vs. time”)

= jtis an exact method, i.e. in comparison to the greedy approach,
It always solves a problem to optimality

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Two Properties Needed

Optimal Substructure

A solution can be constructed efficiently from optimal solutions
of sub-problems

Overlapping Subproblems

Wikipedia: “[...] a problem is said to have overlapping
subproblems if the problem can be broken down into
subproblems which are reused several times or a recursive
algorithm for the problem solves the same subproblem over and
over rather than always generating new subproblems.”

Note: in case of optimal substructure but independent subproblems,
often greedy algorithms are a good choice; in this case, dynamic
programming is often called “divide and conquer” instead

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Main Idea Behind Dynamic Programming

Main idea: solve larger subproblems by breaking them down to
smaller, easier subproblems in a recursive manner

Typical Algorithm Design:

© decompose the problem into subproblems and think about how
to solve a larger problem with the solutions of its subproblems

® specify how you compute the value of a larger problem
recursively with the help of the optimal values of its subproblems
("Bellman equation”)

©® Dbottom-up solving of the subproblems (i.e. computing their
optimal value), starting from the smallest by using a table
structure to store the optimal values and the Bellman equality

(top-down approach also possible, but less common)

® eventually construct the final solution (can be omitted if only the
value of an optimal solution is sought)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Bellman Equation (aka “Principle of Opti

* introduced by R. Bellman as “Principle of Optimality” in 1957
= the basic equation underlying dynamic programming
= necessary condition for optimality

citing Wikipedia:
“Richard Bellman showed that a dynamic optimization problem in
discrete time can be stated in a recursive, step-by-step form
known as backward induction by writing down the relationship
between the value function in one period and the value function

In the next period. The relationship between these two value
functions is called the "Bellman equation".”

= The value function here is the objective function.

= The Bellman equation exactly formalizes how to compute the
optimal function value for a larger subproblem from the
optimal function value of smaller subproblems.

we will see examples later today...

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Historical Note

Why is it called “dynamic” and why “programming”?
» R. Bellman worked at the time, when he “invented” the idea, at the
RAND Corporation who were strongly connected with the Air Force

= In order to avoid conflicts with the head of the Air Force at this
time, R. Bellman decided against using terms like “mathematical”
and he liked the word dynamic because it “has an absolutely
precise meaning” and cannot be used “in a pejorative sense”

* |n addition, it had the right meaning: “| wanted to get across the
Idea that this was dynamic, this was multistage, this was time-
varying.”

= Citing Wikipedia: “The word programming referred to the use of the
method to find an optimal program, in the sense of a military
schedule for training or logistics.”

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Reminder: Shortest Path Problem

Shortest Path problem:
Given a graph G=(V,E) with edge weights w; for each edge e..
Find the shortest path from a vertex v to a vertex u, I.e., the path

(v, e,={v, vV}, Vq, -y Vi €,={V,, U}, U) Such that wy + ... + w, IS
minimized. 7 1

Note:
We can often assume that
the edge weights are stored
In a distance matrix D of
dimension |V|x|V| where
an entry D;; gives the weight between nodes | and j and "non-
edges” are assigned a value of «

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Opt. Substructure and Overlapping Subprok

Optimal Substructure

The optimal path from u to v, If it contains another vertex p can
be constructed by simply joining the optimal path from u to p with
the optimal path from p to v.

Overlapping Subproblems
Optimal shortest
sub-paths can be reused 1
when computing longer paths: 3 L @,
e.g. the optimal path from u to p
IS contained in the optimal path from
u to g and in the optimal path from u to v.

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

The Algorithm of E. Dijkstra (1956)

ShortestPathDijkstra(G, D, source, target):

Initialization:
= dist(source) = 0 and for all v € V: dist(v)= «
= forallv e V: prev(v) = null # predecessors on opt. path
= U=V # U: unexplored vertices

Unless U empty do:
= newNode = argmin,,_, {dist(u)}
= remove newNode from U
» for each neighbor v of newNode do:
= altDist = dist(hewNode) + D
= |f altDist < dist(v):
= dist(v) = altDist
= prev(v) =u

newNode,v

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Very Short Exercise

Question:
Is Dijkstra’s algorithm a dynamic programming algorithm?

Answer:
= thatis a tricky question ;-)

» |t has greedy elements, but also stores the answers to
subproblems without recomputing them

= S0, actually, it is a dynamic programming algorithm with a
greedy selection of the next subproblem to be computed

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 20

The Algorithm of R. Floyd (1962)

ldea:
= |f we knew that the shortest path between source and target
goes through node v, we would be able to construct the
optimal path from the shorter paths “source>v” and “v->target”

= subproblem P(k): compute all shortest paths where the
Intermediate nodes can be chosen from v, ..., v,

ShortestPathFloyd(G, D, source, target) [= AllPairsShortestPath(G)]
= Init: forall 1 =i,j < |V]: dist(i,j) = D;;
* Fork=1to |V| # solve subproblems P(k)
= for all pairs of nodes (i.e. 1 <i,j < |V]):
= dist(i,j) = min { dist(i,)), dist(i,k) + dist(k,)) }

Note: This algorithm has the advantage that it can handle negative
weights as long as no cycle with negative total weight exists

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

) 9] -1)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

allow {1,2,3} as intermediate nodes
/

—
1 00 1 1 00 1 ©0 2 11 1 e

Bl - 2 1
0w o 9 -1 o o 9 -1 o
9 18 8 9 18 8
1 10 0 3 1 10 0 3
©w 5 w o ° 5

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

allow {1,2,3} as intermediate nodes
— T—

1 o0

Bl - 2
©© o 9 -] 9 00
9 18 8 7 9 18 8
1 10 O 10 3
00 5)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

allow {1,2,3} as intermediate nodes
/

T—
1 °0 1 1 °0 = 18 2 11 1 °0

Bl - (2 1
© o 9 -] o 16 18 9 -1 =
9 18 8 = 7 9 18 8
1 10 0 3 -1 ' 1 10 O 3
© 5 ®© 12 14 5 13

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

allow {1,2,3,4} as intermediate nodes

_—
18 2 11
16 18 9 -1

/ 9 18 8

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

allow {1,2,3,4} as intermediate nodes

—_—

18 2 11
16 18 9 -1 =

/9 18 8 =

2 0 9 -1 2
7 9 18 8 11
-1 1 10 O 3

12 14 5 13 16

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

allow all nodes as intermediate nodes

— T
1 0 2 11 1 4 1 0 2 11 1 4
2 0 9 -1 2 2 0 9 -1 2
7 9 18 8 11 7 9 18 8 11

-1 1 10 O 3 -1 1 10 O 3
12 14 5 13 16 12 14 5 13 16

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

allow all nodes as intermediate nodes

—_— —
1 0 2 11 1 4 1 0 2 9 1 4
2 0 9 -1 2 2 0 / -1 2
7 9 18 8 11 7 9 16 8 11

-1 1 10 O 3 -1 1 38 0 3
12 14 5 13 16 12 14 5 13 16

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Runtime Considerations and Correctness

O(]V]3) easy to show
= O(|V|?) many distances need to be updated O(|V|) times

Correctness
= given by the Bellman equation
dist(i,}) = min { dist(i,)), dist(i,k) + dist(k,j) }
= only correct if cycles do not have negative total weight (can

be checked in final distance matrix if diagonal elements are
negative)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

But How Can We Actually Construct the Path

= Construct matrix of predecessors P alongside distance matrix
= P; (k) = predecessor of node | on path from i to | (at algo. step k)

= no extra costs (asymptotically)

0y [0 1=l ordy =

I in all other cases

P, (k) = P; j(k —1) ifdist(i,j) < dist(i, k) + dist(k, j)
WA Pk — 1) ifdist(i, j) > dist(i, k) + dist(k, /)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Exercise:
The Knapsack Problem and Dynamic Programming

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Exercise: Dynamic Programming for 0-1

0-1 Knapsack Problem (KP)

max. ijl'j with € j S {0, 1}

j=1

mn
S.t. Z wir; < W

j=1

Dake

Goal: a dynamic programming algorithm for KP

Questions:
a) what could be subproblems?
b) how to solve subproblems with the help of smaller ones?
c) how to solve the smallest subproblems exactly?

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 201¢

Exercise:
The Knapsack Problem and Dynamic Programming

http://chercheurs.lille.inria.fr/
~brockhof/introoptimization/exercises.php

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Opt. Substructure and Overlapping Sutk

Consider the following subproblem:

P(i,j): optimal profit when allowed to pack only the first i items
Into a knapsack of size j

Questions:

b) how to solve subproblems with the help of smaller ones?
[write the Bellman equation!]
c) how to solve the smallest subproblems exactly?

/

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18

Opt. Substructure and Overlapping Sub

Consider the following subproblem:

P(i,j): optimal profit when allowed to pack only the first i items
Into a knapsack of size j

Optimal Substructure

The optimal choice of whether taking item i or not can be made
easily for a knapsack of weight j if we know the optimal choice
foritems1..i —1:

0 ifi=00rj=0
P(i,j) = P(i—1,)) ifw; >j
max{P(i —1,/),p; + PG —1,j—wy)} ifw; <j

Overlapping Subproblems

a recursive implementation of the Bellman equation is simple,
but the P(i,j) might need to be computed more than once!

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2

Dynamic Programming Approach to the KE

To circumvent computing the subproblems more than once, we can
store their results (in a matrix for example)...

knapsack weight

n-------

P(1.))

+— |tems

best achievable
profit with items 1...i
and a knapsack of
size |

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

knapsack weight

n-----n-nn

+— |tems

Initialization:
P(i,j)=0ifi=0o0rj=0

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KP

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W=11.

knapsack weight

n-----n-nn

+— |tems

o O O O O

Initialization:
P(i,j)=0ifi=0o0rj=0

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

n-----n-nn

7))
=
g 0 ——)
0 —— ——
| B . — —
0 e —————]
O = — >
fori =1ton:
forj=1to W:
0= P(i—1,j) ifw; > j

max{P(i —1,)),p; + P(i — 1,j — w;)}itw; =

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KE

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

n-----n-nn

S
9 0 0
0
| N
0
0
fori =1ton:
forj=1to W:
P(l,]) _ P(l— 1,]) lle >]

max{P(i —1,)),p; + P(i — 1,j — w;)}itw; =

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KF

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

n-----n-nn

S
2 0 0 0
0
| N
0
0
fori =1ton:
forj=1to W:
P(l,]) _ P(l — 1,]) lle >]

max{P(i —1,)),p; + P(i — 1,j — w;)}itw; =

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KF

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

n-----n-nn

0 0 0 0

+— |tems

o O O O O

fori =1ton:
forj=1to W:

' max{P(i —1,)),p; + P(i — 1,j — w;)} it w; =]

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KE

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

n-----n-nn

g 0_0 0 0 TO 0 0
Q 0 O 0 0 3
= +p1(=4)
0
j ,
0
0
fori =1 ton:
forj=1to W:
R | ifw;, >j

max{P(i —1,)),p; + P(i — 1,j — w;)}i{w; =

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KE

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

n-----n-nn

2 0
= 2 |
g 0 0 0 0 04— 4
T +p1(=4)

0
j ,

0

0
fori =1 ton:

forj=1to W:

N ifw; >

max{P(i —1,)),p; + P(i — 1,j — w;)}i{w; =

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KF

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

n-----n-nn

0 0 0 0 4 4 4 4 4 4 4

+— |tems

o O O O O

fori =1ton:
forj=1to W:

' max{P(i —1,)),p; + P(i — 1,j — w;)} i W; < j

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KF

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

n-----n-nn

0 0 0 0 4 4 4 4 4 4 4
0 0 0 0 4 4

+— |tems

o O O O O

fori =1ton:
forj=1to W:

' max{P(i —1,)),p; + P(i — 1,j — w;)} i W; < j

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KE

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

n-----n-nn

7))
&
z 0 <;0 0 0 0 14 4 4 4 4
0 0 0 0 0]
l +p, (= 10)
0
0
0
fori =1ton:
forj=1to W:
i — 1 i ifw;, >j

max{P(i —1,)),p; + P(i — 1,j — w;)}i{w; =

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KF

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

n-----n-nn

0 0 0 0 4 4 4 4 4 4 4
0 0 0 0 4 4 10 10 10 10 10

+— |tems

o O O O O

fori =1ton:
forj=1to W:

. — 1,7 ifw; >j
P(l,]) — P(l 1,]) l]

max{P(i —1,)),p; + P(i — 1,j — w;)}i{w; =

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KF

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

n-----n-nn

4 4 4 4 4 4 4
4 4 10 10 10 10 10

o O
o O
o O
o O

+— |tems

o O O O O
o
w
w
w

fori =1ton:
forj=1to W:

. — 1,7 ifw; >j
P(l,]) — P(l 1,]) l]

max{P(i —1,)),p; + P(i — 1,j — w;)}i{w; =

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KF

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

n-----n-nn

(7))
-
g 0 0 0 0 0 4 4 4 4 4 4 4
O O O O0_. 0 44 4 10 10 10 10 10
O o0 3 3'\14
tp3(=3
0
0
fori =1 ton:
forj=1to W:
] ifw: >j

max{P(i —1,)),p; + P(i — 1,j — w;)}i{w; =

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KF

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

n-----n-nn

0) 4 4 4 4 4 4 4
0) 4 14 10 10 10 10 10
. '4\ ,

+p3(= 3)

o O
o O
o O

+— |tems

o O O O O
o
w
w

fori =1ton:
forj=1to W:

. — 1,7 ifw; >j
P(l,]) — P(l 1,]) l]

max{P(i —1,)),p; + P(i — 1,j — w;)}i{w; =

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KF

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

n-----n-nn

4 4 4 4 4 4
4 10 10 10 10 10

4
4
4 '4\110 etc.

+p3(= 3)

o O
o O
o O
o O

+— |tems

o O O O O
o
w
w
w

fori =1ton:
forj=1to W:

. — 1,7 ifw; >j
P(l,]) — P(l 1,]) l]

max{P(i —1,)),p; + P(i — 1,j — w;)}i{w; =

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KF

Example instance with 5 items with weights and profits
(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

S
g 0 0 0 0 0 4 4 4
0 0 0 0 0 4 4 10
l 0 0 3 3 3 4 4 10
0 0 3 3 5 5 8 10
0 0 3 3 5 6 8 10

fori =1ton:
forj=1to W:

P(i,j) = P(i—1,j))

4
10
10
10
10

4
10
13
13
13

4 4
10 10
13 13
13 15
13 15
if Wi >j

n-----n-nn

max{P(i —1,)),p; + P(i — 1,j — w;)}i{w; =

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KF

Example instance with 5 items with weights and profits

(5,4), (7,10), (2,3), (4,5), and (3,3). Weight restriction is W = 11.

knapsack weight

=
9 O 0 O 0 0 4 4 4
0O 0 O 0 0 4 4 10
l O 0 3 3 3 4 4 10
O 0 3 3 5 5 8 10
O 0 3 3 5 6 8 10

fori =1ton:
forj=1to W:

P(i,j) = P@i—1,j)

4
10
10
10
10

4
10
13
13
13

4 4
10 10
13 13
13 15
1
if Wi >j

n-----n-nn

max{P(i —1,)),p; + P(i — 1,j — w;)}i{w; =

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Dynamic Programming Approach to the KF

Question: How to obtain the actual packing?
Answer: we just need to remember where the max came from!

knapsack weight

n-----n-nn
2 n 0. _ 9
o 00 0 o0 :41 4 4 4 4 4 4
o o 0o o0 0 10_,0 120 10 10
l 0o 0 3 3 3 4 4 0 13, 13; 13
0o 0 3 3 5 8 10 10 15
o 0 3 3 5 6 8 10 10 Tsj

x5—0
fori =1 ton:
forj=1to W:

' max{P(i —1,)),p; + P(i — 1,j — w;)} i W; < j

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

Conclusions

| hope it became clear...

...what the algorithm design idea of dynamic programming is
...for which problem types it is supposed to be suitable
...and how to apply the idea to the knapsack problem

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 18, 2016

