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Date Topic

Fri, 7.10.2016 Introduction

Fri, 28.10.2016 D Introduction to Discrete Optimization + Greedy algorithms I

Fri, 4.11.2016 D Greedy algorithms II + Branch and bound

Fri, 18.11.2016 D Dynamic programming

Mon, 21.11.2016
in S103-S105

D Approximation algorithms and heuristics

Fri, 25.11.2016
in S103-S105

C Randomized Search Heuristics + Intro. to Continuous Opt. I

Mon, 28.11.2016
in S103-S105

C Introduction to Continuous Optimization II

Mon, 5.12.2016
in S103-S105

C Introduction to Continuous Optimization III

Fri, 9.12.2016 C Constrained Optimization + Descent Methods

Mon, 12.12.2016
in S103-S105

C Derivative Free Optimization I: CMA-ES

Fri, 16.12.2016 C Derivative Free Optimization II: Benchmarking Optimizers

with the COCO platform

Wed, 4.1.2017 Exam

Course Overview

if not indicated otherwise, classes take place in S115-S117
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After several requests, I compiled a list of potential exam questions:

 http://researchers.lille.inria.fr/~brockhof/int

rooptimization/exam/publicQuestions.pdf

Information: Potential Exam Questions
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Introduction to Continuous Optimization

 examples (from ML / black-box problems)

 typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

 reminders about differentiability, gradient, Hessian matrix

 unconstraint optimization

 first and second order conditions

 convexity

 constrained optimization

Gradient-based Algorithms

 gradient descent

 quasi-Newton method (BFGS)

Derivative Free Optimization

 stochastic adaptive algorithms (CMA-ES)

 Benchmarking Numerical Blackbox Optimizers

Overview Continuous Optimization Part
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Mathematical Tools to Characterize Optima

[what we did so far]
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Objective: Derive general characterization of optima

Example: if 𝑓:ℝ → ℝ differentiable,

𝑓′ 𝑥 = 0 at optimal points

 generalization to 𝑓:ℝ𝑛 → ℝ ?

 generalization to constrained problems?

Mathematical Characterization of Optima



7Introduction to Optimization @ ECP, Dec. 5, 2016© Dimo Brockhoff, Inria 7

 In (ℝ𝑛, || ||2) where ||𝒙||2 = 𝒙, 𝒙 is the Euclidean norm

deriving from the scalar product 𝒙, 𝒚 = 𝒙𝑇𝒚

𝛻𝑓 𝑥 =

𝜕𝑓

𝜕𝑥1
⋮
𝜕𝑓

𝜕𝑥𝑛

 Reminder: partial derivative in 𝑥0
fi: 𝑦→ 𝑓 𝑥0

1, … , 𝑥0
𝑖−1, 𝑦, 𝑥0

𝑖+1, … , 𝑥0
𝑛

𝜕𝑓

𝜕𝑥𝑖
𝑥0 = 𝑓𝑖′(𝑥0)

Reminder: Gradient
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More generally, the gradient of a

differentiable function is orthogonal to

its level sets.

Reminder: Geometrical Interpretation of Gradient

Exercise:

Let 𝐿𝑐 = 𝒙 ∈ ℝ𝑛 𝑓 𝒙 = 𝑐} be again a level set of a function 𝑓 𝒙 .

Let 𝒙0 ∈ 𝐿𝑐 ≠ ∅.

Compute the level sets for 𝑓1 𝒙 = 𝒂𝑇𝒙 and 𝑓2 𝒙 = | 𝒙 |2 and

the gradient in a chosen point 𝑥0 and observe that 𝛻𝑓 𝒙𝟎 is

orthogonal to the level set in 𝑥0.

Again: if this seems too difficult, do it for two variables (and a

concrete 𝒂 ∈ ℝ2 and draw the level sets and the gradients.



9Introduction to Optimization @ ECP, Dec. 5, 2016© Dimo Brockhoff, Inria 9

Taylor Formula – Order One

𝑓 𝒙 + 𝒉 = 𝑓 𝒙 + 𝛻𝑓 𝒙
𝑇
𝒉 + 𝑜(||𝒉||)

Reminder: Differentiability in ℝ𝒏
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In ℝ𝑛, 𝑥, 𝑦 = 𝑥𝑇𝑦 , 𝛻2𝑓(𝑥) is represented by a symmetric matrix 

called the Hessian matrix. It can be computed as

𝛻2 𝑓 =

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
…

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛
𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2 …

𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑛
⋮ ⋮ ⋱ ⋮

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥2
…

𝜕2𝑓

𝜕𝑥𝑛
2

Reminder: Hessian Matrix
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Taylor Formula – Order Two

𝑓 𝒙 + 𝒉 = 𝑓 𝒙 + 𝛻𝑓 𝒙
𝑇
𝒉 +

1

2
𝒉𝑇 𝛻2𝑓 𝒙 𝒉 + 𝑜( |𝒉| 2)

Reminder: Second Order Differentiability in ℝ𝒏
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Exercise: Gradients and Level Sets of 

Convex Quadratic Functions

http://researchers.lille.inria.fr/

~brockhof/introoptimization/
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Mathematical Tools to Characterize Optima
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Gradient direction: 𝛻𝑓(𝒙)

Newton direction: 𝐻 𝒙
−1

⋅ 𝛻𝑓 𝒙

with 𝐻(𝒙) = 𝛻2𝑓(𝒙) being the Hessian at 𝒙

Gradient Direction Vs. Newton Direction

Exercise:

Let again 𝑓 𝒙 =
1

2
𝒙𝑇𝐴 𝒙, 𝒙 ∈ ℝ2, 𝐴 =

9 0
0 1

∈ ℝ2×2.

Plot the gradient and Newton direction of 𝑓 in a point 𝑥 ∈ ℝ2

of your choice (which should not be on a coordinate axis) into

the same plot with the level sets, we created before.
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Optimality Conditions

for Unconstrained Problems
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For 1-dimensional optimization problems 𝒇: ℝ → ℝ

Assume 𝑓 is differentiable

 𝒙∗ is a local optimum ⟹ 𝑓′ 𝒙∗ = 0

not a sufficient condition: consider 𝑓 𝒙 = 𝒙3

proof via Taylor formula: 𝑓 𝒙∗ + 𝒉 = 𝑓 𝒙∗ + 𝑓′ 𝒙∗ 𝒉 + 𝑜(||𝒉||)

 points 𝒚 such that 𝑓′ 𝒚 = 0 are called critical or stationary points

Generalization to 𝒏-dimensional functions

If 𝑓:𝑈 ⊂ ℝ𝑛 ⟼ ℝ is differentiable

 necessary condition: If 𝒙∗ is a local optimum of 𝑓, then 𝛻𝑓 𝒙∗ = 0

proof via Taylor formula 

Optimality Conditions: First Order Necessary Cond.
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If 𝑓 is twice continuously differentiable

 Necessary condition: if 𝒙∗ is a local minimum, then 𝛻𝑓 𝒙∗ = 0
and 𝛻2𝑓(𝒙∗) is positive semi-definite

proof via Taylor formula at order 2

 Sufficient condition: if 𝛻𝑓 𝒙∗ = 0 and 𝛻2𝑓 𝒙∗ is positive definite, 

then 𝒙∗ is a strict local minimum

Proof of Sufficient Condition:

 Let 𝜆 > 0 be the smallest eigenvalue of 𝛻2𝑓(𝒙∗), using a second 

order Taylor expansion, we have for all 𝒉:

 𝑓 𝒙∗ + 𝒉 − 𝑓 𝒙∗ = 𝛻𝑓 𝒙∗ 𝑇𝒉 +
1

2
𝒉𝑇𝛻2𝑓 𝒙∗ 𝒉 + 𝑜(||𝒉||2)

>
𝜆

2
| 𝒉 |2 + o(||𝒉||2) =

𝜆

2
+
𝑜(||𝒉||2)

||𝒉||2
||𝒉||2

Second Order Necessary and Sufficient Opt. Cond.
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Let 𝑈 be a convex open set of ℝ𝑛 and 𝑓:𝑈 → ℝ. The function 𝑓 is

said to be convex if for all 𝒙, 𝒚 ∈ 𝑈 and for all 𝑡 ∈ [0,1]

𝑓 1 − 𝑡 𝒙 + 𝑡𝒚 ≤ 1 − 𝑡 𝑓 𝒙 + 𝑡𝑓(𝒚)

Theorem

If 𝑓 is differentiable, then 𝑓 is convex if and only if for all 𝒙, 𝒚

𝑓 𝒚 − 𝑓 𝒙 ≥ 𝛻𝑓 𝑥
𝑇
(𝒚 − 𝒙)

if 𝑛 = 1, the curve is on top of the tangent

If 𝑓 is twice continuously differentiable, then 𝑓 is convex if and only if 

𝛻2𝑓(𝒙) is positive semi-definite for all 𝒙.

Convex Functions
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Examples of Convex Functions:

 𝑓 𝒙 = 𝑎𝑇𝒙 + 𝑏

 𝑓 𝒙 =
1

2
𝒙𝑇𝐴𝒙 + 𝑎𝑇𝒙 + 𝑏, 𝐴 symmetric positive definite

 the negative of the entropy function (i. e. 𝑓 𝒙 = − 𝑖=1
𝑛 𝒙𝑖 ln(𝒙𝒊) )

Convex Functions: Why Convexity?

Exercise:

Let 𝑓:𝑈 → ℝ be a convex and differentiable function on a

convex open 𝑈.

Show that if 𝛻𝑓 𝒙∗ = 0, then 𝒙∗ is a global minimum of 𝑓
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Constrained Optimization
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Objective:

Generalize the necessary condition of 𝛻𝑓 𝑥 = 0 at the optima of f

when 𝑓 is in 𝒞1, i.e. is differentiable and its derivative is continuous

Theorem:

Be 𝑈 an open set of 𝐸, | | , and 𝑓: 𝑈 → ℝ, 𝑔:𝑈 → ℝ in 𝒞1.

Let 𝑎 ∈ 𝐸 satisfy

 
𝑓 𝑎 = inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛, 𝑔 𝑥 = 0}

𝑔 𝑎 = 0

i.e. 𝑎 is optimum of the problem

If 𝛻𝑔 𝑎 ≠ 0, then there exists a constant 𝜆 ∈ ℝ called Lagrange 

multiplier, such that

𝛻𝑓 𝑎 + 𝜆𝛻𝑔 𝑎 = 0

i.e. gradients of 𝑓 and 𝑔 in 𝑎 are colinear

Note: 𝑎 need not be a global minimum but a local one

Equality Constraint
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Geometrical Interpretation Using an Example

Exercise:

Consider the problem

inf 𝑓 𝑥, 𝑦 𝑥, 𝑦 ∈ ℝ2, 𝑔 𝑥, 𝑦 = 0}

𝑓 𝑥, 𝑦 = 𝑦 − 𝑥2 𝑔 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 1

1) Plot the level sets of 𝑓, plot 𝑔 = 0
2) Compute 𝛻𝑓 and 𝛻𝑔
3) Find the solutions with 𝛻𝑓 + 𝜆𝛻𝑔 = 0

equation solving with 3 unknowns (𝑥, 𝑦, 𝜆)

4) Plot the solutions of 3) on top of the level set graph of 1)
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Intuitive way to retrieve the Euler-Lagrange equation:

 In a local minimum 𝑎 of a constrained problem, the 

hypersurfaces (or level sets) 𝑓 = 𝑓(𝑎) and 𝑔 = 0 are necessarily

tangent (otherwise we could decrease 𝑓 by moving along 𝑔 = 0).

 Since the gradients 𝛻𝑓 𝑎 and 𝛻𝑔(𝑎) are orthogonal to the level

sets 𝑓 = 𝑓(𝑎) and 𝑔 = 0, it follows that 𝛻𝑓(𝑎) and 𝛻𝑔(𝑎) are 

colinear.

Interpretation of Euler-Lagrange Equation
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Theorem

 Assume 𝑓:𝑈 → ℝ and 𝑔𝑘: 𝑈 → ℝ (1 ≤ 𝑘 ≤ 𝑝) are 𝒞1.

 Let 𝑎 be such that

 
𝑓 𝑎 = inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛, 𝑔𝑘 𝑥 = 0, 1 ≤ 𝑘 ≤ 𝑝}

𝑔𝑘 𝑎 = 0 for all 1 ≤ 𝑘 ≤ 𝑝

 If 𝛻𝑔𝑘 𝑎
1≤𝑘≤𝑝

are linearly independent, then there exist 𝑝 real 

constants 𝜆𝑘 1≤𝑘≤𝑝 such that

𝛻𝑓 𝑎 +  

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑎 = 0

again: 𝑎 does not need to be global but local minimum

Generalization to More than One Constraint

Lagrange multiplier
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 Define the Lagrangian on ℝ𝑛 × ℝ𝑝 as

ℒ 𝑥, 𝜆𝑘 = 𝑓 𝑥 +  

𝑘=1

𝑝

𝜆𝑘𝑔𝑘(𝑥)

 To find optimal solutions, we can solve the optimality system

Find 𝑥, 𝜆𝑘 ∈ ℝ𝑛 × ℝ𝑝 such that 𝛻𝑓 𝑥 +  

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑥 = 0

𝑔𝑘 𝑥 = 0 for all 1 ≤ 𝑘 ≤ 𝑝

⟺  
Find 𝑥, 𝜆𝑘 ∈ ℝ𝑛 × ℝ𝑝 such that 𝛻𝑥ℒ 𝑥, {𝜆𝑘} = 0

𝛻𝜆𝑘ℒ 𝑥, {𝜆𝑘} 𝑥 = 0 for all 1 ≤ 𝑘 ≤ 𝑝

The Lagrangian
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Let 𝒰 = 𝑥 ∈ ℝ𝑛 𝑔𝑘 𝑥 = 0 for 𝑘 ∈ 𝐸 , 𝑔𝑘(𝑥) ≤ 0 (for 𝑘 ∈ 𝐼)}.

Definition:

The points in ℝ𝑛 that satisfy the constraints are also called feasible

points.

Definition:

Let 𝑎 ∈ 𝒰, we say that the constraint 𝑔𝑘 𝑥 ≤ 0 (for 𝑘 ∈ 𝐼) is active

in 𝑎 if 𝑔𝑘 𝑎 = 0.

Inequality Constraints: Definitions
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Theorem (Karush-Kuhn-Tucker, KKT):

Let 𝑈 be an open set of 𝐸, | ||) and 𝑓: 𝑈 → ℝ, 𝑔𝑘: 𝑈 → ℝ, all 𝒞1

Furthermore, let 𝑎 ∈ 𝑈 satisfy

 

𝑓 𝑎 = inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛, 𝑔𝑘(𝑥) = 0 for 𝑘 ∈ 𝐸 , 𝑔𝑘 𝑥 ≤ 0 (for 𝑘 ∈ I)

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

Let 𝐼𝑎
0 be the set of constraints that are active in 𝑎. Assume that

𝛻𝑔𝑘 𝑎
𝑘 ∈ 𝐸 ∪ 𝐼𝑎

0 are linearly independent.

Then there exist 𝜆𝑘 1≤𝑘≤𝑝 that satisfy

𝛻𝑓 𝑎 +  

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑎 = 0

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

𝜆𝑘 ≥ 0 (for 𝑘 ∈ 𝐼𝑎
0)

𝜆𝑘𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸 ∪ 𝐼)

Inequality Constraint: Karush-Kuhn-Tucker Theorem

also works again for 𝑎
being a local minimum
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Theorem (Karush-Kuhn-Tucker, KKT):

Let 𝑈 be an open set of 𝐸, | ||) and 𝑓: 𝑈 → ℝ, 𝑔𝑘: 𝑈 → ℝ, all 𝒞1

Furthermore, let 𝑎 ∈ 𝑈 satisfy

 

𝑓 𝑎 = inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛, 𝑔𝑘(𝑥) = 0 for 𝑘 ∈ 𝐸 , 𝑔𝑘 𝑥 ≤ 0 (for 𝑘 ∈ I)

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

Let 𝐼𝑎
0 be the set of constraints that are active in 𝑎. Assume that

𝛻𝑔𝑘 𝑎
𝑘 ∈ 𝐸 ∪ 𝐼𝑎

0 are linearly independent.

Then there exist 𝜆𝑘 1≤𝑘≤𝑝 that satisfy

𝛻𝑓 𝑎 +  

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑎 = 0

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

𝜆𝑘 ≥ 0 (for 𝑘 ∈ 𝐼𝑎
0)

𝜆𝑘𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸 ∪ 𝐼)

Inequality Constraint: Karush-Kuhn-Tucker Theorem

either active constraint

or 𝜆𝑘 = 0
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Descent Methods
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General principle

 choose an initial point 𝒙0, set 𝑡 = 1

 while not happy

 choose a descent direction 𝒅𝑡 ≠ 0

 line search:

 choose a step size 𝜎𝑡 > 0

 set 𝒙𝑡+1 = 𝒙𝑡 + 𝜎𝑡𝒅𝑡

 set 𝑡 = 𝑡 + 1

Remaining questions

 how to choose 𝒅𝑡?

 how to choose 𝜎𝑡? 

Descent Methods
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Rationale: 𝒅𝑡 = −𝛻𝑓(𝒙𝑡) is a descent direction

indeed for 𝑓 differentiable

𝑓 𝑥 − 𝜎𝛻𝑓 𝑥 = 𝑓 𝑥 − 𝜎||𝛻𝑓 𝑥 ||2 + 𝑜(𝜎||𝛻𝑓 𝑥 ||)

< 𝑓(𝑥) for 𝜎 small enough

Step-size

 optimal step-size: 𝜎𝑡 = argmin
𝜎

𝑓(𝒙𝑡 − 𝜎𝛻𝑓 𝒙𝑡 )

 Line Search: total or partial optimization w.r.t. 𝜎
Total is however often too "expensive" (needs to be performed at 

each iteration step)

Partial optimization: execute a limited number of trial steps until a 

loose approximation of the optimum is found. Typical rule for 

partial optimization: Armijo rule
see next slide and exercise

Stopping criteria:

norm of gradient smaller than 𝜖

Gradient Descent
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Choosing the step size:

 Only a decreasing 𝑓-value is not enough to converge (quickly)

 Want to have a reasonably large decrease in 𝑓

Armijo-Goldstein rule:

 also known as backtracking line search

 starts with a (too) large estimate of 𝜎 and reduces it until 𝑓 is 

reduced enough

 what is enough?

 assuming a linear 𝑓 e.g. 𝑚𝑘(𝑥) = 𝑓(𝑥𝑘) + 𝛻 𝑓 𝑥𝑘
𝑇(𝑥 − 𝑥𝑘)

 expected decrease if step of 𝜎𝑘 is done in direction 𝒅: 

𝜎𝑘𝛻𝑓 𝑥𝑘
𝑇𝒅

 actual decrease: 𝑓 𝑥𝑘 − 𝑓(𝑥𝑘 + 𝜎𝑘𝒅)

 stop if actual decrease is at least constant times expected 

decrease (constant typically chosen in [0, 1])

The Armijo-Goldstein Rule
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The Actual Algorithm:

Armijo, in his original publication chose 𝛽 = 𝜃 = 0.5.

Choosing 𝜃 = 0 means the algorithm accepts any decrease.

The Armijo-Goldstein Rule
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Graphical Interpretation

The Armijo-Goldstein Rule

𝑥

𝜎0
linear approximation

(expected decrease)

accepted decrease

actual increase
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Graphical Interpretation

The Armijo-Goldstein Rule

𝑥

𝜎1
linear approximation

(expected decrease)

accepted decrease

decrease in 𝑓
but not sufficiently large
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Graphical Interpretation

The Armijo-Goldstein Rule

𝑥

𝜎2
linear approximation 

(expected decrease)

accepted decrease

decrease in 𝑓
now sufficiently large
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Assume 𝑓 is twice continuously differentiable, convex and that 

𝜇𝐼𝑑 ≼ 𝛻2𝑓 𝑥 ≼ 𝐿𝐼𝑑 with 𝜇 > 0 holds, assume a fixed step-size 𝜎𝑡 =
1

𝐿

Note: 𝐴 ≼ 𝐵 means 𝑥𝑇𝐴𝑥 ≤ 𝑥𝑇𝐵𝑥 for all 𝑥

𝑥𝑡+1 − 𝑥∗ = 𝑥𝑡 − 𝑥∗ − 𝜎𝑡𝛻
2𝑓 𝑦𝑡 𝑥𝑡 − 𝑥∗ for some 𝑦𝑡 ∈ [𝑥𝑡 , 𝑥

∗]

𝑥𝑡+1 − 𝑥∗ = 𝐼𝑑 −
1

𝐿
𝛻2𝑓 𝑦𝑡 𝑥𝑡 − 𝑥∗

Hence | 𝑥𝑡+1 − 𝑥∗ |2 ≤ |||𝐼𝑑 −
1

𝐿
𝛻2𝑓 𝑦𝑡 |||2 | 𝑥𝑡 − 𝑥∗ |2

≤ 1 −
𝜇

𝐿

2

||𝑥𝑡 − 𝑥∗||2

Linear convergence: | 𝑥𝑡+1 − 𝑥∗ | ≤ 1 −
𝜇

𝐿
||𝑥𝑡 − 𝑥∗||

algorithm slower and slower with increasing condition number

Non-convex setting: convergence towards stationary point

Gradient Descent: Simple Theoretical Analysis
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Newton Method

 descent direction: − 𝛻2𝑓 𝑥𝑘
−1𝛻𝑓(𝑥𝑘) [so-called Newton 

direction]

 The Newton direction:

 minimizes the best (locally) quadratic approximation of 𝑓: 

 𝑓 𝑥 + Δ𝑥 = 𝑓 𝑥 + 𝛻𝑓 𝑥 𝑇Δ𝑥 +
1

2
Δ𝑥 𝑇𝛻2𝑓 𝑥 Δx

 points towards the optimum on 𝑓 𝑥 = 𝑥 − 𝑥∗ 𝑇𝐴 𝑥 − 𝑥∗

 however, Hessian matrix is expensive to compute in general and 

its inversion is also not easy

quadratic convergence

(i.e. lim
𝑘→∞

|𝑥𝑘+1−𝑥
∗|

𝑥𝑘−𝑥
∗ 2 = 𝜇 > 0 )

Newton Algorithm
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Affine Invariance: same behavior on 𝑓 𝑥 and 𝑓(𝐴𝑥 + 𝑏) for 𝐴 ∈
GLn(ℝ)

 Newton method is affine invariant
see http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/

Lecture_6_Scribe_Notes.final.pdf

 same convergence rate on all convex-quadratic functions

 Gradient method not affine invariant

Remark: Affine Invariance
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𝑥𝑡+1 = 𝑥𝑡 − 𝜎𝑡𝐻𝑡𝛻𝑓(𝑥𝑡) where 𝐻𝑡 is an approximation of the inverse 

Hessian

Key idea of Quasi Newton:

successive iterates 𝑥𝑡, 𝑥𝑡+1 and gradients 𝛻𝑓 𝑥𝑡 , 𝛻𝑓(𝑥𝑡+1) yield

second order information

𝑞𝑡 ≈ 𝛻2𝑓 𝑥𝑡+1 𝑝𝑡

where  𝑝𝑡 = 𝑥𝑡+1 − 𝑥𝑡 and 𝑞𝑡 = 𝛻𝑓 𝑥𝑡+1 − 𝛻𝑓 𝑥𝑡

Most popular implementation of this idea: Broyden-Fletcher-

Goldfarb-Shanno (BFGS)

 default in MATLAB's fminunc and python's 

scipy.optimize.minimize

Quasi-Newton Method: BFGS
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I hope it became clear...

...what are the difficulties to cope with when solving numerical 

optimization problems

in particular dimensionality, non-separability and ill-conditioning

...what are gradient and Hessian

...what is the difference between gradient and Newton direction

...and that adapting the step size in descent algorithms is crucial.

Conclusions


