Introduction to Optimization Introduction to Continuous Optimization III

December 5, 2016 École Centrale Paris, Châtenay-Malabry, France

Dimo Brockhoff INRIA Saclay – Ile-de-France

Course Overview

Date		Торіс
Fri, 7.10.2016		Introduction
Fri, 28.10.2016	D	Introduction to Discrete Optimization + Greedy algorithms I
Fri, 4.11.2016	D	Greedy algorithms II + Branch and bound
Fri, 18.11.2016	D	Dynamic programming
Mon, 21.11.2016 in S103-S105	D	Approximation algorithms and heuristics
Fri, 25.11.2016	С	Randomized Search Heuristics + Intro. to Continuous Opt. I
Mon, 28.11.2016 in S103-S105	С	Introduction to Continuous Optimization II
Mon, 5.12.2016 in \$103-\$105	С	Introduction to Continuous Optimization III
Fri, 9.12.2016	С	Constrained Optimization + Descent Methods
Mon, 12.12.2016 in \$103-\$105	С	Derivative Free Optimization I: CMA-ES
Fri, 16.12.2016	С	Derivative Free Optimization II: Benchmarking Optimizers with the COCO platform
Wed, 4.1.2017		Exam if not indicated otherwise, classes take place in S115-S117

Information: Potential Exam Questions

After several requests, I compiled a list of potential exam questions:

http://researchers.lille.inria.fr/~brockhof/int rooptimization/exam/publicQuestions.pdf

Overview Continuous Optimization Part

Introduction to Continuous Optimization

- examples (from ML / black-box problems)
- typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix
- unconstraint optimization
 - first and second order conditions
 - convexity
- constrained optimization

Gradient-based Algorithms

- gradient descent
- quasi-Newton method (BFGS)

Derivative Free Optimization

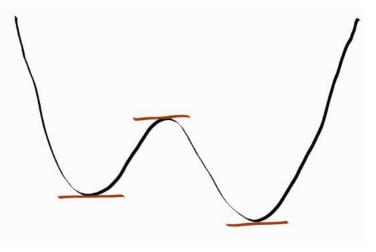
- stochastic adaptive algorithms (CMA-ES)
- Benchmarking Numerical Blackbox Optimizers

Mathematical Tools to Characterize Optima [what we did so far]

Mathematical Characterization of Optima

Objective: Derive general characterization of optima

Example: if $f: \mathbb{R} \to \mathbb{R}$ differentiable, f'(x) = 0 at optimal points



- generalization to $f: \mathbb{R}^n \to \mathbb{R}$?
- generalization to constrained problems?

Reminder: Gradient

• In $(\mathbb{R}^n, || ||_2)$ where $||x||_2 = \sqrt{\langle x, x \rangle}$ is the Euclidean norm deriving from the scalar product $\langle x, y \rangle = x^T y$

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

Reminder: partial derivative in x₀

$$f_{i}: y \to f\left(x_{0}^{1}, \dots, x_{0}^{i-1}, y, x_{0}^{i+1}, \dots, x_{0}^{n}\right)$$
$$\frac{\partial f}{\partial x_{i}}(x_{0}) = f_{i}'(x_{0})$$

Reminder: Geometrical Interpretation of Gradient

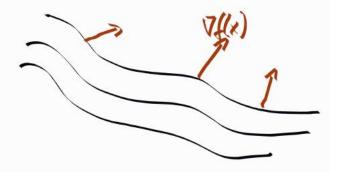
Exercise:

Let $L_c = \{x \in \mathbb{R}^n \mid f(x) = c\}$ be again a level set of a function f(x). Let $x_0 \in L_c \neq \emptyset$.

Compute the level sets for $f_1(x) = a^T x$ and $f_2(x) = ||x||^2$ and the gradient in a chosen point x_0 and observe that $\nabla f(x_0)$ is *orthogonal* to the level set in x_0 .

Again: if this seems too difficult, do it for two variables (and a concrete $a \in \mathbb{R}^2$ and draw the level sets and the gradients.

More generally, the gradient of a differentiable function is orthogonal to its level sets.



Taylor Formula – Order One

$$f(\boldsymbol{x} + \boldsymbol{h}) = f(\boldsymbol{x}) + (\nabla f(\boldsymbol{x}))^T \boldsymbol{h} + o(||\boldsymbol{h}||)$$

Reminder: Hessian Matrix

In $(\mathbb{R}^n, \langle x, y \rangle = x^T y), \nabla^2 f(x)$ is represented by a symmetric matrix called the Hessian matrix. It can be computed as

$$\nabla^{2}(f) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}} & \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}} \\ \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}^{2}} \end{bmatrix}$$

Reminder: Second Order Differentiability in \mathbb{R}^n

Taylor Formula – Order Two

$$f(\boldsymbol{x} + \boldsymbol{h}) = f(\boldsymbol{x}) + \left(\nabla f(\boldsymbol{x})\right)^T \boldsymbol{h} + \frac{1}{2}\boldsymbol{h}^T \left(\nabla^2 f(\boldsymbol{x})\right) \boldsymbol{h} + o(||\boldsymbol{h}||^2)$$

Exercise: Gradients and Level Sets of Convex Quadratic Functions

http://researchers.lille.inria.fr/ ~brockhof/introoptimization/

Mathematical Tools to Characterize Optima

Gradient Direction Vs. Newton Direction

Gradient direction: $\nabla f(\mathbf{x})$ **Newton direction:** $(H(\mathbf{x}))^{-1} \cdot \nabla f(\mathbf{x})$ with $H(\mathbf{x}) = \nabla^2 f(\mathbf{x})$ being the Hessian at \mathbf{x}

Exercise:

Let again
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x}, \mathbf{x} \in \mathbb{R}^2, A = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}.$$

Plot the gradient and Newton direction of f in a point $x \in \mathbb{R}^2$ of your choice (which should not be on a coordinate axis) into the same plot with the level sets, we created before.

Optimality Conditions for Unconstrained Problems

Optimality Conditions: First Order Necessary Cond.

For 1-dimensional optimization problems $f: \mathbb{R} \to \mathbb{R}$

Assume f is differentiable

• x^* is a local optimum $\Rightarrow f'(x^*) = 0$

not a sufficient condition: consider $f(x) = x^3$ proof via Taylor formula: $f(x^* + h) = f(x^*) + f'(x^*)h + o(||h||)$

• points y such that f'(y) = 0 are called critical or stationary points

Generalization to *n*-dimensional functions

If $f: U \subset \mathbb{R}^n \mapsto \mathbb{R}$ is differentiable

necessary condition: If x* is a local optimum of f, then $\nabla f(x^*) = 0$ proof via Taylor formula

Second Order Necessary and Sufficient Opt. Cond.

If f is twice continuously differentiable

• Necessary condition: if x^* is a local minimum, then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semi-definite

proof via Taylor formula at order 2

• Sufficient condition: if $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite, then x^* is a strict local minimum

Proof of Sufficient Condition:

• Let $\lambda > 0$ be the smallest eigenvalue of $\nabla^2 f(x^*)$, using a second order Taylor expansion, we have for all **h**:

•
$$f(\mathbf{x}^* + \mathbf{h}) - f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T \nabla^2 f(\mathbf{x}^*) \mathbf{h} + o(||\mathbf{h}||^2)$$

> $\frac{\lambda}{2} ||\mathbf{h}||^2 + o(||\mathbf{h}||^2) = \left(\frac{\lambda}{2} + \frac{o(||\mathbf{h}||^2)}{||\mathbf{h}||^2}\right) ||\mathbf{h}||^2$

Convex Functions

Let *U* be a convex open set of \mathbb{R}^n and $f: U \to \mathbb{R}$. The function *f* is said to be convex if for all $x, y \in U$ and for all $t \in [0,1]$

$$f((1-t)\mathbf{x} + t\mathbf{y}) \le (1-t)f(\mathbf{x}) + tf(\mathbf{y})$$

Theorem

If f is differentiable, then f is convex if and only if for all x, y

$$f(\mathbf{y}) - f(\mathbf{x}) \ge (\nabla f(\mathbf{x}))^T (\mathbf{y} - \mathbf{x})$$

if n = 1, the curve is on top of the tangent

If *f* is twice continuously differentiable, then *f* is convex if and only if $\nabla^2 f(x)$ is positive semi-definite for all *x*.

Convex Functions: Why Convexity?

Examples of Convex Functions:

- $f(\mathbf{x}) = a^T \mathbf{x} + b$
- $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} + a^T \mathbf{x} + b$, A symmetric positive definite
- the negative of the entropy function (i.e. $f(x) = -\sum_{i=1}^{n} x_i \ln(x_i)$)

Exercise:

Let $f: U \to \mathbb{R}$ be a convex and differentiable function on a convex open U. Show that if $\nabla f(\mathbf{x}^*) = 0$, then \mathbf{x}^* is a global minimum of f

Constrained Optimization

Equality Constraint

Objective:

Generalize the necessary condition of $\nabla f(x) = 0$ at the optima of f when f is in C^1 , i.e. is differentiable and its derivative is continuous

Theorem:

Be *U* an open set of (E, || ||), and $f: U \to \mathbb{R}$, $g: U \to \mathbb{R}$ in C^1 . Let $a \in E$ satisfy

$$\begin{cases} f(a) = \inf \{ f(x) \mid x \in \mathbb{R}^n, g(x) = 0 \} \\ g(a) = 0 \end{cases}$$

i.e. *a* is optimum of the problem

If $\nabla g(a) \neq 0$, then there exists a constant $\lambda \in \mathbb{R}$ called *Lagrange multiplier*, such that

$$\nabla f(a) + \lambda \nabla g(a) = 0$$

i.e. gradients of f and g in a are colinear

Note: *a* need not be a global minimum but a local one

Geometrical Interpretation Using an Example

Exercise:

Consider the problem

inf
$$\{ f(x,y) \mid (x,y) \in \mathbb{R}^2, g(x,y) = 0 \}$$

 $f(x, y) = y - x^2$ $g(x, y) = x^2 + y^2 - 1$

- 1) Plot the level sets of f, plot g = 0
- 2) Compute ∇f and ∇g
- 3) Find the solutions with $\nabla f + \lambda \nabla g = 0$

equation solving with 3 unknowns (x, y, λ)

4) Plot the solutions of 3) on top of the level set graph of 1)

Interpretation of Euler-Lagrange Equation

Intuitive way to retrieve the Euler-Lagrange equation:

- In a local minimum a of a constrained problem, the hypersurfaces (or level sets) f = f(a) and g = 0 are necessarily tangent (otherwise we could decrease f by moving along g = 0).
- Since the gradients ∇f(a) and ∇g(a) are orthogonal to the level sets f = f(a) and g = 0, it follows that ∇f(a) and ∇g(a) are colinear.

Generalization to More than One Constraint

Theorem

- Assume $f: U \to \mathbb{R}$ and $g_k: U \to \mathbb{R}$ $(1 \le k \le p)$ are \mathcal{C}^1 .
- Let *a* be such that $\begin{cases}
 f(a) = \inf \{f(x) \mid x \in \mathbb{R}^n, \quad g_k(x) = 0, \quad 1 \le k \le p\} \\
 g_k(a) = 0 \text{ for all } 1 \le k \le p
 \end{cases}$
- If (∇g_k(a))_{1≤k≤p} are linearly independent, then there exist p real constants (λ_k)_{1≤k≤p} such that

$$\nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0$$

Lagrange multiplier

again: a does not need to be global but local minimum

The Lagrangian

- Define the Lagrangian on $\mathbb{R}^n \times \mathbb{R}^p$ as $\mathcal{L}(x, \{\lambda_k\}) = f(x) + \sum_{k=1}^p \lambda_k g_k(x)$
- To find optimal solutions, we can solve the optimality system $\begin{cases}
 \text{Find } (x, \{\lambda_k\}) \in \mathbb{R}^n \times \mathbb{R}^p \text{ such that } \nabla f(x) + \sum_{k=1}^p \lambda_k \nabla g_k(x) = 0 \\
 g_k(x) = 0 \text{ for all } 1 \le k \le p
 \end{cases}$ $\Leftrightarrow \begin{cases}
 \text{Find } (x, \{\lambda_k\}) \in \mathbb{R}^n \times \mathbb{R}^p \text{ such that } \nabla_x \mathcal{L}(x, \{\lambda_k\}) = 0 \\
 \nabla_{\lambda_k} \mathcal{L}(x, \{\lambda_k\})(x) = 0 \text{ for all } 1 \le k \le p
 \end{cases}$

Inequality Constraints: Definitions

Let $\mathcal{U} = \{x \in \mathbb{R}^n \mid g_k(x) = 0 \text{ (for } k \in E), g_k(x) \le 0 \text{ (for } k \in I)\}.$

Definition:

The points in \mathbb{R}^n that satisfy the constraints are also called *feasible* points.

Definition:

Let $a \in U$, we say that the constraint $g_k(x) \le 0$ (for $k \in I$) is *active* in *a* if $g_k(a) = 0$.

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):

Let *U* be an open set of (E, || ||) and $f: U \to \mathbb{R}$, $g_k: U \to \mathbb{R}$, all \mathcal{C}^1 Furthermore, let $a \in U$ satisfy

$$\begin{cases} f(a) = \inf(f(x) \mid x \in \mathbb{R}^n, g_k(x) = 0 \text{ (for } k \in E), g_k(x) \le 0 \text{ (for } k \in I) \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \le 0 \text{ (for } k \in I) \end{cases} \text{ also works again for } a \\ \text{being a local minimum} \end{cases}$$

Let I_a^0 be the set of constraints that are active in a. Assume that $(\nabla g_k(a))_{k \in E \cup I_a^0}$ are linearly independent.

Then there exist $(\lambda_k)_{1 \le k \le p}$ that satisfy

$$\begin{cases} \nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0 \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \le 0 \text{ (for } k \in I) \\ \lambda_k \ge 0 \text{ (for } k \in I_a^0) \\ \lambda_k g_k(a) = 0 \text{ (for } k \in E \cup I) \end{cases}$$

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):

Let *U* be an open set of (E, || ||) and $f: U \to \mathbb{R}$, $g_k: U \to \mathbb{R}$, all C^1 Furthermore, let $a \in U$ satisfy

$$\begin{cases} f(a) = \inf(f(x) \mid x \in \mathbb{R}^n, g_k(x) = 0 \text{ (for } k \in E), g_k(x) \le 0 \text{ (for } k \in I) \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \le 0 \text{ (for } k \in I) \end{cases}$$

Let I_a^0 be the set of constraints that are active in *a*. Assume that $(\nabla g_k(a))_{k \in E \cup I_a^0}$ are linearly independent.

Then there exist $(\lambda_k)_{1 \le k \le p}$ that satisfy

$$\begin{aligned} \nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) &= 0 \\ g_k(a) &= 0 \text{ (for } k \in E) \\ g_k(a) &\leq 0 \text{ (for } k \in I) \\ \lambda_k &\geq 0 \text{ (for } k \in I_a^0) \\ \lambda_k g_k(a) &= 0 \text{ (for } k \in E \cup I) \end{aligned}$$
 either active constraint or $\lambda_k = 0$

Descent Methods

General principle

- choose an initial point x_0 , set t = 1
- e while not happy
 - choose a descent direction $d_t \neq 0$
 - line search:
 - choose a step size $\sigma_t > 0$

• set
$$x_{t+1} = x_t + \sigma_t d_t$$

• set t = t + 1

Remaining questions

- how to choose d_t ?
- how to choose σ_t ?

Gradient Descent

Rationale: $d_t = -\nabla f(x_t)$ is a descent direction

indeed for f differentiable

 $f(x - \sigma \nabla f(x)) = f(x) - \sigma ||\nabla f(x)||^2 + o(\sigma ||\nabla f(x)||)$ < f(x) for σ small enough

Step-size

- optimal step-size: $\sigma_t = \underset{\sigma}{\operatorname{argmin}} f(\mathbf{x}_t \sigma \nabla f(\mathbf{x}_t))$
- Line Search: total or partial optimization w.r.t. σ
 Total is however often too "expensive" (needs to be performed at each iteration step)

 Partial optimization: execute a limited number of trial steps until a loose approximation of the optimum is found. Typical rule for partial optimization: Armijo rule

see next slide and exercise

Stopping criteria:

norm of gradient smaller than ϵ

Choosing the step size:

- Only a decreasing *f*-value is not enough to converge (quickly)
- Want to have a reasonably large decrease in f

Armijo-Goldstein rule:

- also known as backtracking line search
- starts with a (too) large estimate of σ and reduces it until f is reduced enough
- what is enough?
 - assuming a linear f e.g. $m_k(x) = f(x_k) + \nabla f(x_k)^T (x x_k)$
 - expected decrease if step of σ_k is done in direction d: $\sigma_k \nabla f(x_k)^T d$
 - actual decrease: $f(x_k) f(x_k + \sigma_k d)$
 - stop if actual decrease is at least constant times expected decrease (constant typically chosen in [0, 1])

The Actual Algorithm:

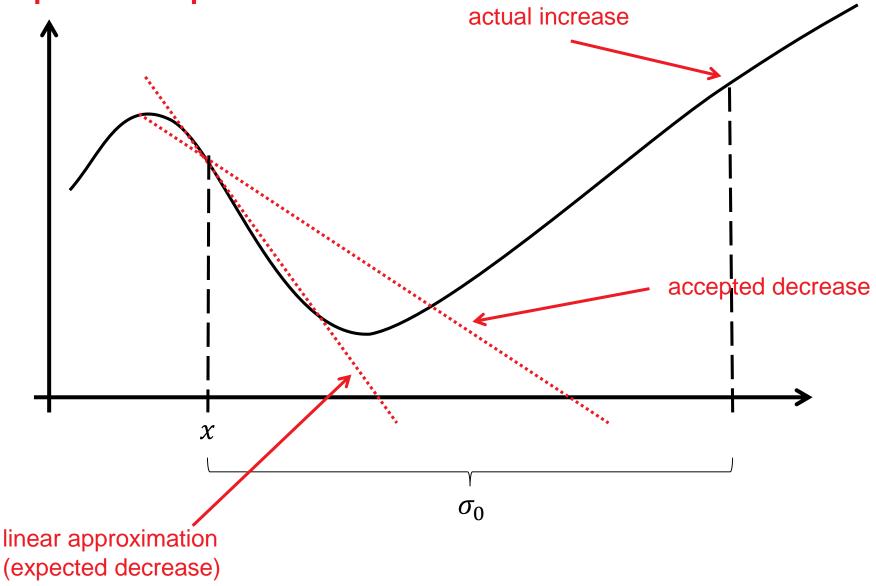
Input: descent direction **d**, point **x**, objective function $f(\mathbf{x})$ and its gradient $\nabla f(\mathbf{x})$, parameters $\sigma_0 = 10, \theta \in [0, 1]$ and $\beta \in (0, 1)$ **Output:** step-size σ

Initialize
$$\sigma: \sigma \leftarrow \sigma_0$$

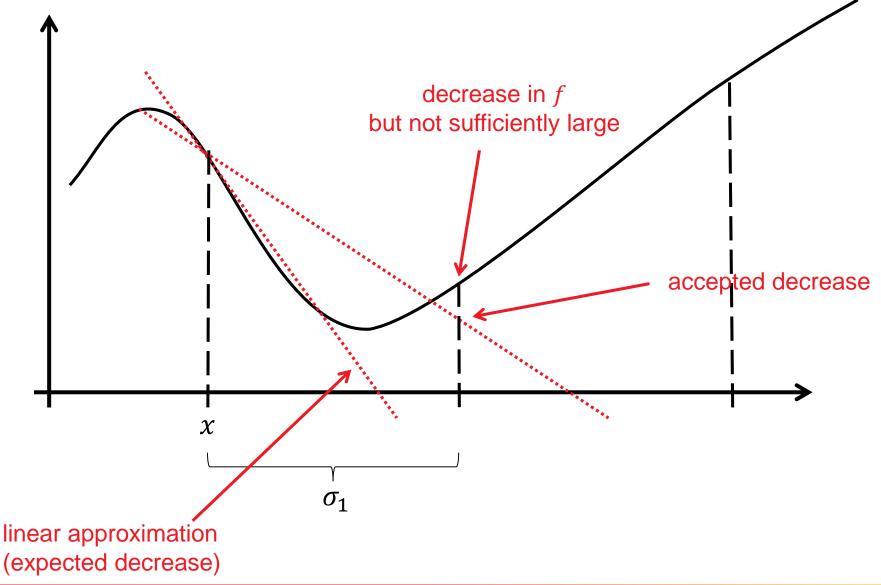
while $f(\mathbf{x} + \sigma \mathbf{d}) > f(\mathbf{x}) + \theta \sigma \nabla f(\mathbf{x})^T \mathbf{d}$ do
 $\sigma \leftarrow \beta \sigma$
end while

Armijo, in his original publication chose $\beta = \theta = 0.5$. Choosing $\theta = 0$ means the algorithm accepts any decrease.

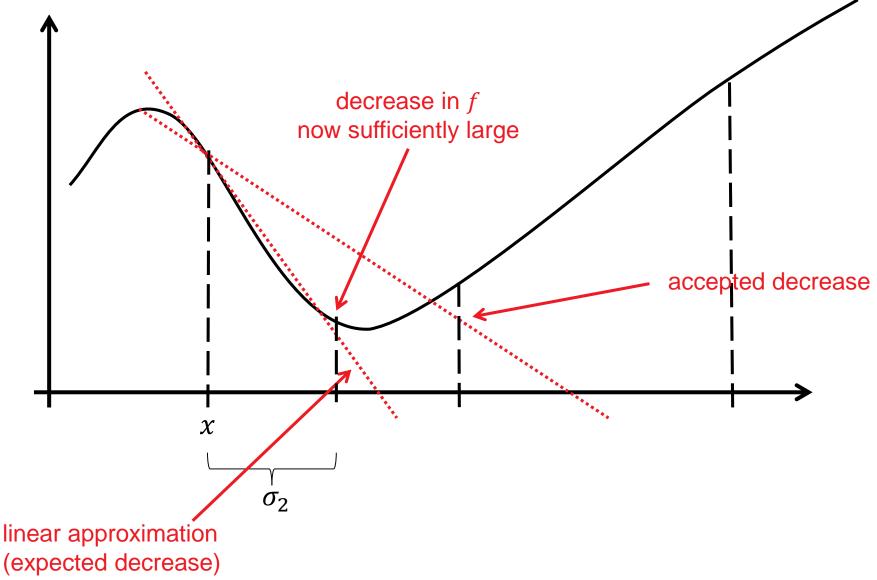
Graphical Interpretation



Graphical Interpretation



Graphical Interpretation



Gradient Descent: Simple Theoretical Analysis

Assume *f* is twice continuously differentiable, convex and that $\mu I_d \leq \nabla^2 f(x) \leq LI_d$ with $\mu > 0$ holds, assume a fixed step-size $\sigma_t = \frac{1}{L}$ Note: $A \leq B$ means $x^T A x \leq x^T B x$ for all *x*

$$\begin{aligned} x_{t+1} - x^* &= x_t - x^* - \sigma_t \nabla^2 f(y_t) (x_t - x^*) \text{ for some } y_t \in [x_t, x^*] \\ x_{t+1} - x^* &= \left(I_d - \frac{1}{L} \nabla^2 f(y_t) \right) (x_t - x^*) \\ \text{Hence } ||x_{t+1} - x^*||^2 &\leq |||I_d - \frac{1}{L} \nabla^2 f(y_t)|||^2 \ ||x_t - x^*||^2 \\ &\leq \left(1 - \frac{\mu}{L} \right)^2 ||x_t - x^*||^2 \end{aligned}$$

Linear convergence: $||x_{t+1} - x^*|| \le \left(1 - \frac{\mu}{L}\right)||x_t - x^*||$

algorithm slower and slower with increasing condition number

Non-convex setting: convergence towards stationary point

Newton Algorithm

Newton Method

- descent direction: $-[\nabla^2 f(x_k)]^{-1}\nabla f(x_k)$ [so-called Newton direction]
- The Newton direction:
 - minimizes the best (locally) quadratic approximation of f: $\tilde{f}(x + \Delta x) = f(x) + \nabla f(x)^T \Delta x + \frac{1}{2} (\Delta x)^T \nabla^2 f(x) \Delta x$
 - points towards the optimum on $f(x) = (x x^*)^T A(x x^*)$
- however, Hessian matrix is expensive to compute in general and its inversion is also not easy

quadratic convergence

(i.e.
$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = \mu > 0$$
)

Remark: Affine Invariance

Affine Invariance: same behavior on f(x) and f(Ax + b) for $A \in GLn(\mathbb{R})$

Newton method is affine invariant

```
See http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/
Lecture 6 Scribe Notes.final.pdf
```

- same convergence rate on all convex-quadratic functions
- Gradient method not affine invariant

Quasi-Newton Method: BFGS

 $x_{t+1} = x_t - \sigma_t H_t \nabla f(x_t)$ where H_t is an approximation of the inverse Hessian

Key idea of Quasi Newton:

successive iterates x_t , x_{t+1} and gradients $\nabla f(x_t)$, $\nabla f(x_{t+1})$ yield second order information

$$q_t \approx \nabla^2 f(x_{t+1}) p_t$$

where
$$p_t = x_{t+1} - x_t$$
 and $q_t = \nabla f(x_{t+1}) - \nabla f(x_t)$

Most popular implementation of this idea: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

default in MATLAB's fminunc and python's scipy.optimize.minimize

I hope it became clear...

...what are the difficulties to cope with when solving numerical optimization problems

in particular dimensionality, non-separability and ill-conditioning ...what are gradient and Hessian

...what is the difference between gradient and Newton direction ...and that adapting the step size in descent algorithms is crucial.