Introduction to Optimization
 Introduction to Continuous Optimization III

December 5, 2016
École Centrale Paris, Châtenay-Malabry, France

Dimo Brockhoff
INRIA Saclay - Ile-de-France

Course Overview

Date		Topic
Fri, 7.10.2016		Introduction
Fri, 28.10.2016	D	Introduction to Discrete Optimization + Greedy algorithms I
Fri, 4.11.2016	D	Greedy algorithms II + Branch and bound
Fri, 18.11.2016	D	Dynamic programming
Mon, 21.11.2016 in S103-S105	D	Approximation algorithms and heuristics
Fri, 25.11.2016 in S103-S105	C	Randomized Search Heuristics + Intro. to Continuous Opt. I
Mon, 28.11.2016 in S103-S105	C	Introduction to Continuous Optimization II
Mon, 5.12.2016 in S103-S105	C	Introduction to Continuous Optimization III
Fri, 9.12.2016	C	Constrained Optimization + Descent Methods
Mon, 12.12.2016 in S103-S105	C	Derivative Free Optimization I: CMA-ES
Fri, 16.12.2016	C	Derivative Free Optimization II: Benchmarking Optimizers with the COCO platform
Wed, 4.1.2017	Exam	

Information: Potential Exam Questions

After several requests, I compiled a list of potential exam questions:

- http://researchers.lille.inria.fr/~brockhof/int rooptimization/exam/publicQuestions.pdf

Overview Continuous Optimization Part

Introduction to Continuous Optimization

- examples (from ML / black-box problems)
- typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix
- unconstraint optimization
- first and second order conditions
- convexity
- constrained optimization

Gradient-based Algorithms

- gradient descent
- quasi-Newton method (BFGS)

Derivative Free Optimization

- stochastic adaptive algorithms (CMA-ES)
- Benchmarking Numerical Blackbox Optimizers

Mathematical Tools to Characterize Optima [what we did so far]

Mathematical Characterization of Optima

Objective: Derive general characterization of optima
Example: if $f: \mathbb{R} \rightarrow \mathbb{R}$ differentiable, $f^{\prime}(x)=0$ at optimal points

- generalization to $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$?
- generalization to constrained problems?

Reminder: Gradient

- In $\left(\mathbb{R}^{n},\| \|_{2}\right)$ where $\|\boldsymbol{x}\|_{2}=\sqrt{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}$ is the Euclidean norm deriving from the scalar product $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{y}$

$$
\nabla f(x)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right)
$$

- Reminder: partial derivative in x_{0}

$$
\begin{gathered}
\mathrm{f}_{\mathrm{i}}: y \rightarrow f\left(x_{0}^{1}, \ldots, x_{0}^{i-1}, y, x_{0}^{i+1}, \ldots, x_{0}^{n}\right) \\
\frac{\partial f}{\partial x_{i}}\left(x_{0}\right)=f_{i}^{\prime}\left(x_{0}\right)
\end{gathered}
$$

Reminder: Geometrical Interpretation of Gradient

Exercise:

Let $L_{c}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid f(\boldsymbol{x})=c\right\}$ be again a level set of a function $f(\boldsymbol{x})$. Let $x_{0} \in L_{c} \neq \emptyset$.

Compute the level sets for $f_{1}(\boldsymbol{x})=\boldsymbol{a}^{T} \boldsymbol{x}$ and $f_{2}(\boldsymbol{x})=\|\boldsymbol{x}\|^{2}$ and the gradient in a chosen point x_{0} and observe that $\nabla f\left(x_{0}\right)$ is orthogonal to the level set in x_{0}.

Again: if this seems too difficult, do it for two variables (and a concrete $\boldsymbol{a} \in \mathbb{R}^{2}$ and draw the level sets and the gradients.

More generally, the gradient of a differentiable function is orthogonal to its level sets.

Reminder: Differentiability in \mathbb{R}^{n}

Taylor Formula - Order One

$$
f(\boldsymbol{x}+\boldsymbol{h})=f(\boldsymbol{x})+(\nabla f(\boldsymbol{x}))^{T} \boldsymbol{h}+o(\|\boldsymbol{h}\|)
$$

$\ln \left(\mathbb{R}^{n},\langle x, y\rangle=x^{T} y\right), \nabla^{2} f(x)$ is represented by a symmetric matrix called the Hessian matrix. It can be computed as

$$
\nabla^{2}(f)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Reminder: Second Order Differentiability in \mathbb{R}^{n}

Taylor Formula - Order Two

$$
f(\boldsymbol{x}+\boldsymbol{h})=f(\boldsymbol{x})+(\nabla f(\boldsymbol{x}))^{T} \boldsymbol{h}+\frac{1}{2} \boldsymbol{h}^{T}\left(\nabla^{2} f(\boldsymbol{x})\right) \boldsymbol{h}+o\left(\|\boldsymbol{h}\|^{2}\right)
$$

Exercise: Gradients and Level Sets of Convex Quadratic Functions

http://researchers.lille.inria.fr/
~brockhof/introoptimization/

Mathematical Tools to Characterize Optima

Gradient Direction Vs. Newton Direction

Gradient direction: $\nabla f(x)$
Newton direction: $(H(x))^{-1} \cdot \nabla f(\boldsymbol{x})$
with $H(\boldsymbol{x})=\nabla^{2} f(\boldsymbol{x})$ being the Hessian at \boldsymbol{x}

Exercise:

Let again $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}, \boldsymbol{x} \in \mathbb{R}^{2}, A=\left(\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right) \in \mathbb{R}^{2 \times 2}$.
Plot the gradient and Newton direction of f in a point $x \in \mathbb{R}^{2}$ of your choice (which should not be on a coordinate axis) into the same plot with the level sets, we created before.

Optimality Conditions for Unconstrained Problems

Optimality Conditions: First Order Necessary Cond.

For 1-dimensional optimization problems $f: \mathbb{R} \rightarrow \mathbb{R}$
Assume f is differentiable

- \boldsymbol{x}^{*} is a local optimum $\Rightarrow f^{\prime}\left(\boldsymbol{x}^{*}\right)=0$
not a sufficient condition: consider $f(x)=x^{3}$ proof via Taylor formula: $f\left(\boldsymbol{x}^{*}+\boldsymbol{h}\right)=f\left(\boldsymbol{x}^{*}\right)+f^{\prime}\left(\boldsymbol{x}^{*}\right) \boldsymbol{h}+o(\|\boldsymbol{h}\|)$
- points \boldsymbol{y} such that $f^{\prime}(\boldsymbol{y})=0$ are called critical or stationary points

Generalization to n-dimensional functions
If $f: U \subset \mathbb{R}^{n} \mapsto \mathbb{R}$ is differentiable

- necessary condition: If \boldsymbol{x}^{*} is a local optimum of f, then $\nabla f\left(\boldsymbol{x}^{*}\right)=0$
proof via Taylor formula

Second Order Necessary and Sufficient Opt. Cond.

If f is twice continuously differentiable

- Necessary condition: if \boldsymbol{x}^{*} is a local minimum, then $\nabla f\left(\boldsymbol{x}^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive semi-definite
proof via Taylor formula at order 2
- Sufficient condition: if $\nabla f\left(\boldsymbol{x}^{*}\right)=0$ and $\nabla^{2} f\left(\boldsymbol{x}^{*}\right)$ is positive definite, then \boldsymbol{x}^{*} is a strict local minimum

Proof of Sufficient Condition:

- Let $\lambda>0$ be the smallest eigenvalue of $\nabla^{2} f\left(x^{*}\right)$, using a second order Taylor expansion, we have for all \boldsymbol{h} :
- $f\left(\boldsymbol{x}^{*}+\boldsymbol{h}\right)-f\left(\boldsymbol{x}^{*}\right)=\nabla f\left(\boldsymbol{x}^{*}\right)^{T} \boldsymbol{h}+\frac{1}{2} \boldsymbol{h}^{T} \nabla^{2} f\left(\boldsymbol{x}^{*}\right) \boldsymbol{h}+o\left(\|\boldsymbol{h}\|^{2}\right)$

$$
>\frac{\lambda}{2}\|\boldsymbol{h}\|^{2}+o\left(\|\boldsymbol{h}\|^{2}\right)=\left(\frac{\lambda}{2}+\frac{o\left(\|\boldsymbol{h}\|^{2}\right)}{\|\boldsymbol{h}\|^{2}}\right)\|\boldsymbol{h}\|^{2}
$$

Convex Functions

Let U be a convex open set of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}$. The function f is said to be convex if for all $\boldsymbol{x}, \boldsymbol{y} \in U$ and for all $t \in[0,1]$

$$
f((1-t) \boldsymbol{x}+t \boldsymbol{y}) \leq(1-t) f(\boldsymbol{x})+t f(\boldsymbol{y})
$$

Theorem

If f is differentiable, then f is convex if and only if for all $\boldsymbol{x}, \boldsymbol{y}$

$$
\begin{aligned}
f(\boldsymbol{y})-f(\boldsymbol{x}) & \geq(\nabla f(x))^{T}(\boldsymbol{y}-\boldsymbol{x}) \\
\text { if } n & =1, \text { the curve is on top of the tangent }
\end{aligned}
$$

If f is twice continuously differentiable, then f is convex if and only if $\nabla^{2} f(x)$ is positive semi-definite for all \boldsymbol{x}.

Convex Functions: Why Convexity?

Examples of Convex Functions:

- $f(\boldsymbol{x})=a^{T} \boldsymbol{x}+b$
- $f(x)=\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}+a^{T} \boldsymbol{x}+b, A$ symmetric positive definite
- the negative of the entropy function (i. e. $f(x)=-\sum_{i=1}^{n} x_{i} \ln \left(x_{i}\right)$)

Exercise:

Let $f: U \rightarrow \mathbb{R}$ be a convex and differentiable function on a convex open U.
Show that if $\nabla f\left(\boldsymbol{x}^{*}\right)=0$, then \boldsymbol{x}^{*} is a global minimum of f

Constrained Optimization

Equality Constraint

Objective:

Generalize the necessary condition of $\nabla f(x)=0$ at the optima of \mathfrak{f} when f is in \mathcal{C}^{1}, i.e. is differentiable and its derivative is continuous

Theorem:

Be U an open set of $(E,\| \|)$, and $f: U \rightarrow \mathbb{R}, g: U \rightarrow \mathbb{R}$ in \mathcal{C}^{1}.
Let $a \in E$ satisfy

$$
\left\{\begin{array}{c}
f(a)=\inf \left\{f(x) \mid x \in \mathbb{R}^{n}, g(x)=0\right\} \\
g(a)=0
\end{array}\right.
$$

i.e. a is optimum of the problem

If $\nabla g(a) \neq 0$, then there exists a constant $\lambda \in \mathbb{R}$ called Lagrange multiplier, such that

$$
\nabla \underbrace{\nabla f(a)+\lambda \nabla g(a)=0}
$$

i.e. gradients of f and g in a are colinear

Note: a need not be a global minimum but a local one

Geometrical Interpretation Using an Example

Exercise:

Consider the problem

$$
\inf \left\{f(x, y) \mid(x, y) \in \mathbb{R}^{2}, g(x, y)=0\right\}
$$

$$
f(x, y)=y-x^{2} \quad g(x, y)=x^{2}+y^{2}-1
$$

1) Plot the level sets of f, plot $g=0$
2) Compute ∇f and ∇g
3) Find the solutions with $\nabla f+\lambda \nabla g=0$
equation solving with 3 unknowns (x, y, λ)
4) Plot the solutions of 3) on top of the level set graph of 1)

Interpretation of Euler-Lagrange Equation

Intuitive way to retrieve the Euler-Lagrange equation:

- In a local minimum a of a constrained problem, the hypersurfaces (or level sets) $f=f(a)$ and $g=0$ are necessarily tangent (otherwise we could decrease f by moving along $g=0$).
- Since the gradients $\nabla f(a)$ and $\nabla g(a)$ are orthogonal to the level sets $f=f(a)$ and $g=0$, it follows that $\nabla f(a)$ and $\nabla g(a)$ are colinear.

Generalization to More than One Constraint

Theorem

- Assume $f: U \rightarrow \mathbb{R}$ and $g_{k}: U \rightarrow \mathbb{R}(1 \leq k \leq p)$ are \mathcal{C}^{1}.
- Let a be such that

$$
\left\{\begin{array}{r}
f(a)=\inf \left\{f(x) \mid x \in \mathbb{R}^{n}, \quad g_{k}(x)=0, \quad 1 \leq k \leq p\right\} \\
g_{k}(a)=0 \text { for all } 1 \leq k \leq p
\end{array}\right.
$$

- If $\left(\nabla g_{k}(a)\right)_{1 \leq k \leq p}$ are linearly independent, then there exist p real constants $\left(\lambda_{k}\right)_{1 \leq k \leq p}$ such that

$$
\nabla f(a)+\sum_{k=1 \uparrow}^{p} \lambda_{k} \nabla g_{k}(a)=0
$$

again: a does not need to be global but local minimum

The Lagrangian

- Define the Lagrangian on $\mathbb{R}^{n} \times \mathbb{R}^{p}$ as

$$
\mathcal{L}\left(x,\left\{\lambda_{k}\right\}\right)=f(x)+\sum_{k=1}^{p} \lambda_{k} g_{k}(x)
$$

- To find optimal solutions, we can solve the optimality system
$\left\{\right.$ Find $\left(x,\left\{\lambda_{k}\right\}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{p}$ such that $\nabla f(x)+\sum_{k=1}^{p} \lambda_{k} \nabla g_{k}(x)=0$

$$
g_{k}(x)=0 \text { for all } 1 \leq k \leq p
$$

$$
\Leftrightarrow\left\{\begin{array}{c}
\text { Find }\left(x,\left\{\lambda_{k}\right\}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{p} \text { such that } \nabla_{x} \mathcal{L}\left(x,\left\{\lambda_{k}\right\}\right)=0 \\
\nabla_{\lambda_{k}} \mathcal{L}\left(x,\left\{\lambda_{k}\right\}\right)(x)=0 \text { for all } 1 \leq k \leq p
\end{array}\right.
$$

Inequality Constraints: Definitions

Let $U=\left\{x \in \mathbb{R}^{n} \mid g_{k}(x)=0\right.$ (for $k \in E$), $g_{k}(x) \leq 0$ (for $k \in I$) $\}$.

Definition:

The points in \mathbb{R}^{n} that satisfy the constraints are also called feasible points.

Definition:

Let $a \in U$, we say that the constraint $g_{k}(x) \leq 0$ (for $k \in I$) is active in a if $g_{k}(a)=0$.

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):
Let U be an open set of $(E,\| \|)$ and $f: U \rightarrow \mathbb{R}, g_{k}: U \rightarrow \mathbb{R}$, all \mathcal{C}^{1}
Furthermore, let $a \in U$ satisfy
$\left\{\begin{aligned} f(a)=\inf \left(f(x) \mid x \in \mathbb{R}^{n}, g_{k}(x)=0(\text { for } k \in E),\right. & g_{k}(x) \leq 0(\text { for } k \in \mathrm{I}) \\ g_{k}(a)=0(\text { for } k \in E) & \text { also works again for } a \\ g_{k}(a) \leq 0(\text { for } k \in I) & \text { being a local minimum }\end{aligned}\right.$
Let I_{a}^{0} be the set of constraints that are active in a. Assume that $\left(\nabla g_{k}(a)\right)_{k \in E \cup I_{a}^{0}}$ are linearly independent.
Then there exist $\left(\lambda_{k}\right)_{1 \leq k \leq p}$ that satisfy

$$
\left\{\begin{array}{c}
\nabla f(a)+\sum_{k=1}^{p} \lambda_{k} \nabla g_{k}(a)=0 \\
g_{k}(a)=0(\text { for } k \in E) \\
g_{k}(a) \leq 0(\text { for } k \in I) \\
\lambda_{k} \geq 0\left(\text { for } k \in I_{a}^{0}\right) \\
\lambda_{k} g_{k}(a)=0(\text { for } k \in E \cup I)
\end{array}\right.
$$

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):
Let U be an open set of $(E,\| \|)$ and $f: U \rightarrow \mathbb{R}, g_{k}: U \rightarrow \mathbb{R}$, all \mathcal{C}^{1}
Furthermore, let $a \in U$ satisfy

$$
\left\{\begin{array}{c}
f(a)=\inf \left(f(x) \mid x \in \mathbb{R}^{n}, g_{k}(x)=0(\text { for } k \in E), g_{k}(x) \leq 0(\text { for } k \in \mathrm{I})\right. \\
g_{k}(a)=0(\text { for } k \in E) \\
g_{k}(a) \leq 0(\text { for } k \in I)
\end{array}\right.
$$

Let I_{a}^{0} be the set of constraints that are active in a. Assume that $\left(\nabla g_{k}(a)\right)_{k \in E \cup I_{a}^{0}}$ are linearly independent.
Then there exist $\left(\lambda_{k}\right)_{1 \leq k \leq p}$ that satisfy

$$
\left\{\begin{array}{c}
\nabla f(a)+\sum_{k=1}^{p} \lambda_{k} \nabla g_{k}(a)=0 \\
g_{k}(a)=0(\text { for } k \in E) \\
g_{k}(a) \leq 0(\text { for } k \in I) \\
\lambda_{k} \geq 0\left(\text { for } k \in I_{a}^{\sigma}\right) \\
\lambda_{k} g_{k}(a)=0(\text { for } k \in E \cup I)
\end{array}\right.
$$

either active constraint or $\lambda_{k}=0$

Descent Methods

Descent Methods

General principle

(1) choose an initial point x_{0}, set $t=1$
(2) while not happy

- choose a descent direction $\boldsymbol{d}_{t} \neq 0$
- line search:
- choose a step size $\sigma_{t}>0$
- set $\boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}+\sigma_{t} \boldsymbol{d}_{t}$
- set $t=t+1$

Remaining questions

- how to choose \boldsymbol{d}_{t} ?
- how to choose σ_{t} ?

Gradient Descent

Rationale: $\boldsymbol{d}_{t}=-\nabla f\left(\boldsymbol{x}_{t}\right)$ is a descent direction indeed for f differentiable

$$
\begin{aligned}
f(x-\sigma \nabla f(x)) & =f(x)-\sigma\|\nabla f(x)\|^{2}+o(\sigma\|\nabla f(x)\|) \\
< & f(x) \text { for } \sigma \text { small enough }
\end{aligned}
$$

Step-size

- optimal step-size: $\sigma_{t}=\operatorname{argmin} f\left(\boldsymbol{x}_{t}-\sigma \nabla f\left(\boldsymbol{x}_{t}\right)\right)$
- Line Search: total or partial optimization w.r.t. σ Total is however often too "expensive" (needs to be performed at each iteration step)
Partial optimization: execute a limited number of trial steps until a loose approximation of the optimum is found. Typical rule for partial optimization: Armijo rule
see next slide and exercise

Stopping criteria:

norm of gradient smaller than ϵ

The Armijo-Goldstein Rule

Choosing the step size:

- Only a decreasing f-value is not enough to converge (quickly)
- Want to have a reasonably large decrease in f

Armijo-Goldstein rule:

- also known as backtracking line search
- starts with a (too) large estimate of σ and reduces it until f is reduced enough
- what is enough?
- assuming a linear f e.g. $m_{k}(x)=f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{T}\left(x-x_{k}\right)$
- expected decrease if step of σ_{k} is done in direction \boldsymbol{d} : $\sigma_{k} \nabla f\left(x_{k}\right)^{T} \boldsymbol{d}$
- actual decrease: $f\left(x_{k}\right)-f\left(x_{k}+\sigma_{k} \boldsymbol{d}\right)$
- stop if actual decrease is at least constant times expected decrease (constant typically chosen in [0, 1])

The Armijo-Goldstein Rule

The Actual Algorithm:

Input: descent direction d, point \mathbf{x}, objective function $f(\mathbf{x})$ and its gradient $\nabla f(\mathbf{x})$, parameters $\sigma_{0}=10, \theta \in[0,1]$ and $\beta \in(0,1)$
Output: step-size σ
Initialize $\sigma: \sigma \leftarrow \sigma_{0}$
while $f(\mathbf{x}+\sigma \mathbf{d})>f(\mathbf{x})+\theta \sigma \nabla f(\mathbf{x})^{T} \mathbf{d}$ do
$\sigma \leftarrow \beta \sigma$
end while

Armijo, in his original publication chose $\beta=\theta=0.5$.
Choosing $\theta=0$ means the algorithm accepts any decrease.

The Armijo-Goldstein Rule

Graphical Interpretation

linear approximation
(expected decrease)

The Armijo-Goldstein Rule

Graphical Interpretation

linear approximation
(expected decrease)

The Armijo-Goldstein Rule

Graphical Interpretation

linear approximation
(expected decrease)

Gradient Descent: Simple Theoretical Analysis

Assume f is twice continuously differentiable, convex and that $\mu I_{d} \leqslant \nabla^{2} f(x) \leqslant L I_{d}$ with $\mu>0$ holds, assume a fixed step-size $\sigma_{t}=\frac{1}{L}$ Note: $A \preccurlyeq B$ means $x^{T} A x \leq x^{T} B x$ for all x

$$
\begin{gathered}
x_{t+1}-x^{*}=x_{t}-x^{*}-\sigma_{t} \nabla^{2} f\left(y_{t}\right)\left(x_{t}-x^{*}\right) \text { for some } y_{t} \in\left[x_{t}, x^{*}\right] \\
x_{t+1}-x^{*}=\left(I_{d}-\frac{1}{L} \nabla^{2} f\left(y_{t}\right)\right)\left(x_{t}-x^{*}\right)
\end{gathered}
$$

$$
\text { Hence }\left\|x_{t+1}-x^{*}\right\|^{2} \leq\| \| I_{d}-\frac{1}{L} \nabla^{2} f\left(y_{t}\right)\| \|^{2}\left\|x_{t}-x^{*}\right\|^{2}
$$

$$
\leq\left(1-\frac{\mu}{L}\right)^{2}\left\|x_{t}-x^{*}\right\|^{2}
$$

Linear convergence: $\left\|x_{t+1}-x^{*}\right\| \leq\left(1-\frac{\mu}{L}\right)\left\|x_{t}-x^{*}\right\|$
algorithm slower and slower with increasing condition number
Non-convex setting: convergence towards stationary point

Newton Algorithm

Newton Method

- descent direction: $-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)$ [so-called Newton direction]
- The Newton direction:
- minimizes the best (locally) quadratic approximation of f :

$$
\tilde{f}(x+\Delta x)=f(x)+\nabla f(x)^{T} \Delta x+\frac{1}{2}(\Delta x)^{T} \nabla^{2} f(x) \Delta \mathrm{x}
$$

- points towards the optimum on $f(x)=\left(x-x^{*}\right)^{T} A\left(x-x^{*}\right)$
- however, Hessian matrix is expensive to compute in general and its inversion is also not easy
quadratic convergence

$$
\text { (i.e. } \lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|^{2}}=\mu>0 \text {) }
$$

Remark: Affine Invariance

Affine Invariance: same behavior on $f(x)$ and $f(A x+b)$ for $A \in$ GLn(R)

- Newton method is affine invariant see http://users.ece.utexas.edu/~cmcaram/EE381v_2012F/ Lecture_6_Scribe_Notes.final.pdf
- same convergence rate on all convex-quadratic functions
- Gradient method not affine invariant

Quasi-Newton Method: BFGS

$x_{t+1}=x_{t}-\sigma_{t} H_{t} \nabla f\left(x_{t}\right)$ where H_{t} is an approximation of the inverse Hessian

Key idea of Quasi Newton:

successive iterates x_{t}, x_{t+1} and gradients $\nabla f\left(x_{t}\right), \nabla f\left(x_{t+1}\right)$ yield second order information

$$
\begin{gathered}
q_{t} \approx \nabla^{2} f\left(x_{t+1}\right) p_{t} \\
\text { where } p_{t}=x_{t+1}-x_{t} \text { and } q_{t}=\nabla f\left(x_{t+1}\right)-\nabla f\left(x_{t}\right)
\end{gathered}
$$

Most popular implementation of this idea: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

- default in MATLAB's fminunc and python's scipy.optimize.minimize

Conclusions

I hope it became clear...
...what are the difficulties to cope with when solving numerical optimization problems
in particular dimensionality, non-separability and ill-conditioning
...what are gradient and Hessian
...what is the difference between gradient and Newton direction
...and that adapting the step size in descent algorithms is crucial.

