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Exercise:

The Knapsack Problem and Dynamic 

Programming

http://chercheurs.lille.inria.fr/

~brockhof/introoptimization/exercises.php
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I hope it became clear...

...what the algorithm design idea of dynamic programming is

...for which problem types is is supposed to be suitable

...and how to apply the idea to the knapsack problem

Conclusions
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Date Topic

Fri, 7.10.2016 Introduction

Fri, 28.10.2016 D Introduction to Discrete Optimization + Greedy algorithms I

Fri, 4.11.2016 D Greedy algorithms II + Branch and bound

Fri, 18.11.2016 D Dynamic programming

Mon, 21.11.2016

in S103-S105

D Approximation algorithms and heuristics

Fri, 25.11.2016

in S103-S105

C Introduction to Continuous Optimization I

Mon, 28.11.2016 C Introduction to Continuous Optimization II

Mon, 5.12.2016 C Gradient-based Algorithms

Fri, 9.12.2016 C Stochastic Optimization and Derivative Free Optimization I

Mon, 12.12.2016 C Stochastic Optimization and Derivative Free Optimization II

Fri, 16.12.2016 C Benchmarking Optimizers with the COCO platform

Wed, 4.1.2017 Exam

Course Overview

all classes last 3h15 and take place in S115-S117 (see exceptions)
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Approximation Algorithms

 a greedy approximation algorithm for bin packing

 an FPTAS for the KP

Overview of (Randomized) Search Heuristics

 randomized local search

 variable neighborhood search

 tabu search

 evolutionary algorithms

 [exercise: simple randomized algorithms for the knapsack 

problem]

Potential Master's/PhD thesis projects

Overview of Today’s Lecture
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Approximation Algorithms
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Exact

 brute-force often too slow

 better strategies such as dynamic programming & branch 

and bound

 still: often exponential runtime

Approximation Algorithms

 guarantee of low run time

 guarantee of high quality solution

 obstacle: difficult to prove these guarantees

Heuristics

 intuitive algorithms

 guarantee to run in short time

 often no guarantees on solution quality

Coping with Difficult Problems

(now)

(later today)
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 An algorithm is a ρ-approximation algorithm for problem Π if, for 

each problem instance of Π, it outputs a feasible solution which 

function value is within a ratio ρ of the true optimum for that 

instance.

 An algorithm A is an approximation scheme for a minimization*

problem Π if for any instance I of Π and a parameter ε>0, it outputs 

a solution s with f Π(I,s) ≤ (1+ε) ∙ OPT .

 An approximation scheme is called polynomial time approximation 

scheme (PTAS) if for a fixed ε>0, its running time is polynomially

bounded in the size of the instance I.

 note: runtime might be exponential in 1/ε actually!

 An approximation scheme is a fully polynomial time approximation 

scheme (FPTAS) if its runtime is bounded polynomially in both the 

size of the input I and in 1/ε.

Approximations, PTAS, and FPTAS



9Introduction to Optimization @ ECP, Nov. 21, 2016© Dimo Brockhoff, Inria 9

 only example algorithm(s)

 no detailed proofs here due to the time restrictions of the class

 rather spend more time on the heuristics part and the exercise

Actually Two Examples:

 a greedy approximation algorithm for bin packing

 an FPTAS for the KP

Today’s Lecture
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Bin Packing Problem

Given a set of n items with sizes a1, a2, ..., an. Find an 

assignment of the ai’s to bins of size V such that the number of 

bins is minimal and the sum of the sizes of all items assigned to 

each bin is  ≤ V.

Known Facts

 no optimization algorithm reaches a better than 3/2 

approximation in polynomial time (not shown here)

 greedy first-fit approach already yields an approximation 

algorithm with ρ-ratio of 2

Bin Packing (BP)
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First-Fit Algorithm

 without sorting the items do:

 put each item into the first bin where it fits

 if it does not fit anywhere, open a new bin

Theorem: First-Fit algorithm is a 2-approximation algorithm

Proof: Assume First Fit uses m bins. Then, at least m-1 bins are more 

than half full (otherwise, move items).

because m and OPT are integer

First-Fit Approach

0.5 0.8 0.20.40.3 0.2 0.2

0.5 0.3 0.4

0.8

0.2 0.2 0.2
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Knapsack Problem

An FPTAS for the Knapsack Problem

Dake
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Similar to this week’s exercise, we can design a dynamic 

programming algorithm for which

 a subproblem is restricting the items to {1, ..., k} and 

searches for the lightest packing with prefixed profit P

 runs in O(n2Pmax)

What strange runtime is O(n2Pmax)?

Answer: pseudo-polynomial (polynomial if Pmax would be 

polynomial in input size)

Idea behind FPTAS:

 scale the profits smartly to                to make Pmax

polynomially bounded

 prove that dynamic programming approach computes profit 

of at least (1-ε)∙OPT (not shown here)

An FPTAS for the Knapsack Problem










 maxP

npi
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(Randomized) Search Heuristics
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 often, problem complicated and not much time available to 

develop a problem-specific algorithm

 search heuristics are a good choice:

 relatively easy to implement

 easy to adapt/change/improve

 e.g. when the problem formulation changes in an early 

product design phase

 or when slightly different problems need to be solved 

over time

Motivation General Search Heuristics
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 Randomized Local Search (RLS)

 Variable Neighborhood Search (VNS)

 Tabu Search (TS)

 Evolutionary Algorithms (EAs)

Lecture Overview
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For most (stochastic) search heuristics in discrete domain, we need 

to define a neighborhood structure

 which search points are close to each other?

Example: k-bit flip / Hamming distance k neighborhood

 search space: bitstrings of length n (Ω={0,1}n)

 two search points are neighbors if their Hamming 

distance is k

 in other words: x and y are neighbors if we can flip 

exactly k bits in x to obtain y

 0001001101 is neighbor of

0001000101 for k=1

0101000101 for k=2

1101000101 for k=3

Neighborhoods
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Idea behind (Randomized) Local Search:

 explore the local neighborhood of the current solution (randomly)

Pure Random Search:

 go to randomly chosen neighbor (not dependent on obj. function)

First Improvement Local Search, Randomized Local Search (RLS):

 go to first (randomly) chosen neighbor which is better

Best Improvement Strategy:

 always go to the best neighbor

 not random anymore

 computationally expensive if neighborhood large

Randomized Local Search (RLS)
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Main Idea: [Mladenovic and P. Hansen, 1997]

 change the neighborhood from time to time

 local optima are not the same for different neighborhood 

operators

 but often close to each other

 global optimum is local optimum for all neighborhoods

 rather a framework than a concrete algorithm

 e.g. deterministic and stochastic neighborhood changes

 typically combined with (i) first improvement, (ii) a random 

order in which the neighbors are visited and (iii) restarts 

N. Mladenovic and P. Hansen (1997). "Variable neighborhood search". Computers 

and Operations Research 24 (11): 1097–1100.

Variable Neighborhood Search
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Disadvantages of local searches (with or without varying 

neighborhoods)

 they get stuck in local optima

 have problems to traverse large plateaus of equal objective 

function value (“random walk”)

Tabu search addresses these by

 allowing worsening moves if all neighbors are explored

 introducing a tabu list of temporarily not allowed moves

 those restricted moves are

 problem-specific and

 can be specific solutions or not permitted “search 

directions” such as “don’t include this edge anymore” or 

“do not flip this specific bit”

 the tabu list is typically restricted in size and after a while, 

restricted moves are permitted again

Tabu Search
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One class of (bio-inspired) stochastic optimization algorithms: 

Evolutionary Algorithms (EAs)

 Class of optimization algorithms

originally inspired by the idea of

biological evolution

 selection, mutation, recombination

Stochastic Optimization Algorithms

1859
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Classical Optimization Evolutionary Computation

variables or parameters variables or chromosomes

candidate solution

vector of decision variables /      

design variables / object 

variables

individual, offspring, parent

set of candidate solutions population

objective function

loss function

cost function

error function

fitness function

iteration generation

Metaphors
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Generic Framework of an EA

Important:

representation (search space)

initialization

evaluation

evaluation

potential

parents

offspring

parents

crossover/

mutation

mating

selection

environmental

selection

stop?

best individual

stochastic operators

“Darwinism”

stopping criteria
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Genetic Algorithms (GA)

J. Holland 1975 and D. Goldberg (USA)

Evolution Strategies (ES)

I. Rechenberg and H.P. Schwefel, 1965 (Berlin)

Evolutionary Programming (EP)

L.J. Fogel 1966 (USA)

Genetic Programming (GP)

J. Koza 1990 (USA)

nowadays one umbrella term: evolutionary algorithms

The Historic Roots of EAs
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The genotype – phenotype mapping

 related to the question: how to come up with a fitness of 

each individual from the representation?

 related to DNA vs. actual animal (which then has a fitness)

Fitness of an individual not always = f(x)

 include constraints

 include diversity

 others

 but needed: always a total order on the solutions

Genotype – Phenotype mapping
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Several possible ways to handle constraints, e.g.:

 resampling until a new feasible point is found (“often bad idea”)

 penalty function approach: add constraint violation term 

(potentially scaled, see also the Lagrangian in the continuous 

part of the lecture)

 repair approach: after generation of a new point, repair it (e.g. 

with a heuristic) to become feasible again if infeasible

 continue to use repaired solution in the population or

 use repaired solution only for the evaluation?

 multiobjective approach: keep objective function and constraint 

functions separate and try to optimize all of them in parallel

 some more...

Handling Constraints
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Examples for some EA parts
(for discrete search spaces)
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Selection is the major determinant for specifying the trade-off 

between exploitation and exploration

Selection is either

stochastic                                  or                     deterministic

e.g. fitness proportional

e.g. via a tournament

Mating selection (selection for variation): usually stochastic

Environmental selection (selection for survival): often deterministic

Selection

Disadvantage:

depends on

scaling of f

e.g. (µ+λ), (µ,λ)

best µ from 

offspring and

parents

best µ from 

offspring only
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Variation aims at generating new individuals on the basis of those 

individuals selected for mating

Variation = Mutation and Recombination/Crossover

mutation: mut:

recombination: recomb:        where and 

 choice always depends on the problem and the chosen 

representation

 however, there are some operators that are applicable to a wide 

range of problems and tailored to standard representations such 

as vectors, permutations, trees, etc.

Variation Operators
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Two desirable properties for mutation operators:

 “exhaustiveness”: every solution can be generated from every 

other with a probability greater than 0

 “locality”:

Desirable property of recombination operators (“in-between-ness”):

Variation Operators: Guidelines
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Swap:

Scramble:

Invert:

Insert:

Examples of Mutation Operators on Permutations
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1-point crossover

n-point crossover

uniform crossover

Examples of Recombination Operators: {0,1}n

choose each bit

independently from

one parent or another
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 search space of all binary strings of length 𝑛, maximization

 uniform initialization

 generational cycle of the population:

 evaluation of solutions

 mating selection (e.g. roulette wheel)

 crossover (e.g. 1-point)

 environmental selection (e.g. plus-selection)

A Canonical Genetic Algorithm
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 EAs are generic algorithms (randomized search heuristics, 

meta-heuristics, ...) for black box optimization

no or almost no assumptions on the objective function

 They are typically less efficient than problem-specific 

(exact) algorithms (in terms of #funevals)

not the case in the continuous case (we will see later)

 Allow for an easy and rapid implementation and therefore 

to find good solutions fast

easy to incorporate problem-specific knowledge to improve 

the algorithm

Conclusions
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Potential Master's/PhD thesis 

projects
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http://randopt.gforge.inria.fr/thesisprojects/

Potential Research Topics for Master's/PhD Theses
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More projects without the involvement of companies:

 stopping criteria in multiobjective optimization

 large-scale variants of CMA-ES

 algorithms for expensive optimization based on CMA-ES

all above: relatively flexible between theoretical and practical projects

Coco-related:

 implementing and benchmarking algorithms for expensive opt.

 data mining performance results

Potential Research Topics for Master's/PhD Theses
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I hope it became clear...

...that approximation algorithms are often what we can hope for 

in practice (might be difficult to achieve guarantees though)

...that heuristics is what we typically can afford in practice (no 

guarantees and no proofs)

Conclusions


