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Date Topic

Fri, 7.10.2016 Introduction

Fri, 28.10.2016 D Introduction to Discrete Optimization + Greedy algorithms I

Fri, 4.11.2016 D Greedy algorithms II + Branch and bound

Fri, 18.11.2016 D Dynamic programming

Mon, 21.11.2016

in S103-S105

D Approximation algorithms and heuristics

Fri, 25.11.2016

in S103-S105

C Randomized Search Heuristics + Introduction to Continuous

Optimization I

Mon, 28.11.2016 C Introduction to Continuous Optimization II

Mon, 5.12.2016 C Gradient-based Algorithms

Fri, 9.12.2016 C Stochastic Optimization and Derivative Free Optimization I

Mon, 12.12.2016 C Stochastic Optimization and Derivative Free Optimization II

Fri, 16.12.2016 C Benchmarking Optimizers with the COCO platform

Wed, 4.1.2017 Exam

Course Overview

all classes last 3h15 and take place in S115-S117 (see exceptions)
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Date Topic

Fri, 7.10.2016 Introduction

Fri, 28.10.2016 D Introduction to Discrete Optimization + Greedy algorithms I

Fri, 4.11.2016 D Greedy algorithms II + Branch and bound

Fri, 18.11.2016 D Dynamic programming

Mon, 21.11.2016
in S103-S105

D Approximation algorithms and heuristics

Fri, 25.11.2016
in S103-S105

C Randomized Search Heuristics + Intro. to Continuous Opt. I

Mon, 28.11.2016
in S103-S105

C Introduction to Continuous Optimization II

Mon, 5.12.2016
in S103-S105

C Introduction to Continuous Optimization III

Fri, 9.12.2016 C Constrained Optimization + Descent Methods

Mon, 12.12.2016
in S103-S105

C Derivative Free Optimization I: CMA-ES

Fri, 16.12.2016 C Derivative Free Optimization II: Benchmarking Optimizers

with the COCO platform

Wed, 4.1.2017 Exam

Course Overview

if not indicated otherwise, classes take place in S115-S117
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Introduction to Continuous Optimization

 examples (from ML / black-box problems)

 typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

 reminders about differentiability, gradient, Hessian matrix

 unconstraint optimization

 first and second order conditions

 convexity

 constrained optimization

Gradient-based Algorithms

 gradient descent

 quasi-Newton method (BFGS)

Derivative Free Optimization

 stochastic adaptive algorithms (CMA-ES)

 Benchmarking Numerical Blackbox Optimizers

Overview Continuous Optimization Part
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Example Problems
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Objective

 Given a sequence of data points 𝒙𝑖 , 𝑦𝑖 ∈ ℝ𝑝 × ℝ, 𝑖 = 1,… ,𝑁, 

find a model "𝑦 = 𝑓(𝒙)" that explains the data

experimental measurements in biology, chemistry, ...

 In general, choice of a parametric model or family of functions 

𝑓𝜃 𝜃∈ℝ𝑛

use of expertise for choosing model or simple models

only affordable (linear, quadratic)

 Try to find the parameter 𝜃 ∈ ℝ𝑛 fitting best to the data

Fitting best to the data

Minimize the quadratic error:

min
𝜃∈ℝ𝑛

 

𝑖=1

𝑁

𝑓𝜃 𝒙𝑖 − 𝑦𝑖
2

Data Fitting – Data Calibration
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Supervised Learning:

Predict 𝑦 ∈ 𝒴 from 𝒙 ∈ 𝒳, given a set of observations (examples) 

𝑦𝑖 , 𝒙𝑖 𝑖=1,…,𝑁

(Simple) Linear regression

Given a set of data: 𝑦𝑖 , 𝑥𝑖
1, … , 𝑥𝑖

𝑝

𝑖=1…𝑁

min
𝒘∈ℝ𝑝,𝛽∈ℝ

 

𝑖=1

𝑁

𝒘𝑇𝒙𝑖 + 𝛽 − 𝑦𝑖
2

 𝑿 ∈ ℝ𝑁×(𝑝+1),  𝒘 ∈ ℝ𝑝+1

same as data fitting with linear model, i.e. 𝑓𝒘,𝛽 𝒙 = 𝒘𝑇𝒙 + 𝛽,

𝜃 ∈ ℝ𝑝+1

Optimization and Machine Learning: Lin. Regression

𝒙𝑖
𝑇

|| 𝑿 𝒘 − 𝐲||2
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A Real-World Problem in Petroleum Engineering
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Function Difficulties
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 dimensionality

(considerably) larger than three

 non-separability

dependencies between the objective variables

 ill-conditioning

 ruggedness

non-smooth, discontinuous, multimodal, and/or 

noisy function

What Makes a Function Difficult to Solve?

a narrow ridge

cut from 3D example, 

solvable with an 

evolution strategy
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 The term Curse of dimensionality (Richard Bellman) refers to 

problems caused by the rapid increase in volume associated 

with adding extra dimensions to a (mathematical) space.

 Example: Consider placing 100 points onto a real interval, say 

0,1 . To get similar coverage, in terms of distance between

adjacent points, of the 10-dimensional space 0,1 10 would

require 10010 = 1020 points. The original 100 points appear now

as isolated points in a vast empty space. 

 Consequently, a search policy (e.g. exhaustive search) that is 

valuable in small dimensions might be useless in moderate or 

large dimensional search spaces.

Curse of Dimensionality
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Separable Problems

Definition (Separable Problem)

A function 𝑓 is separable if

argmin
(𝑥1,…,𝑥𝑛)

𝑓(𝑥1, … , 𝑥𝑛) = argmin
𝑥1

𝑓 𝑥1, … , … , argmin
𝑥𝑛

𝑓(… , 𝑥𝑛)

⟹ it follows that 𝑓 can be optimized in a sequence of

𝑛 independent 1-D optimization processes

Example:

Additively decomposable functions

𝑓 𝑥1, … , 𝑥𝑛 =  

𝑖=1

𝑛

𝑓𝑖(𝑥𝑖)

Rastrigin function
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Non-Separable Problems

Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system

 𝑓: 𝒙 ⟼ 𝑓(𝒙) separable

 𝑓: 𝒙 ⟼ 𝑓(𝑅𝒙) non-separable

𝑅 rotation matrix

𝑅
⟶

[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in 

evolution strategies: The generating set adaptation". Sixth ICGA, pp. 57-64, Morgan Kaufmann

[2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark 

Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278
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Ill-Conditioned Problems: Curvature of Level Sets

Consider the convex-quadratic function

𝑓 𝒙 =
1

2
𝒙 − 𝒙∗ 𝑇𝐻 𝒙 − 𝒙∗ =

1

2
 

𝑖
ℎ𝑖,𝑖𝑥𝑖

2 +
1

2
 

𝑖,𝑗
ℎ𝑖,𝑗𝑥𝑖𝑥𝑗

H is Hessian matrix of 𝑓 and symmetric positive definite

Ill-conditioning means squeezed level sets (high curvature).

Condition number of SPD matrix A = ratio between largest and smallest 

eigenvalue 

Condition number equals nine here (kind of well-conditioned). Condition 

numbers up to 1010 are not unusual in real-world problems. 

gradient direction −𝑓′ 𝑥 𝑇

Newton direction −𝐻−1𝑓′ 𝑥 𝑇



15Introduction to Optimization @ ECP, Nov. 28, 2016© Dimo Brockhoff, Inria 15

Mathematical Tools to Characterize Optima
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Unconstrained case

 local vs. global

 local minimum 𝒙∗: ∃ a neighborhood 𝑉 of 𝒙∗ such that

∀𝒙 ∈ V: 𝑓(𝒙) ≥ 𝑓(𝒙∗)

 global minimum: ∀𝒙 ∈ Ω: 𝑓 𝒙 ≥ 𝑓 𝒙∗

 strict local minimum if the inequality is strict

Different Notions of Optimum
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Objective: Derive general characterization of optima

Example: if 𝑓:ℝ → ℝ differentiable,

𝑓′ 𝑥 = 0 at optimal points

 generalization to 𝑓:ℝ𝑛 → ℝ ?

 generalization to constrained problems?

Remark: notion of optimum independent of notion of differentiability

Mathematical Characterization of Optima

optima of such function can be easily 

approached by certain type of methods
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𝑓: (𝑉, | | 𝑉) ⟶ (𝑊, | | 𝑊) is continuous in 𝑥 ∈ 𝑉 if

∀𝜖 > 0, ∃𝜂 > 0 such that ∀𝑦 ∈ 𝑉: |𝑥 − 𝑦| 𝑉 ≤ 𝜂; ||𝑓 𝑥 − 𝑓(𝑦)||𝑊 ≤ 𝜖

Reminder: Continuity of a Function

continuous

function

not continuous

discontinuity

point
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𝑓:ℝ → ℝ is differentiable in 𝑥 ∈ ℝ if

lim
ℎ→0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ
exists, ℎ ∈ ℝ

Notation:

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ

The derivative corresponds to the slope of the tangent in 𝑥.

Reminder: Differentiability in 1D (n=1)
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Taylor Formula (Order 1)

If 𝑓 is differentiable in 𝑥 then

𝑓 𝑥 + ℎ = 𝑓 𝑥 + 𝑓′ 𝑥 ℎ + 𝑜 |ℎ|

i.e. for ℎ small enough, ℎ ⟼ 𝑓 𝑥 + ℎ is approximated by ℎ ⟼
𝑓 𝑥 + 𝑓′ 𝑥 ℎ

ℎ ⟼ 𝑓 𝑥 + 𝑓′ 𝑥 ℎ is called a first order approximation of 𝑓(𝑥 + ℎ)

Reminder: Differentiability in 1D (n=1)
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Geometrically:

The notion of derivative of a function defined on ℝ𝑛 is generalized

via this idea of a linear approximation of 𝑓(𝑥 + ℎ) for ℎ small

enough.

Reminder: Differentiability in 1D (n=1)
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 In (ℝ𝑛, || ||2) where ||𝒙||2 = 𝒙, 𝒙 is the Euclidean norm

deriving from the scalar product 𝒙, 𝒚 = 𝒙𝑇𝒚

𝛻𝑓 𝑥 =

𝜕𝑓

𝜕𝑥1
⋮
𝜕𝑓

𝜕𝑥𝑛

 Reminder: partial derivative in 𝑥0
fi: 𝑦→ 𝑓 𝑥0

1, … , 𝑥0
𝑖−1, 𝑦, 𝑥0

𝑖+1, … , 𝑥0
𝑛

𝜕𝑓

𝜕𝑥𝑖
𝑥0 = 𝑓𝑖′(𝑥0)

Gradient Definition Via Partial Derivatives
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Exercise: Gradients

Exercise:

Compute the gradients of 

a) 𝑓 𝑥 = 𝑥1 with 𝑥 ∈ ℝ𝑛

b) 𝑓 𝑥 = 𝑎𝑇𝑥 with a, 𝑥 ∈ ℝ𝑛

c) 𝑓 𝑥 = 𝑥𝑇𝑥 (= |x| 2) with 𝑥 ∈ ℝ𝑛
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Some more examples:

 in ℝ𝑛, if 𝑓 𝒙 = 𝒙𝑇𝐴𝒙, then 𝛻𝑓 𝒙 = (𝐴 + 𝐴𝑇)𝒙

 in ℝ, 𝛻𝑓 𝒙 = 𝑓′(𝒙)

Exercise: Gradients

Exercise:

Compute the gradients of 

a) 𝑓 𝑥 = 𝑥1 with 𝑥 ∈ ℝ𝑛

b) 𝑓 𝑥 = 𝑎𝑇𝑥 with a, 𝑥 ∈ ℝ𝑛

c) 𝑓 𝑥 = 𝑥𝑇𝑥 (= |x| 2) with 𝑥 ∈ ℝ𝑛
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More generally, the gradient of a

differentiable function is orthogonal to

its level sets.

Gradient: Geometrical Interpretation

Exercise:

Let 𝐿𝑐 = 𝒙 ∈ ℝ𝑛 𝑓 𝒙 = 𝑐} be again a level set of a function 𝑓 𝒙 .

Let 𝒙0 ∈ 𝐿𝑐 ≠ ∅.

Compute the level sets for 𝑓1 𝒙 = 𝒂𝑇𝒙 and 𝑓2 𝒙 = | 𝒙 |2 and

the gradient in a chosen point 𝑥0 and observe that 𝛻𝑓 𝒙𝟎 is

orthogonal to the level set in 𝑥0.

Again: if this seems too difficult, do it for two variables (and a

concrete 𝒂 ∈ ℝ2 and draw the level sets and the gradients.
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Question: How do we prove in general that the gradient is 

orthogonal to the level sets?

Answer:

 similar to what we did for two variables

 take any curve within the level set, parametrized by 𝑡 ⟼ 𝑐(𝑡)

 clear: 𝑓(𝑐(𝑡)) = 𝑐 for all 𝑡

 derivative wrt to 𝑡: 
𝑑

𝑑𝑡
𝑓 𝑐 𝑡 = 0

 but also 
𝑑

𝑑𝑡
𝑓(𝑐 𝑡 ) = 𝛻(𝑓 𝑐 𝑡

𝑇 𝑑

𝑑𝑡
𝑐(𝑡)

[via chain rule, 
𝑑

𝑑𝑡
𝑐(𝑡) is a vector, tangent to the curve in 𝑡]

Level Sets and Gradients are Orthogonal
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Taylor Formula – Order One

𝑓 𝒙 + 𝒉 = 𝑓 𝒙 + 𝛻𝑓 𝒙
𝑇
𝒉 + 𝑜(||𝒉||)

Differentiability in ℝ𝒏
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 Let 𝑓: 𝐷 ⊆ ℝ → ℝ be a differentiable function and let 𝑓′: 𝑥 →
𝑓′(𝑥) be its derivative.

 If 𝑓′ is differentiable in 𝑥, then we denote its derivative as 𝑓′′ 𝑥

 𝑓′′(𝑥) is called the second order derivative of 𝑓.

Reminder: Second Order Differentiability in 1D
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 If 𝑓:ℝ → ℝ is two times differentiable then

𝑓 𝑥 + ℎ = 𝑓 𝑥 + 𝑓′ 𝑥 ℎ + 𝑓′′ 𝑥 ℎ2 + 𝑜 ||ℎ||2

i.e. for ℎ small enough, ℎ → 𝑓 𝑥 + ℎ𝑓′ 𝑥 + ℎ2𝑓′′(𝑥)
approximates ℎ + 𝑓(𝑥 + ℎ)

 ℎ → 𝑓 𝑥 + ℎ𝑓′ 𝑥 + ℎ2𝑓′′(𝑥) is a quadratic approximation (or 

order 2) of 𝑓 in a neighborhood of 𝑥

 The second derivative of 𝑓: ℝ → ℝ generalizes naturally to larger 

dimension.

Taylor Formula: Second Order Derivative
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In ℝ𝑛, 𝑥, 𝑦 = 𝑥𝑇𝑦 , 𝛻2𝑓(𝑥) is represented by a symmetric matrix 

called the Hessian matrix. It can be computed as

𝛻2 𝑓 =

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
…

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛
𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2 …

𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑛
⋮ ⋮ ⋱ ⋮

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥2
…

𝜕2𝑓

𝜕𝑥𝑛
2

Hessian Matrix
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Exercise on Hessian Matrix

Exercise:

Let 𝑓 𝒙 =
1

2
𝒙𝑇𝐴 𝒙, 𝒙 ∈ ℝ𝑛, and 𝐴 ∈ ℝ𝑛×𝑛 symmetric.

Compute the Hessian matrix of 𝑓.

If it is too complex, consider 𝑓:  
ℝ2 → ℝ

𝒙 →
1

2
𝒙𝑇𝐴 𝒙

with 𝐴 =
9 0
0 1
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Taylor Formula – Order Two

𝑓 𝒙 + 𝒉 = 𝑓 𝒙 + 𝛻𝑓 𝒙
𝑇
𝒉 +

1

2
𝒉𝑇 𝛻2𝑓 𝒙 𝒉 + 𝑜( |𝒉| 2)

Second Order Differentiability in ℝ𝒏



33Introduction to Optimization @ ECP, Nov. 28, 2016© Dimo Brockhoff, Inria 33

We have seen that for a convex quadratic function

𝑓 𝑥 =
1

2
𝑥 − 𝑥0

𝑇𝐴 𝑥 − 𝑥0 + 𝑏 of 𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑛×𝑛, 𝐴 SPD, 𝑏 ∈ ℝ𝑛:

1) The level sets are ellipsoids. The eigenvalues of 𝐴 determine 

the lengths of the principle axes of the ellipsoid.

2) The Hessian matrix of 𝑓 equals to 𝐴.

Ill-conditioned convex quadratic problems are problems with large 

ratio between largest and smallest eigenvalue of 𝐴 which means large 

ratio between longest and shortest axis of ellipsoid.

This corresponds to having an ill-conditioned Hessian matrix.

Back to Ill-Conditioned Problems

For 𝑛 = 2, let 𝜆1, 𝜆2 be

the eigenvalues of 𝐴.
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Exercise: Gradients and Level Sets of 

Convex Quadratic Functions

http://researchers.lille.inria.fr/

~brockhof/introoptimization/
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Gradient direction: 𝛻𝑓(𝒙)

Newton direction: 𝐻 𝒙
−1

⋅ 𝛻𝑓 𝒙

with 𝐻(𝒙) = 𝛻2𝑓(𝒙) being the Hessian at 𝒙

Gradient Direction Vs. Newton Direction

Exercise:

Let again 𝑓 𝒙 =
1

2
𝒙𝑇𝐴 𝒙, 𝒙 ∈ ℝ2, 𝐴 =

9 0
0 1

∈ ℝ2×2.

Plot the gradient and Newton direction of 𝑓 in a point 𝑥 ∈ ℝ2

of your choice (which should not be on a coordinate axis) into

the same plot with the level sets, we created before.
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Optimality Conditions

for Unconstrained Problems
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For 1-dimensional optimization problems 𝒇: ℝ → ℝ

Assume 𝑓 is differentiable

 𝒙∗ is a local optimum ⟹ 𝑓′ 𝒙∗ = 0

not a sufficient condition: consider 𝑓 𝒙 = 𝒙3

proof via Taylor formula: 𝑓 𝒙∗ + 𝒉 = 𝑓 𝒙∗ + 𝑓′ 𝒙∗ 𝒉 + 𝑜(||𝒉||)

 points 𝒚 such that 𝑓′ 𝒚 = 0 are called critical or stationary points

Generalization to 𝒏-dimensional functions

If 𝑓:𝑈 ⊂ ℝ𝑛 ⟼ ℝ is differentiable

 necessary condition: If 𝒙∗ is a local optimum of 𝑓, then 𝛻𝑓 𝒙∗ = 0

proof via Taylor formula 

Optimality Conditions: First Order Necessary Cond.
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If 𝑓 is twice continuously differentiable

 Necessary condition: if 𝒙∗ is a local minimum, then 𝛻𝑓 𝒙∗ = 0
and 𝛻2𝑓(𝒙∗) is positive semi-definite

proof via Taylor formula at order 2

 Sufficient condition: if 𝛻𝑓 𝒙∗ = 0 and 𝛻2𝑓 𝒙∗ is positive definite, 

then 𝒙∗ is a strict local minimum

Proof of Sufficient Condition:

 Let 𝜆 > 0 be the smallest eigenvalue of 𝛻2𝑓(𝒙∗), using a second 

order Taylor expansion, we have for all 𝒉:

 𝑓 𝒙∗ + 𝒉 − 𝑓 𝒙∗ = 𝛻𝑓 𝒙∗ 𝑇𝒉 +
1

2
𝒉𝑇𝛻2𝑓 𝒙∗ 𝒉 + 𝑜(||𝒉||2)

>
𝜆

2
| 𝒉 |2 + o(||𝒉||2) =

𝜆

2
+
𝑜(||𝒉||2)

||𝒉||2
||𝒉||2

Second Order Necessary and Sufficient Opt. Cond.
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Let 𝑈 be a convex open set of ℝ𝑛 and 𝑓:𝑈 → ℝ. The function 𝑓 is

said to be convex if for all 𝒙, 𝒚 ∈ 𝑈 and for all 𝑡 ∈ [0,1]

𝑓 1 − 𝑡 𝒙 + 𝑡𝒚 ≤ 1 − 𝑡 𝑓 𝒙 + 𝑡𝑓(𝒚)

Theorem

If 𝑓 is differentiable, then 𝑓 is convex if and only if for all 𝒙, 𝒚

𝑓 𝒚 − 𝑓 𝒙 ≥ 𝛻𝑓 𝑥
𝑇
(𝒚 − 𝒙)

if 𝑛 = 1, the curve is on top of the tangent

If 𝑓 is twice continuously differentiable, then 𝑓 is convex if and only if 

𝛻2𝑓(𝒙) is positive semi-definite for all 𝒙.

Convex Functions
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Examples of Convex Functions:

 𝑓 𝒙 = 𝑎𝑇𝒙 + 𝑏

 𝑓 𝒙 =
1

2
𝒙𝑇𝐴𝒙 + 𝑎𝑇𝒙 + 𝑏, 𝐴 symmetric positive definite

 the negative of the entropy function (i. e. 𝑓 𝒙 = − 𝑖=1
𝑛 𝒙𝑖 ln(𝒙𝒊) )

Convex Functions: Why Convexity?

Exercise:

Let 𝑓:𝑈 → ℝ be a convex and differentiable function on a

convex open 𝑈.

Show that if 𝛻𝑓 𝒙∗ = 0, then 𝒙∗ is a global minimum of 𝑓
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Constrained Optimization
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Objective:

Generalize the necessary condition of 𝛻𝑓 𝑥 = 0 at the optima of f

when 𝑓 is in 𝒞1, i.e. is differentiable and its derivative is continuous

Theorem:

Be 𝑈 an open set of 𝐸, | | , and 𝑓: 𝑈 → ℝ, 𝑔:𝑈 → ℝ in 𝒞1.

Let 𝑎 ∈ 𝐸 satisfy

 
𝑓 𝑎 = inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛, 𝑔 𝑥 = 0}

𝑔 𝑎 = 0

i.e. 𝑎 is optimum of the problem

If 𝛻𝑔 𝑎 ≠ 0, then there exists a constant 𝜆 ∈ ℝ called Lagrange 

multiplier, such that

𝛻𝑓 𝑎 + 𝜆𝛻𝑔 𝑎 = 0

i.e. gradients of 𝑓 and 𝑔 in 𝑎 are colinear

Note: 𝑎 need not be a global minimum but a local one

Equality Constraint
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Geometrical Interpretation Using an Example

Exercise:

Consider the problem

inf 𝑓 𝑥, 𝑦 𝑥, 𝑦 ∈ ℝ2, 𝑔 𝑥, 𝑦 = 0}

𝑓 𝑥, 𝑦 = 𝑦 − 𝑥2 𝑔 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 1

1) Plot the level sets of 𝑓, plot 𝑔 = 0
2) Compute 𝛻𝑓 and 𝛻𝑔
3) Find the solutions with 𝛻𝑓 + 𝜆𝛻𝑔 = 0

equation solving with 3 unknowns (𝑥, 𝑦, 𝜆)

4) Plot the solutions of 3) on top of the level set graph of 1)
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Intuitive way to retrieve the Euler-Lagrange equation:

 In a local minimum 𝑎 of a constrained problem, the 

hypersurfaces (or level sets) 𝑓 = 𝑓(𝑎) and 𝑔 = 0 are necessarily

tangent (otherwise we could decrease 𝑓 by moving along 𝑔 = 0).

 Since the gradients 𝛻𝑓 𝑎 and 𝛻𝑔(𝑎) are orthogonal to the level

sets 𝑓 = 𝑓(𝑎) and 𝑔 = 0, it follows that 𝛻𝑓(𝑎) and 𝛻𝑔(𝑎) are 

colinear.

Interpretation of Euler-Lagrange Equation
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Theorem

 Assume 𝑓:𝑈 → ℝ and 𝑔𝑘: 𝑈 → ℝ (1 ≤ 𝑘 ≤ 𝑝) are 𝒞1.

 Let 𝑎 be such that

 
𝑓 𝑎 = inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛, 𝑔𝑘 𝑥 = 0, 1 ≤ 𝑘 ≤ 𝑝}

𝑔𝑘 𝑎 = 0 for all 1 ≤ 𝑘 ≤ 𝑝

 If 𝛻𝑔𝑘 𝑎
1≤𝑘≤𝑝

are linearly independent, then there exist 𝑝 real 

constants 𝜆𝑘 1≤𝑘≤𝑝 such that

𝛻𝑓 𝑎 +  

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑎 = 0

again: 𝑎 does not need to be global but local minimum

Generalization to More than One Constraint

Lagrange multiplier
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 Define the Lagrangian on ℝ𝑛 × ℝ𝑝 as

ℒ 𝑥, 𝜆𝑘 = 𝑓 𝑥 +  

𝑘=1

𝑝

𝜆𝑘𝑔𝑘(𝑥)

 To find optimal solutions, we can solve the optimality system

Find 𝑥, 𝜆𝑘 ∈ ℝ𝑛 × ℝ𝑝 such that 𝛻𝑓 𝑥 +  

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑥 = 0

𝑔𝑘 𝑥 = 0 for all 1 ≤ 𝑘 ≤ 𝑝

⟺  
Find 𝑥, 𝜆𝑘 ∈ ℝ𝑛 × ℝ𝑝 such that 𝛻𝑥ℒ 𝑥, {𝜆𝑘} = 0

𝛻𝜆𝑘ℒ 𝑥, {𝜆𝑘} 𝑥 = 0 for all 1 ≤ 𝑘 ≤ 𝑝

The Lagrangian
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Let 𝒰 = 𝑥 ∈ ℝ𝑛 𝑔𝑘 𝑥 = 0 for 𝑘 ∈ 𝐸 , 𝑔𝑘(𝑥) ≤ 0 (for 𝑘 ∈ 𝐼)}.

Definition:

The points in ℝ𝑛 that satisfy the constraints are also called feasible

points.

Definition:

Let 𝑎 ∈ 𝒰, we say that the constraint 𝑔𝑘 𝑥 ≤ 0 (for 𝑘 ∈ 𝐼) is active

in 𝑎 if 𝑔𝑘 𝑎 = 0.

Inequality Constraints: Definitions
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Theorem (Karush-Kuhn-Tucker, KKT):

Let 𝑈 be an open set of 𝐸, | ||) and 𝑓: 𝑈 → ℝ, 𝑔𝑘: 𝑈 → ℝ, all 𝒞1

Furthermore, let 𝑎 ∈ 𝑈 satisfy

 

𝑓 𝑎 = inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛, 𝑔𝑘(𝑥) = 0 for 𝑘 ∈ 𝐸 , 𝑔𝑘 𝑥 ≤ 0 (for 𝑘 ∈ I)

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

Let 𝐼𝑎
0 be the set of constraints that are active in 𝑎. Assume that

𝛻𝑔𝑘 𝑎
𝑘 ∈ 𝐸 ∪ 𝐼𝑎

0 are linearly independent.

Then there exist 𝜆𝑘 1≤𝑘≤𝑝 that satisfy

𝛻𝑓 𝑎 +  

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑎 = 0

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

𝜆𝑘 ≥ 0 (for 𝑘 ∈ 𝐼𝑎
0)

𝜆𝑘𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸 ∪ 𝐼)

Inequality Constraint: Karush-Kuhn-Tucker Theorem

also works again for 𝑎
being a local minimum
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Theorem (Karush-Kuhn-Tucker, KKT):

Let 𝑈 be an open set of 𝐸, | ||) and 𝑓: 𝑈 → ℝ, 𝑔𝑘: 𝑈 → ℝ, all 𝒞1

Furthermore, let 𝑎 ∈ 𝑈 satisfy

 

𝑓 𝑎 = inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛, 𝑔𝑘(𝑥) = 0 for 𝑘 ∈ 𝐸 , 𝑔𝑘 𝑥 ≤ 0 (for 𝑘 ∈ I)

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

Let 𝐼𝑎
0 be the set of constraints that are active in 𝑎. Assume that

𝛻𝑔𝑘 𝑎
𝑘 ∈ 𝐸 ∪ 𝐼𝑎

0 are linearly independent.

Then there exist 𝜆𝑘 1≤𝑘≤𝑝 that satisfy

𝛻𝑓 𝑎 +  

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑎 = 0

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

𝜆𝑘 ≥ 0 (for 𝑘 ∈ 𝐼𝑎
0)

𝜆𝑘𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸 ∪ 𝐼)

Inequality Constraint: Karush-Kuhn-Tucker Theorem

either active constraint

or 𝜆𝑘 = 0
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Descent Methods



54Introduction to Optimization @ ECP, Nov. 28, 2016© Dimo Brockhoff, Inria 54

General principle

 choose an initial point 𝒙0, set 𝑡 = 1

 while not happy

 choose a descent direction 𝒅𝑡 ≠ 0

 line search:

 choose a step size 𝜎𝑡 > 0

 set 𝒙𝑡+1 = 𝒙𝑡 + 𝜎𝑡𝒅𝑡

 set 𝑡 = 𝑡 + 1

Remaining questions

 how to choose 𝒅𝑡?

 how to choose 𝜎𝑡? 

Descent Methods
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Rationale: 𝒅𝑡 = −𝛻𝑓(𝒙𝑡) is a descent direction

indeed for 𝑓 differentiable

𝑓 𝑥 − 𝜎𝛻𝑓 𝑥 = 𝑓 𝑥 − 𝜎||𝛻𝑓 𝑥 ||2 + 𝑜(𝜎||𝛻𝑓 𝑥 ||)

< 𝑓(𝑥) for 𝜎 small enough

Step-size

 optimal step-size: 𝜎𝑡 = argmin
𝜎

𝑓(𝒙𝑡 − 𝜎𝛻𝑓 𝒙𝑡 )

 Line Search: total or partial optimization w.r.t. 𝜎
Total is however often too "expensive" (needs to be performed at 

each iteration step)

Partial optimization: execute a limited number of trial steps until a 

loose approximation of the optimum is found. Typical rule for 

partial optimization: Armijo rule
see next slide and exercise

Stopping criteria:

norm of gradient smaller than 𝜖

Gradient Descent
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Choosing the step size:

 Only to decrease 𝑓-value not enough to converge (quickly)

 Want to have a reasonably large decrease in 𝑓

Armijo-Goldstein rule:

 also known as backtracking line search

 starts with a (too) large estimate of 𝜎 and reduces it until 𝑓 is 

reduced enough

 what is enough?

 assuming a linear 𝑓 e.g. 𝑚𝑘(𝑥) = 𝑓(𝑥𝑘) + 𝛻 𝑓 𝑥𝑘
𝑇(𝑥 − 𝑥𝑘)

 expected decrease if step of 𝜎𝑘 is done in direction 𝒅: 

𝜎𝑘𝛻𝑓 𝑥𝑘
𝑇𝒅

 actual decrease: 𝑓 𝑥𝑘 − 𝑓(𝑥𝑘 + 𝜎𝑘𝒅)

 stop if actual decrease is at least constant times expected 

decrease (constant typically chosen in [0, 1])

The Armijo-Goldstein Rule
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The Actual Algorithm:

Armijo, in his original publication chose 𝛽 = 𝜃 = 0.5.

Choosing 𝜃 = 0 means the algorithm accepts any decrease.

The Armijo-Goldstein Rule
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Graphical Interpretation

The Armijo-Goldstein Rule

𝑥

𝜎0
linear approximation

(expected decrease)

accepted decrease

actual increase
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Graphical Interpretation

The Armijo-Goldstein Rule

𝑥

𝜎1
linear approximation

(expected decrease)

accepted decrease

decrease in 𝑓
but not sufficiently large
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Graphical Interpretation

The Armijo-Goldstein Rule

𝑥

𝜎2
linear approximation 

(expected decrease)

accepted decrease

decrease in 𝑓
now sufficiently large
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Assume 𝑓 is twice continuously differentiable, convex and that 

𝜇𝐼𝑑 ≼ 𝛻2𝑓 𝑥 ≼ 𝐿𝐼𝑑 with 𝜇 > 0 holds, assume a fixed step-size 𝜎𝑡 =
1

𝐿

Note: 𝐴 ≼ 𝐵 means 𝑥𝑇𝐴𝑥 ≤ 𝑥𝑇𝐵𝑥 for all 𝑥

𝑥𝑡+1 − 𝑥∗ = 𝑥𝑡 − 𝑥∗ − 𝜎𝑡𝛻
2𝑓 𝑦𝑡 𝑥𝑡 − 𝑥∗ for some 𝑦𝑡 ∈ [𝑥𝑡 , 𝑥

∗]

𝑥𝑡+1 − 𝑥∗ = 𝐼𝑑 −
1

𝐿
𝛻2𝑓 𝑦𝑡 𝑥𝑡 − 𝑥∗

Hence | 𝑥𝑡+1 − 𝑥∗ |2 ≤ |||𝐼𝑑 −
1

𝐿
𝛻2𝑓 𝑦𝑡 |||2 | 𝑥𝑡 − 𝑥∗ |2

≤ 1 −
𝜇

𝐿

2

||𝑥𝑡 − 𝑥∗||2

Linear convergence: | 𝑥𝑡+1 − 𝑥∗ | ≤ 1 −
𝜇

𝐿
||𝑥𝑡 − 𝑥∗||

algorithm slower and slower with increasing condition number

Non-convex setting: convergence towards stationary point

Gradient Descent: Simple Theoretical Analysis
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Newton Method

 descent direction: − 𝛻2𝑓 𝑥𝑘
−1𝛻𝑓(𝑥𝑘) [so-called Newton 

direction]

 The Newton direction:

 minimizes the best (locally) quadratic approximation of 𝑓: 

 𝑓 𝑥 + Δ𝑥 = 𝑓 𝑥 + 𝛻𝑓 𝑥 𝑇Δ𝑥 +
1

2
Δ𝑥 𝑇𝛻2𝑓 𝑥 Δx

 points towards the optimum on 𝑓 𝑥 = 𝑥 − 𝑥∗ 𝑇𝐴 𝑥 − 𝑥∗

 however, Hessian matrix is expensive to compute in general and 

its inversion is also not easy

quadratic convergence

(i.e. lim
𝑘→∞

|𝑥𝑘+1−𝑥
∗|

𝑥𝑘−𝑥
∗ 2 = 𝜇 > 0 )

Newton Algorithm
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Affine Invariance: same behavior on 𝑓 𝑥 and 𝑓(𝐴𝑥 + 𝑏) for 𝐴 ∈
GLn(ℝ)

 Newton method is affine invariant
see http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/

Lecture_6_Scribe_Notes.final.pdf

 same convergence rate on all convex-quadratic functions

 Gradient method not affine invariant

Remark: Affine Invariance
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𝑥𝑡+1 = 𝑥𝑡 − 𝜎𝑡𝐻𝑡𝛻𝑓(𝑥𝑡) where 𝐻𝑡 is an approximation of the inverse 

Hessian

Key idea of Quasi Newton:

successive iterates 𝑥𝑡, 𝑥𝑡+1 and gradients 𝛻𝑓 𝑥𝑡 , 𝛻𝑓(𝑥𝑡+1) yield

second order information

𝑞𝑡 ≈ 𝛻2𝑓 𝑥𝑡+1 𝑝𝑡

where  𝑝𝑡 = 𝑥𝑡+1 − 𝑥𝑡 and 𝑞𝑡 = 𝛻𝑓 𝑥𝑡+1 − 𝛻𝑓 𝑥𝑡

Most popular implementation of this idea: Broyden-Fletcher-

Goldfarb-Shanno (BFGS)

 default in MATLAB's fminunc and python's 

scipy.optimize.minimize

Quasi-Newton Method: BFGS
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I hope it became clear...

...what are the difficulties to cope with when solving numerical 

optimization problems

in particular dimensionality, non-separability and ill-conditioning

...what are gradient and Hessian

...what is the difference between gradient and Newton direction

...and that adapting the step size in descent algorithms is crucial.

Conclusions


