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Course Overview

Date | |Topic

Mon, 21.11.2016 D Approximation algorithms and-hedristics
in S103-S105

Mon, 28.11.2016
Mon, 5.12.2016
Fri, 9.12.2016
Mon, 12.12.2016
Fri, 16.12.2016 Benchmarking Optimizers with the COCO platform
Wed, 4.1.2017 Exam

Introduction to Continuous Optimization Il

Gradient-based Algorithms

Stochastic Optimization and Derivative Free Optimization |
Stochastic Optimization and Derivative Free Optimization Il

O O 0O 0O O

all classes last 3h15 and take place in S115-S117 (see exceptions)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 28, 2016



Course Overview

Mon, 21.11.2016

in S103-S105

Mon, 28.11.2016

in S103-S105
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in S103-S105

Fri, 16.12.2016

Wed, 4.1.2017

D

Date | |Topic

Approximation algorithms and-heuristies

Introduction to Continuous Optimization Il
Introduction to Continuous Optimization Il

Constrained Optimization + Descent Methods
Derivative Free Optimization I: CMA-ES

Derivative Free Optimization Il: Benchmarking Optimizers
with the COCO platform

Exam if not indicated otherwise, classes take place in S115-S117
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Overview Continuous Optimization Part

Introduction to Continuous Optimization
= examples (from ML / black-box problems)
= typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima
= reminders about differentiability, gradient, Hessian matrix
* unconstraint optimization
= first and second order conditions
= convexity
= constrained optimization

Gradient-based Algorithms
= gradient descent
= quasi-Newton method (BFGS)

Derivative Free Optimization
» stochastic adaptive algorithms (CMA-ES)
=  Benchmarking Numerical Blackbox Optimizers
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Example Problems
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Data Fitting — Data Calibration

Objective

= Given a sequence of data points (x;,y;) € RP X R,i =1, ..., N,
find a model "y = f(x)" that explains the data
experimental measurements in biology, chemistry, ...

= In general, choice of a parametric model or family of functions
(fo)oern

use of expertise for choosing model or simple models
only affordable (linear, quadratic)

= Try to find the parameter 6 € R" fitting best to the data

Fitting best to the data
Minimize the quadratic error:

N
min z|fe(xi) — yil?
=1

OERM
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Optimization and Machine Learning: Lin. Regre

Supervised Learning:
Predict y € Y from x € X, given a set of observations (examples)
Wi xitiz1,.N

(Simple) Linear regression
: . 1 p
Given a set of data: {yi,‘xi : ""xi’}i=1...N

!
4

WERP,LER ¢
\

N
min ZIWTxi + B — y;|?
=1 ]

|

| XW — y||* X € RVX®+1) i e RP+1

same as data fitting with linear model, i.e. fi, 5 (x) = w'x + B,
6 € RPH1
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A Real-World Problem in Petroleum Engineering

Well Placement Problem

g 8

Expected NPV ($MM)
<

: Fluid flow

Oil flowsme (m3/day)

Time (days)
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Function Difficulties
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What Makes a Function Difficult to Solve?

= dimensionality
(considerably) larger than three
= non-separability
dependencies between the objective variables
* jll-conditioning
" ruggedness

non-smooth, discontinuous, multimodal, and/or
noisy function

cut from 3D example,
solvable with an
evolution strategy
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Curse of Dimensionality

= The term Curse of dimensionality (Richard Bellman) refers to
problems caused by the rapid increase in volume associated
with adding extra dimensions to a (mathematical) space.

= Example: Consider placing 100 points onto a real interval, say
10,1]. To get similar coverage, in terms of distance between
adjacent points, of the 10-dimensional space [0,1]*° would
require 1001° = 102 points. The original 100 points appear now
as isolated points in a vast empty space.

= Consequently, a search policy (e.g. exhaustive search) that is
valuable in small dimensions might be useless in moderate or
large dimensional search spaces.
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Separable Problems

Definition (Separable Problem)
A function f is separable if

argmin f(xq, ..., x,) = (argmin f(xq,...),...,argmin f (..., xn))
(X1,Xn) X1 Xn

= it follows that f can be optimized in a sequence of
n independent 1-D optimization processes

3 NN N

Example: % %6
Additively decomposable functions 2.0 OGO © «

= 2\  e)))
fGoaetn) = ) i) 00O OO0 ¢

Rastrigin function © © . © 0 0 ©
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Non-Separable Problems

Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system
= f:x+— f(x) separable
= f:x+— f(Rx) non-separable
R rotation matrix

R DA 2\ N A\ T A =Ty =T

= T/
= N A N/ AN SR (O SO =4
© © © 6 O © Do 290 ~90 ¢

2 © O @ © © | ¥ U~ 0on 2@
@@E@O@(@ @) ® @ O © ~ @) =
=N / A — (N0 SN OIR) =

Y _© @ @ @ Q G R Q) ~ = ’@" S @ m)
(0) O I (s 0 ) ORI = 2
@), ((C L0 (9 = (©) MO A0S

7 N\ 7 W= \\\// 2 AR o SN =

» © OO0 O & PO 0. ~O¢
(o) O DX (O (o) N MOV 2O A

b0 ©O© O — Al O IC

1P N\ N\ - -1 = Yo R Xz 0IR) =

2p) © O © © © & B~ QornXop .
© © @ © _ ©0 © =~ Vo= Q) Rl

a = = A — A bt A - ~ R ‘/_\ et/ kO/‘ = [\9 ) 4;-{)| —

k11 | 1//aa\\IR 2N = It

X5 =2 33 0 1 2 3 3 9 =9 0 1 2 3

[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in
evolution strategies: The generating set adaptation”. Sixth ICGA, pp. 57-64, Morgan Kaufmann

[2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark
Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278
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llI-Conditioned Problems: Curvature of Leve

Consider the convex-quadratic function
1 1 z 1 z
f(X) = — (x — x*)TH(x — x*) = — hi l'Xiz + — hl]xlx]
2 2 i 2 i ’

H is Hessian matrix of f and symmetric positive definite

gradient direction —f'(x)?
Newton direction —H~1f"(x)!

lll-conditioning means squeezed level sets (high curvature).

Condition number of SPD matrix A = ratio between largest and smallest
eigenvalue

Condition number equals nine here (kind of well-conditioned). Condition
numbers up to 1019 are not unusual in real-world problems.
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Mathematical Tools to Characterize Optima
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Different Notions of Optimum

Unconstrained case
= Jocal vs. global
= |ocal minimum x*: 3 a neighborhood V of x* such that
vx eV:f(x) = f(x¥)
= global minimum: vx € Q: f(x) = f(x*)
= strict local minimum if the inequality is strict
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Mathematical Characterization of Optima

Objective: Derive general characterization of optima

Example: if f: R — R differentiable,
f'(x) = 0 at optimal points

= generalizationto f:R" > R ?
= generalization to constrained problems?

Remark: notion of optimum independent of notion of differentiability

optima of such function can be easily
approached by certain type of methods
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Reminder: Continuity of a Function

£V Hy) — (WL | Tw) is continuous in x € V if
Ve > 0,dn >0suchthatvy e V: |[x —y|ly <n; If(x) — fOD|lw < €

not continuous

continuous
function discontinuity
«  point
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Reminder: Differentiability in 1D (n=1)

f:R — R is differentiable in x € R if

lim L&MW qists h e R
h—-0 h
Notation:
/ o f(x+h)—f(x)
f1e0 = fim =

oy

\

The derivative corresponds to the slope of the tangent in x.

© Dimo Brockhoff, Inria
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Reminder: Differentiability in 1D (n=1)

Taylor Formula (Order 1)
If £ is differentiable in x then

fix+h) = fx)+ f (x)h+o(h]])

l.e. for h small enough, h — f(x + h) is approximated by h +—

f(x) + f(x)h

h+— f(x)+ f'(x)h is called a first order approximation of f(x + h)
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Reminder: Differentiability in 1D (n=1)

Geometrically:

The notion of derivative of a function defined on R" is generalized
via this idea of a linear approximation of f(x + h) for h small
enough.
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Gradient Definition Via Partial Derivatives

= In(R" || ||,) where ||x|], = +/{x, x) is the Euclidean norm
deriving from the scalar product (x,y) = xTy

daf
o

Vi) =

Y,

0x,
» Reminder: partial derivative in x,

fir y = f(25, 0, b7y, %, 2F)

d
a_»]; (x0) = £/ (%)
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Exercise: Gradients
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Exercise: Gradients

Exercise:

Compute the gradients of

a) f(x)=x, withx e R"

b) f(x) =a’x witha,x € R"

c) f(x)=x"x(=]|x||?) with x € R"

Some more examples:
= inR",if f(x) = xTAx, then Vf(x) = (A + AD)x
= InR, Vf(x) = f'(x)
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Gradient: Geometrical Interpretation

Exercise:

Let L, = {x € R"| f(x) = c} be again a level set of a function f(x).
Let xy € L, + ©.

Compute the level sets for f;(x) = a’x and £, (x) = ||x||? and
the gradient in a chosen point x, and observe that Vf (x,) is
orthogonal to the level set in x,.

Again: if this seems too difficult, do it for two variables (and a
concrete a € R? and draw the level sets and the gradients.

More generally, the gradient of a — P fle)

differentiable function is orthogonal to O /
its level sets. R”
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Level Sets and Gradients are Orthogone

Question: How do we prove in general that the gradient is
orthogonal to the level sets?

Answer:
= gsimilar to what we did for two variables

= take any curve within the level set, parametrized by t — c(t)
= clear: f(c(t)) = cforallt

. d _
= derivative wrtto t: —f(c(t)) = 0

d T d
" butalso —f(c(t)) = 7(f(c(D) —c(t)
[via chain rule, %c(t) IS a vector, tangent to the curve in t]
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Differentiability in R™

Taylor Formula — Order One

fx+h) = f@) + (V@) h+o(h]])
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Reminder: Second Order Differentiability in 1D

= Let f:D € R - R be a differentiable function and let f': x —
f'(x) be its derivative.

= If f"is differentiable in x, then we denote its derivative as "' (x)
= f"(x) is called the second order derivative of f.

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 28, 2016



Taylor Formula: Second Order Derivative

= |f f:R - Ristwo times differentiable then
fGx+h)=fx)+f'h+f"(x)h? + o(]|h|]?)
i.e. for h small enough, h - f(x) + hf'(x) + h?f"(x)
approximates h + f(x + h)
= h- f(x)+hf'(x) + h%f"(x) is a quadratic approximation (or
order 2) of f in a neighborhood of x

! NI (AN ANNILE

{(x)

s Jo)th ()

4

= The second derivative of f: R - R generalizes naturally to larger
dimension.
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In (R™, (x,y) = xTy), V2f(x) is represented by a symmetric matrix
called the Hessian matrix. It can be computed as

oy o 0%f

c’)_x12 0x10x,  0x10x,
02f  9f 02 f

V2(f) = |ox,0x, axz 7 0x,0x,
02f  9f 02 f

9x,0x; 0x,0x, ~~  0xZ |
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Exercise on Hessian Matrix

Exercise:

Let f(x) = %xTA x, x € R", and A € R™" symmetric.
Compute the Hessian matrix of f.

. : R* > R
If it is too complex, consider f: x o 1

— ExTA ; 0)

0 1 |
4

xmmA=(
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Second Order Differentiability in R™

Taylor Formula — Order Two

1
fa+h) = f@)+ (7)) h+5hT(72f(0) h+o(IRI?)
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Back to llI-Conditioned Problems

We have seen that for a convex quadratic function
f(x) = %(x —x9)TA(x —xy) + b of x € R™, A € R™", A SPD, b € R™:

1) The level sets are ellipsoids. The eigenvalues of A determine
the lengths of the principle axes of the ellipsoid.

or n=2,letA, A, be
the eigenvalues of A.
N

2) The Hessian matrix of f equals to A.

lll-conditioned convex quadratic problems are problems with large
ratio between largest and smallest eigenvalue of A which means large
ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Introduction to Optimization @ ECP, Nov. 28, 2016
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Exercise: Gradients and Level Sets of
Convex Quadratic Functions

http://researchers.lille.inria.fr/
~brockhof/introoptimization/
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Gradient Direction Vs. Newton Direction

Gradient direction: Vf(x)

Newton direction: (H(x))_1 - Vf(x)
with H(x) = 7%f(x) being the Hessian at x

Exercise:

Let again f(x) = %xTA x,x ER? A= (g 2) e R%*2.

Plot the gradient and Newton direction of f in a point x € R?
of your choice (which should not be on a coordinate axis) into
the same plot with the level sets, we created before.
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Optimality Conditions
for Unconstrained Problems
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Optimality Conditions: First Order Necessary «

For 1-dimensional optimization problems f: R - R
Assume f is differentiable
= x*isalocal optimum = f'(x*) =0
not a sufficient condition: consider f(x) = x3
proof via Taylor formula: f(x* + h) = f(x*) + f'(x*)h + o(||h]|)

= points y such that f'(y) = 0 are called critical or stationary points

Generalization to n-dimensional functions

If f:U c R™ +— R is differentiable

= necessary condition: If x* is a local optimum of f, then Vf(x*) =0
proof via Taylor formula
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Second Order Necessary and Sufficient Opt.

If £ is twice continuously differentiable
= Necessary condition: if x* is a local minimum, then V'f(x*) =0
and V4f (x*) is positive semi-definite
proof via Taylor formula at order 2
= Sufficient condition: if 7f(x*) = 0 and 74f(x*) is positive definite,
then x* is a strict local minimum

Proof of Sufficient Condition:

= Let A > 0 be the smallest eigenvalue of V2 f(x*), using a second
order Taylor expansion, we have for all h:

= f(x"+h)- f(x*) = Vf(x) h+ hTV2f (xR + o(||hI|?)

—IIhI|2+o(IIhII ) = (2 (llllhllllz )) ||R]]?
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Convex Functions

Let U be a convex open set of R® and f: U — R. The function f is
said to be convex if for all x,y € U and for all t € [0,1]

flA-Dx+ty) <A -Ofx) +tf(y)

Theorem
If £ Is differentiable, then f is convex if and only if for all x, y

fO) - @ = (V@) (-

If n = 1, the curve is on top of the tangent

If f is twice continuously differentiable, then f is convex if and only if
V2f(x) is positive semi-definite for all x.
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Convex Functions: Why Convexity?

Examples of Convex Functions:
= f(x)=a'x+b
= f(x) = %xTAx + a’x + b, A symmetric positive definite

= the negative of the entropy function (i.e. f(x) = =YX, x; In(x;) )

Exercise:

Let f: U — R be a convex and differentiable function on a

convex open U.
Show that if Vf(x*) = 0, then x* is a global minimum of f
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Constrained Optimization
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Equality Constraint

Objective:
Generalize the necessary condition of V'f(x) = 0 at the optima of f
when f isin C1, i.e. is differentiable and its derivative is continuous

Theorem:
Be U an open setof (E,|| []),and f:U - R, g:U - Rin C?.
Let a € E satisfy

{f (a) =inf {f(x) | x € R", g(x) = 0}
g(a) =0
l.e. a IS optimum of the problem

If Vg(a) # 0, then there exists a constant A € R called Lagrange
multiplier, such that
‘Vf(a) + AVg(a) = 0,

|
l.e. gradients of f and g in a are colinear

Note: a need not be a global minimum but a local one
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Geometrical Interpretation Using an Ex

Exercise:

Consider the problem
inf {f(x,y) | (x,¥) € R? g(x,y) = 0}

2 glxy) =x*+y*—1

1) Plot the level sets of f, plot g =0
2) Compute IV'f and Vg
3) Find the solutions with Vf + AVg =0
equation solving with 3 unknowns (x, y, )
4) Plot the solutions of 3) on top of the level set graph of 1)
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Interpretation of Euler-Lagrange Equation

Intuitive way to retrieve the Euler-Lagrange equation:

= |n alocal minimum a of a constrained problem, the
hypersurfaces (or level sets) f = f(a) and g = 0 are necessarily
tangent (otherwise we could decrease f by moving along g = 0).

= Since the gradients Vf(a) and Vg(a) are orthogonal to the level
sets f = f(a) and g = 0, it follows that Vf(a) and Vg(a) are
colinear.
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Generalization to More than One Constraint

Theorem

= Assume f:U » Rand g,:U - R (1 <k <p)are cL.
= Let a be such that

f(a) =inf {f(x) | x € R", gx(x) =0, 1<k<p}
gr(@) =0 foralll<k<p

= |f (ng(a))1<k<p are linearly independent, then there exist p real
constants (Ax);<k<p Such that

p
Vf(a) + 2 AV gr(a) =0
k=1

|

Lagrange multiplier

again: a does not need to be global but local minimum

© Dimo Brockhoff, Inria
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The Lagrangian

= Define the Lagrangian on R™ x R? as

p
LC (D = O+ ) Agic(0)
k=1

= To find optimal solutions, we can solve the optimality system
(

p
Find (x,{4x}) € R" X RP such that Vf(x) + z A Vg (x) =0
k=1
gr(x) =0 foralll <k <p
Find (x,{1;}) € R™ x RP such that V,.L(x, {1,}) = 0
72, LC (D) =0 foralll <k <p

A

.
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Inequality Constraints: Definitions

LetU ={x e R"| gr(x) =0 (fork € E), gr(x) <0 (for k € I)}.

Definition:
The points in R" that satisfy the constraints are also called feasible
points.

Definition:
Let a € U, we say that the constraint g, (x) < 0 (for k € I) is active
inaif g,(a) = 0.
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Inequality Constraint: Karush-Kuhn-Tucker T

Theorem (Karush-Kuhn-Tucker, KKT):
Let U be an open setof (E,|||]) and f:U - R, g,:U - R, all ¢1
Furthermore, let a € U satisfy

(f(@) = inf(f(x) | x € R™, g (x) = 0 (for k € E), g (x) < 0 (for k € 1)
) 9k (a) =0 (for k € E) also works again for a
L gi(a) <0 (fork €1) being a local minimum

Let 12 be the set of constraints that are active in a. Assume that
(Vs (a))k < L o are linearly independent.
a

Then there exist (A1 )1<k<p that satisfy
(

vf(a) + 2 LV gi(a) = 0

gr(a) = O (fork € E)
grx(a) <0 (fork €1)
Ay =0 (fork € 12)
\Akgr(a) =0 (fork e EUI)

AN
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Inequality Constraint: Karush-Kuhn-Tucker T

Theorem (Karush-Kuhn-Tucker, KKT):

Let U be an open setof (E,|||]) and f:U - R, g,:U - R, all ¢1
Furthermore, let a € U satisfy

(f(@) = inf(f(x) | x € R™, g (x) = 0 (for k € E), g (x) < 0 (for k € 1)
3 gix(a) =0 (for k € E)

\ gr(a) <0 (fork €1)

Let 12 be the set of constraints that are active in a. Assume that
(Vs (a))k < L o are linearly independent.

Then there exist (A1 )1<k<p that satisfy
(

vf(a) + 2 LV gi(a) = 0

gr(a) = 0 (for k € )  ©ither active constraint
grx(a) <0 (fork €1) ord, =0 :
Ay = 0 (for k-c1Y)

\Akgr(a) =0 (fork e EUI)

AN
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Descent Methods
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Descent Methods

General principle
© choose an initial point x,, sett =1
® while not happy
» choose a descent directiond; # 0
* |ine search:
= choose a step size g; > 0
" setx;p1 =X +o0:d;
» sett=t+1

Remaining questions
= how to choose d;?
= how to choose g;?
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Gradient Descent

Rationale: d; = —Vf(x;) IS a descent direction
indeed for f differentiable

flx = aVf(x)) = f(x) = al[VFCOII? + o(al|Vf ()]
< f(x) for ¢ small enough
Step-size
= optimal step-size: g; = argmin f(x; — aVf(x;))
o

= Line Search: total or partial optimization w.r.t. o
Total is however often too "expensive" (needs to be performed at
each iteration step)
Partial optimization: execute a limited number of trial steps until a
loose approximation of the optimum is found. Typical rule for
partial optimization: Armijo rule
see next slide and exercise

Stopping criteria:
norm of gradient smaller than ¢
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The Armijo-Goldstein Rule

Choosing the step size:
= Only to decrease f-value not enough to converge (quickly)
= Want to have a reasonably large decrease in f

Armijo-Goldstein rule:
= also known as backtracking line search

= starts with a (too) large estimate of o and reduces it until f is
reduced enough

= whatis enough?
= assuming alinear f e.g. my(x) = f(xx) + V ()T (x — x3)
= expected decrease If step of gy, Is done in direction d.
ok Vf(x)'d
= actual decrease: f(x;) — f(xy + 05, d)

» stop if actual decrease is at least constant times expected
decrease (constant typically chosen in [0, 1])

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 28, 2016



The Armijo-Goldstein Rule

The Actual Algorithm:

Input: descent direction d, point x. objective function f(x) and its gra-
dient V f(x), parameters oy = 10, 6 € [0, 1] and g € (0,1)
Output: step-size o

Initialize o: 0 <+ oy

while f(x +od) > f(x)+ 0oV [f(x)"d do
o+ [o

end while

Armijo, in his original publication chose g = 6 = 0.5.
Choosing 8 = 0 means the algorithm accepts any decrease.
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The Armijo-Goldstein Rule

Graphical Interpretation
A actual increase
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The Armijo-Goldstein Rule

Graphical Interpretation
A

. decrease in f
........ but not sufficiently large
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The Armijo-Goldstein Rule

Graphical Interpretation
A

—_, decrease in f
........ now sufficiently large
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Gradient Descent: Simple Theoretical Analy

Assume f is twice continuously differentiable, convex and that
uly < V4f(x) < L1z with u > 0 holds, assume a fixed step-size o, =

—hlb—\

Note: A < B means xTAx < xTBx for all x

Xep1 — X* =X — X" — 0.V f(y)(xe — x*) for some y; € [x;, x”]
1
Xepp — X = (Id — szf(Yt)) (x; —x%)

1
Hence |lxeq — x7[12 < [[llg =2 V2f OllI? [lxe — x7 ]2
2

<(1=5) Il — 27112

Linear convergence: ||x;+; — x*|| < (1 — %) || — x|

algorithm slower and slower with increasing condition number

Non-convex setting: convergence towards stationary point
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Newton Algorithm

Newton Method

= descent direction: —[V?f(x;)] 1V f(x;) [so-called Newton
direction]

= The Newton direction:
= minimizes the best (locally) quadratic approximation of f:
fla+Ax) = f(x) + Vf()TAx + = (M) V2 f (x) Ax

= points towards the optimum on f(x) = (x — x*)TA(x — x*)
= however, Hessian matrix is expensive to compute in general and
Its inversion is also not easy

guadratic convergence

(i.e. lim =2 =u > O)
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Remark: Affine Invariance

Affine Invariance: same behavior on f(x) and f(Ax + b) for A €
GLn(R)
= Newton method is affine invariant

see http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/
Lecture 6 Scribe Notes.final.pdf

= same convergence rate on all convex-gquadratic functions
» Gradient method not affine invariant
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Quasi-Newton Method: BFGS

Xep1 = X — 0 H{Vf (x;) Where H; is an approximation of the inverse
Hessian

Key idea of Quasi Newton:

successive iterates x;, x;,, and gradients Vf (x;), Vf(x;+1) yield
second order information

Qe = V2 f (Xe1)De
where py = xt4q — x¢ and q; = Vf(xpyq) — V()

Most popular implementation of this idea: Broyden-Fletcher-
Goldfarb-Shanno (BFGS)

= default in MATLAB's £fminunc and python's
scipy.optimize.minimize
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Conclusions

| hope it became clear...

...what are the difficulties to cope with when solving numerical
optimization problems

In particular dimensionality, non-separability and ill-conditioning
...what are gradient and Hessian
...what Is the difference between gradient and Newton direction
...and that adapting the step size in descent algorithms is crucial.

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Nov. 28, 2016



