Introduction to Optimization Constrained Optimization + Descent Methods

December 9, 2016 École Centrale Paris, Châtenay-Malabry, France

Dimo Brockhoff Inria Saclay – Ile-de-France

Course Overview

Date		Торіс
Fri, 7.10.2016		Introduction
Fri, 28.10.2016	D	Introduction to Discrete Optimization + Greedy algorithms I
Fri, 4.11.2016	D	Greedy algorithms II + Branch and bound
Fri, 18.11.2016	D	Dynamic programming
Mon, 21.11.2016	D	Approximation algorithms and heuristics
Fri, 25.11.2016	С	Randomized Search Heuristics + Intro. to Continuous Opt. I
Mon, 28.11.2016	С	Introduction to Continuous Optimization II
Mon, 5.12.2016 in S103-S105	С	Introduction to Continuous Optimization III
Fri, 9.12.2016	С	Constrained Optimization + Descent Methods
Mon, 12.12.2016 in \$103-\$105	С	Derivative Free Optimization I: CMA-ES
Fri, 16.12.2016	С	Derivative Free Optimization II: Benchmarking Optimizers with the COCO platform
Wed, 4.1.2017		Exam if not indicated otherwise, classes take place in S115-S117

Overview Continuous Optimization Part

Introduction to Continuous Optimization

- examples (from ML / black-box problems)
- typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix
- unconstraint optimization
 - first and second order conditions
 - convexity
- constrained optimization

Gradient-based Algorithms

- gradient descent
- quasi-Newton method (BFGS)

Derivative Free Optimization

- stochastic adaptive algorithms (CMA-ES)
- Benchmarking Numerical Blackbox Optimizers

Convex Functions

Let *U* be a convex open set of \mathbb{R}^n and $f: U \to \mathbb{R}$. The function *f* is said to be convex if for all $x, y \in U$ and for all $t \in [0,1]$

$$f((1-t)\mathbf{x} + t\mathbf{y}) \le (1-t)f(\mathbf{x}) + tf(\mathbf{y})$$

Theorem

If f is differentiable, then f is convex if and only if for all x, y

$$f(\mathbf{y}) - f(\mathbf{x}) \ge (\nabla f(\mathbf{x}))^T (\mathbf{y} - \mathbf{x})$$

if n = 1, the curve is on top of the tangent

If *f* is twice continuously differentiable, then *f* is convex if and only if $\nabla^2 f(x)$ is positive semi-definite for all *x*.

Convex Functions: Why Convexity?

Examples of Convex Functions:

- $f(\mathbf{x}) = a^T \mathbf{x} + b$
- $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} + a^T \mathbf{x} + b$, A symmetric positive definite
- the negative of the entropy function (i.e. $f(x) = -\sum_{i=1}^{n} x_i \ln(x_i)$)

Exercise:

Let $f: U \to \mathbb{R}$ be a convex and differentiable function on a convex open U. Show that if $\nabla f(\mathbf{x}^*) = 0$, then \mathbf{x}^* is a global minimum of f

Constrained Optimization

Equality Constraint

Objective:

Generalize the necessary condition of $\nabla f(x) = 0$ at the optima of f when f is in C^1 , i.e. is differentiable and its derivative is continuous

Theorem:

Be *U* an open set of (E, || ||), and $f: U \to \mathbb{R}$, $g: U \to \mathbb{R}$ in C^1 . Let $a \in E$ satisfy

$$\begin{cases} f(a) = \inf \{ f(x) \mid x \in \mathbb{R}^n, g(x) = 0 \} \\ g(a) = 0 \end{cases}$$

i.e. *a* is optimum of the problem

If $\nabla g(a) \neq 0$, then there exists a constant $\lambda \in \mathbb{R}$ called *Lagrange multiplier*, such that

$$\nabla f(a) + \lambda \nabla g(a) = 0$$

i.e. gradients of f and g in a are colinear

Note: *a* need not be a global minimum but a local one

Geometrical Interpretation Using an Example

Exercise:

Consider the problem

inf
$$\{ f(x,y) \mid (x,y) \in \mathbb{R}^2, g(x,y) = 0 \}$$

 $f(x, y) = y - x^2$ $g(x, y) = x^2 + y^2 - 1$

- 1) Plot the level sets of f, plot g = 0
- 2) Compute ∇f and ∇g
- 3) Find the solutions with $\nabla f + \lambda \nabla g = 0$

equation solving with 3 unknowns (x, y, λ)

4) Plot the solutions of 3) on top of the level set graph of 1)

Interpretation of Euler-Lagrange Equation

Intuitive way to retrieve the Euler-Lagrange equation:

- In a local minimum a of a constrained problem, the hypersurfaces (or level sets) f = f(a) and g = 0 are necessarily tangent (otherwise we could decrease f by moving along g = 0).
- Since the gradients ∇f(a) and ∇g(a) are orthogonal to the level sets f = f(a) and g = 0, it follows that ∇f(a) and ∇g(a) are colinear.

Generalization to More than One Constraint

Theorem

- Assume $f: U \to \mathbb{R}$ and $g_k: U \to \mathbb{R}$ $(1 \le k \le p)$ are \mathcal{C}^1 .
- Let *a* be such that $\begin{cases}
 f(a) = \inf \{f(x) \mid x \in \mathbb{R}^n, \quad g_k(x) = 0, \quad 1 \le k \le p\} \\
 g_k(a) = 0 \text{ for all } 1 \le k \le p
 \end{cases}$
- If (∇g_k(a))_{1≤k≤p} are linearly independent, then there exist p real constants (λ_k)_{1≤k≤p} such that

$$\nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0$$

Lagrange multiplier

again: a does not need to be global but local minimum

The Lagrangian

- Define the Lagrangian on $\mathbb{R}^n \times \mathbb{R}^p$ as $\mathcal{L}(x, \{\lambda_k\}) = f(x) + \sum_{k=1}^p \lambda_k g_k(x)$
- To find optimal solutions, we can solve the optimality system $\begin{cases}
 \text{Find } (x, \{\lambda_k\}) \in \mathbb{R}^n \times \mathbb{R}^p \text{ such that } \nabla f(x) + \sum_{k=1}^p \lambda_k \nabla g_k(x) = 0 \\
 g_k(x) = 0 \text{ for all } 1 \le k \le p
 \end{cases}$ $\Leftrightarrow \begin{cases}
 \text{Find } (x, \{\lambda_k\}) \in \mathbb{R}^n \times \mathbb{R}^p \text{ such that } \nabla_x \mathcal{L}(x, \{\lambda_k\}) = 0 \\
 \nabla_{\lambda_k} \mathcal{L}(x, \{\lambda_k\})(x) = 0 \text{ for all } 1 \le k \le p
 \end{cases}$

Inequality Constraints: Definitions

Let $\mathcal{U} = \{x \in \mathbb{R}^n \mid g_k(x) = 0 \text{ (for } k \in E), g_k(x) \le 0 \text{ (for } k \in I)\}.$

Definition:

The points in \mathbb{R}^n that satisfy the constraints are also called *feasible* points.

Definition:

Let $a \in U$, we say that the constraint $g_k(x) \le 0$ (for $k \in I$) is *active* in *a* if $g_k(a) = 0$.

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):

Let *U* be an open set of (E, || ||) and $f: U \to \mathbb{R}$, $g_k: U \to \mathbb{R}$, all \mathcal{C}^1 Furthermore, let $a \in U$ satisfy

$$\begin{cases} f(a) = \inf(f(x) \mid x \in \mathbb{R}^n, g_k(x) = 0 \text{ (for } k \in E), g_k(x) \le 0 \text{ (for } k \in I) \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \le 0 \text{ (for } k \in I) \end{cases} \text{ also works again for } a \\ \text{being a local minimum} \end{cases}$$

Let I_a^0 be the set of constraints that are active in *a*. Assume that $(\nabla g_k(a))_{k \in E \cup I_a^0}$ are linearly independent.

Then there exist $(\lambda_k)_{1 \le k \le p}$ that satisfy

$$\begin{cases} \nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) = 0 \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \le 0 \text{ (for } k \in I) \\ \lambda_k \ge 0 \text{ (for } k \in I_a^0) \\ \lambda_k g_k(a) = 0 \text{ (for } k \in E \cup I) \end{cases}$$

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):

Let *U* be an open set of (E, || ||) and $f: U \to \mathbb{R}$, $g_k: U \to \mathbb{R}$, all C^1 Furthermore, let $a \in U$ satisfy

$$\begin{cases} f(a) = \inf(f(x) \mid x \in \mathbb{R}^n, g_k(x) = 0 \text{ (for } k \in E), g_k(x) \le 0 \text{ (for } k \in I) \\ g_k(a) = 0 \text{ (for } k \in E) \\ g_k(a) \le 0 \text{ (for } k \in I) \end{cases}$$

Let I_a^0 be the set of constraints that are active in *a*. Assume that $(\nabla g_k(a))_{k \in E \cup I_a^0}$ are linearly independent.

Then there exist $(\lambda_k)_{1 \le k \le p}$ that satisfy

$$\begin{aligned} \nabla f(a) + \sum_{k=1}^{p} \lambda_k \nabla g_k(a) &= 0 \\ g_k(a) &= 0 \text{ (for } k \in E) \\ g_k(a) &\leq 0 \text{ (for } k \in I) \\ \lambda_k &\geq 0 \text{ (for } k \in I_a^0) \\ \lambda_k g_k(a) &= 0 \text{ (for } k \in E \cup I) \end{aligned}$$
 either active constraint or $\lambda_k = 0$

Descent Methods

General principle

- choose an initial point x_0 , set t = 1
- e while not happy
 - choose a descent direction $d_t \neq 0$
 - line search:
 - choose a step size $\sigma_t > 0$

• set
$$x_{t+1} = x_t + \sigma_t d_t$$

• set t = t + 1

Remaining questions

- how to choose d_t ?
- how to choose σ_t ?

Gradient Descent

Rationale: $d_t = -\nabla f(x_t)$ is a descent direction

indeed for f differentiable

 $f(x - \sigma \nabla f(x)) = f(x) - \sigma ||\nabla f(x)||^2 + o(\sigma ||\nabla f(x)||)$ < f(x) for σ small enough

Step-size

- optimal step-size: $\sigma_t = \underset{\sigma}{\operatorname{argmin}} f(\mathbf{x}_t \sigma \nabla f(\mathbf{x}_t))$
- Line Search: total or partial optimization w.r.t. σ
 Total is however often too "expensive" (needs to be performed at each iteration step)

 Partial optimization: execute a limited number of trial steps until a loose approximation of the optimum is found. Typical rule for partial optimization: Armijo rule

see next slide and exercise

Stopping criteria:

norm of gradient smaller than ϵ

Choosing the step size:

- Only a decreasing *f*-value is not enough to converge (quickly)
- Want to have a reasonably large decrease in f

Armijo-Goldstein rule:

- also known as backtracking line search
- starts with a (too) large estimate of σ and reduces it until f is reduced enough
- what is enough?
 - assuming a linear f e.g. $m_k(x) = f(x_k) + \nabla f(x_k)^T (x x_k)$
 - expected decrease if step of σ_k is done in direction d: $\sigma_k \nabla f(x_k)^T d$
 - actual decrease: $f(x_k) f(x_k + \sigma_k d)$
 - stop if actual decrease is at least constant times expected decrease (constant typically chosen in [0, 1])

The Actual Algorithm:

Input: descent direction **d**, point **x**, objective function $f(\mathbf{x})$ and its gradient $\nabla f(\mathbf{x})$, parameters $\sigma_0 = 10, \theta \in [0, 1]$ and $\beta \in (0, 1)$ **Output:** step-size σ

Initialize
$$\sigma: \sigma \leftarrow \sigma_0$$

while $f(\mathbf{x} + \sigma \mathbf{d}) > f(\mathbf{x}) + \theta \sigma \nabla f(\mathbf{x})^T \mathbf{d}$ do
 $\sigma \leftarrow \beta \sigma$
end while

Armijo, in his original publication chose $\beta = \theta = 0.5$. Choosing $\theta = 0$ means the algorithm accepts any decrease.

Graphical Interpretation

Graphical Interpretation

Graphical Interpretation

Gradient Descent: Simple Theoretical Analysis

Assume *f* is twice continuously differentiable, convex and that $\mu I_d \leq \nabla^2 f(x) \leq LI_d$ with $\mu > 0$ holds, assume a fixed step-size $\sigma_t = \frac{1}{L}$ Note: $A \leq B$ means $x^T A x \leq x^T B x$ for all *x*

$$\begin{aligned} x_{t+1} - x^* &= x_t - x^* - \sigma_t \nabla^2 f(y_t) (x_t - x^*) \text{ for some } y_t \in [x_t, x^*] \\ x_{t+1} - x^* &= \left(I_d - \frac{1}{L} \nabla^2 f(y_t) \right) (x_t - x^*) \\ \text{Hence } ||x_{t+1} - x^*||^2 &\leq |||I_d - \frac{1}{L} \nabla^2 f(y_t)|||^2 \ ||x_t - x^*||^2 \\ &\leq \left(1 - \frac{\mu}{L} \right)^2 ||x_t - x^*||^2 \end{aligned}$$

Linear convergence: $||x_{t+1} - x^*|| \le \left(1 - \frac{\mu}{L}\right)||x_t - x^*||$

algorithm slower and slower with increasing condition number

Non-convex setting: convergence towards stationary point

Newton Algorithm

Newton Method

- descent direction: $-[\nabla^2 f(x_k)]^{-1}\nabla f(x_k)$ [so-called Newton direction]
- The Newton direction:
 - minimizes the best (locally) quadratic approximation of f: $\tilde{f}(x + \Delta x) = f(x) + \nabla f(x)^T \Delta x + \frac{1}{2} (\Delta x)^T \nabla^2 f(x) \Delta x$
 - points towards the optimum on $f(x) = (x x^*)^T A(x x^*)$
- however, Hessian matrix is expensive to compute in general and its inversion is also not easy

quadratic convergence

(i.e.
$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = \mu > 0$$
)

Remark: Affine Invariance

Affine Invariance: same behavior on f(x) and f(Ax + b) for $A \in GLn(\mathbb{R})$

Newton method is affine invariant

```
See http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/
Lecture 6 Scribe Notes.final.pdf
```

- same convergence rate on all convex-quadratic functions
- Gradient method not affine invariant

Quasi-Newton Method: BFGS

 $x_{t+1} = x_t - \sigma_t H_t \nabla f(x_t)$ where H_t is an approximation of the inverse Hessian

Key idea of Quasi Newton:

successive iterates x_t , x_{t+1} and gradients $\nabla f(x_t)$, $\nabla f(x_{t+1})$ yield second order information

$$q_t \approx \nabla^2 f(x_{t+1}) p_t$$

where
$$p_t = x_{t+1} - x_t$$
 and $q_t = \nabla f(x_{t+1}) - \nabla f(x_t)$

Most popular implementation of this idea: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

default in MATLAB's fminunc and python's scipy.optimize.minimize

I hope it became clear...

...what are the difficulties to cope with when solving numerical optimization problems

in particular dimensionality, non-separability and ill-conditioning ...what are gradient and Hessian

...what is the difference between gradient and Newton direction ...and that adapting the step size in descent algorithms is crucial.

Exercise: Comparing Gradient-Based Algorithms on Convex Quadratic Functions

http://researchers.lille.inria.fr/ ~brockhof/introoptimization/

Derivative-Free Optimization

Derivative-Free Optimization (DFO)

DFO = blackbox optimization

Why blackbox scenario?

- gradients are not always available (binary code, no analytical model, ...)
- or not useful (noise, non-smooth, ...)
- problem domain specific knowledge is used only within the black box, e.g. within an appropriate encoding
- some algorithms are furthermore function-value-free, i.e. *invariant* wrt. monotonous transformations of *f*.

Derivative-Free Optimization Algorithms

- (gradient-based algorithms which approximate the gradient by finite differences)
- coordinate descent
- pattern search methods, e.g. Nelder-Mead
- surrogate-assisted algorithms, e.g. NEWUOA or other trustregion methods
- other function-value-free algorithms
 - typically stochastic
 - evolution strategies (ESs) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
 - differential evolution
 - particle swarm optimization
 - simulated annealing

Downhill Simplex Method by Nelder and Mead

While not happy do:

[assuming minimization of *f* and that $x_1, ..., x_{n+1} \in \mathbb{R}^n$ form a simplex]

- **1) Order** according to the values at the vertices: $f(x_1) \le f(x_2) \le \dots \le f(x_{n+1})$
- **2)** Calculate x_o , the centroid of all points except x_{n+1} .

3) Reflection

Compute reflected point $x_r = x_o + \alpha (x_o - x_{n+1}) (\alpha > 0)$

If x_r better than second worst, but not better than best: $x_{n+1} = x_r$, and go to 1)

4) Expansion

If x_r is the best point so far: compute the expanded point

$$x_e = e_o + \gamma (x_r - x_o) (\exists amma > 0)$$

If x_e better than x_r then $x_{n+1} \coloneqq x_e$ and go to 1)

Else $x_{n+1} \coloneqq x_r$ and go to 1)

Else (i.e. reflected point is not better than second worst) continue with 5)

5) Contraction (here:
$$f(x_r) \ge f(x_n)$$
)

Compute contracted point $x_c = x_o + \rho(x_{n+1} - x_o) \ (0 < \rho \le 0.5)$

f
$$f(x_c) < f(x_{n+1})$$
: $x_{n+1} \coloneqq x_c$ and go to 1)

Else go to 6)

6) Shrink

 $x_i = x_1 + \sigma(x_i - x_1)$ for all $i \in \{2, ..., n + 1\}$ and go to 1)

Nelder, John A.; R. Mead (1965). "A simplex method for function minimization". Computer Journal. **7**: 308–313. doi:10.1093/comjnl/7.4.308

Stochastic Search Template

A stochastic blackbox search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$ Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While happy do:

- Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- Evaluate x_1, \dots, x_{λ} on f
- Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, ..., x_{\lambda}, f(x_1), ..., f(x_{\lambda}))$

• All depends on the choice of *P* and F_{θ}

deterministic algorithms are covered as well

• In Evolutionary Algorithms, *P* and F_{θ} are often defined implicitly via their operators.

Generic Framework of an EA

Nothing else: just interpretation change

© Dimo Brockhoff, Inria

CMA-ES in a Nutshell

Evolution Strategies (ES) A Se

A Search Template

The CMA-ES

Input: $\boldsymbol{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, λ Initialize: $\mathbf{C} = \mathbf{I}$, and $\boldsymbol{p_c} = \mathbf{0}$, $\boldsymbol{p_\sigma} = \mathbf{0}$, Set: $c_{\mathbf{c}} \approx 4/n$, $c_{\sigma} \approx 4/n$, $c_1 \approx 2/n^2$, $c_{\mu} \approx \mu_w/n^2$, $c_1 + c_{\mu} \leq 1$, $d_{\sigma} \approx 1 + \sqrt{\frac{\mu_w}{n}}$, and $w_{i=1...\lambda}$ such that $\mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \approx 0.3 \lambda$

While not terminate

$$\begin{aligned} \mathbf{x}_{i} &= \mathbf{m} + \sigma \, \mathbf{y}_{i}, \quad \mathbf{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathbf{C}), \quad \text{for } i = 1, \dots, \lambda \\ m \leftarrow \sum_{i=1}^{\mu} w_{i} \, \mathbf{x}_{i:\lambda} &= \mathbf{m} + \sigma \, \mathbf{y}_{w} \quad \text{where } \mathbf{y}_{w} = \sum_{i=1}^{\mu} w_{i} \, \mathbf{y}_{i:\lambda} \\ \mathbf{p}_{c} \leftarrow (1 - c_{c}) \, \mathbf{p}_{c} + \mathbf{1}_{\{ \| p_{\sigma} \| < 1.5\sqrt{n} \}} \sqrt{1 - (1 - c_{c})^{2}} \sqrt{\mu_{w}} \, \mathbf{y}_{w} \\ \mathbf{p}_{\sigma} \leftarrow (1 - c_{\sigma}) \, \mathbf{p}_{\sigma} + \sqrt{1 - (1 - c_{\sigma})^{2}} \sqrt{\mu_{w}} \, \mathbf{C}^{-\frac{1}{2}} \, \mathbf{y}_{w} \\ \mathbf{C} \leftarrow (1 - c_{1} - c_{\mu}) \, \mathbf{C} + c_{1} \, \mathbf{p}_{c} \mathbf{p}_{c}^{\mathrm{T}} + c_{\mu} \sum_{i=1}^{\mu} w_{i} \, \mathbf{y}_{i:\lambda} \mathbf{y}_{i:\lambda}^{\mathrm{T}} \\ \mathbf{p}_{\sigma} \leftarrow \sigma \times \exp \left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\| \mathbf{p}_{\sigma} \|}{\mathbf{E} \| \mathcal{N}(\mathbf{0}, \mathbf{I}) \|} - 1 \right) \right) \end{aligned}$$

Not covered on this slide: termination, restarts, useful output, boundaries and encoding

イロト (雪) (ほ) (ほ)

1 9 Q Q

16/81

CMA-ES in a Nutshell

Evolution Strategies (ES) A Se

A Search Template

The CMA-ES

Input: $\boldsymbol{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, λ Initialize: $\mathbf{C} = \mathbf{I}$, and $\boldsymbol{p_c} = \mathbf{0}$, $\boldsymbol{p_\sigma} = \mathbf{0}$, Set: $c_{\mathbf{c}} \approx 4/n$, $c_{\sigma} \approx 4/n$, $c_1 \approx 2/n^2$, $c_{\mu} \approx \mu_w/n^2$, $c_1 + c_{\mu} \leq 1$, $d_{\sigma} \approx 1 + \sqrt{\frac{\mu_w}{n}}$, and $w_{i=1...\lambda}$ such that $\mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \approx 0.3 \lambda$

While not terminate

$$\begin{aligned} \mathbf{x}_{i} &= \mathbf{m} + \sigma \mathbf{y}_{i}, \quad \mathbf{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathbf{C}), \quad \text{for } i = 1, \dots, \lambda & \text{sampling} \\ \mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_{i} \mathbf{x}_{i:\lambda} &= \mathbf{m} + \sigma \mathbf{y}_{w} \quad \text{where } \mathbf{y}_{w} = \sum_{i=1}^{\mu} w_{i} \mathbf{y}_{i:\lambda} & \text{update mean} \\ \mathbf{p}_{c} \leftarrow (1 - c_{c}) \mathbf{p}_{c} + \mathbf{1}_{\{ \| p_{\sigma} \| < 1.5\sqrt{n} \}} \sqrt{1 - (1 - c_{c})^{2}} \sqrt{\mu_{w}} \mathbf{y}_{w} & \text{cumulation for } \mathbf{C} \\ \mathbf{p}_{\sigma} \leftarrow (1 - c_{\sigma}) \mathbf{p}_{\sigma} + \sqrt{1 - (1 - c_{\sigma})^{2}} \sqrt{\mu_{w}} \mathbf{C}^{-\frac{1}{2}} \mathbf{y}_{w} & \text{cumulation for } \sigma \\ \mathbf{C} \leftarrow (1 - c_{1} - c_{\mu}) \mathbf{C} + c_{1} \mathbf{p}_{c} \mathbf{p}_{c}^{\mathrm{T}} + \sum_{\sigma \leftarrow \sigma \times \exp \left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\| p_{\sigma} \|}{\mathbf{E} \| \mathcal{N}(\mathbf{0},\mathbf{I}) \|} - 1\right)\right)} \\ \text{Not covered on this slide: termination for this state-of-the-art algorithm of the main principles of this state-of-the-art algorithm for the main principles of the state-of-the princ$$

16/81
Copyright Notice

Last slide was taken from

https://www.lri.fr/~hansen/copenhagen-cma-es.pdf (copyright by Nikolaus Hansen, one of the main inventors of the CMA-ES algorithms)

- In the following, I will borrow more slides from there and from http://researchers.lille.inria.fr/~brockhof/optimiza tionSaclay/slides/20151106-continuousoptIV.pdf (by Anne Auger)
- In the following and the online material in particular, I refer to these pdfs as [Hansen, p. X] and [Auger, p. Y] respectively.

Back to CMA-ES

The CMA-ES

Input: $\boldsymbol{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, λ Initialize: $\mathbf{C} = \mathbf{I}$, and $\boldsymbol{p_c} = \mathbf{0}$, $\boldsymbol{p_\sigma} = \mathbf{0}$, Set: $c_{\mathbf{c}} \approx 4/n$, $c_{\sigma} \approx 4/n$, $c_1 \approx 2/n^2$, $c_{\mu} \approx \mu_w/n^2$, $c_1 + c_{\mu} \leq 1$, $d_{\sigma} \approx 1 + \sqrt{\frac{\mu_w}{n}}$, and $w_{i=1...\lambda}$ such that $\mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \approx 0.3 \lambda$

While not terminate

$$\begin{aligned} \mathbf{x}_{i} &= \mathbf{m} + \sigma \mathbf{y}_{i}, \quad \mathbf{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathbf{C}), \quad \text{for } i = 1, \dots, \lambda & \text{sampling} \\ \mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_{i} \mathbf{x}_{i:\lambda} &= \mathbf{m} + \sigma \mathbf{y}_{w} \quad \text{where } \mathbf{y}_{w} = \sum_{i=1}^{\mu} w_{i} \mathbf{y}_{i:\lambda} & \text{update mean} \\ \mathbf{p}_{c} \leftarrow (1 - c_{c}) \mathbf{p}_{c} + \mathbf{1}_{\{ \| p_{\sigma} \| < 1.5\sqrt{n} \}} \sqrt{1 - (1 - c_{c})^{2}} \sqrt{\mu_{w}} \mathbf{y}_{w} & \text{cumulation for } \mathbf{C} \\ \mathbf{p}_{\sigma} \leftarrow (1 - c_{\sigma}) \mathbf{p}_{\sigma} + \sqrt{1 - (1 - c_{\sigma})^{2}} \sqrt{\mu_{w}} \mathbf{C}^{-\frac{1}{2}} \mathbf{y}_{w} & \text{cumulation for } \sigma \\ \mathbf{C} \leftarrow (1 - c_{1} - c_{\mu}) \mathbf{C} + c_{1} \mathbf{p}_{c} \mathbf{p}_{c}^{\mathrm{T}} + c_{\sigma} \sum_{i=1}^{\mu} w_{i} \mathbf{y}_{i} \cdots \mathbf{x}^{\mathrm{T}} & \text{update } \mathbf{C} \\ \sigma \leftarrow \sigma \times \exp\left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\| \mathbf{p}_{\sigma} \|}{\mathbf{E} \| \mathcal{N}(\mathbf{0},\mathbf{I}) \|} - 1\right)\right) \\ \text{Not covered on this slide: termination for encoding} & \text{Understand the main principles of this state-of-the-art algorithm} \end{aligned}$$

16/81

CMA-ES: Stochastic Search Template

A stochastic blackbox search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$ Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While happy do:

- Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- Evaluate x_1, \dots, x_{λ} on f
- Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, ..., x_{\lambda}, f(x_1), ..., f(x_{\lambda}))$

For CMA-ES and evolution strategies in general:

sample distributions = multivariate Gaussian distributions

Sampling New Candidate Solutions (Offspring)

Evolution Strategies

New search points are sampled normally distributed

 $\boldsymbol{x}_i \sim \boldsymbol{m} + \sigma \, \mathcal{N}_i(\boldsymbol{0}, \mathbf{C})$ for $i = 1, \dots, \lambda$

as perturbations of *m*, where $x_i, m \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \mathbb{C} \in \mathbb{R}^{n \times n}$

where

- the mean vector $m \in \mathbb{R}^n$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

here, all new points are sampled with the same parameters

it remains to show how to adapt the parameters, but for now: normal distributions

Normal Distribution

1-D case

• Normal distribution $\mathcal{N}(\boldsymbol{m}, \sigma^2)$

probability density of the 1-D standard normal distribution $\mathcal{N}(0,1)$

(expected (mean) value, variance) = (0,1)

$$p(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

(expected value, variance) = (\mathbf{m}, σ^2) density: $p_{\mathbf{m},\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mathbf{m})^2}{2\sigma^2}\right)$

- A normal distribution is entirely determined by its mean value and variance
- The family of normal distributions is closed under linear transformations: if X is normally distributed then a linear transformation aX + b is also normally distributed
- Exercice: Show that $\boldsymbol{m} + \sigma \mathcal{N}(0, 1) = \mathcal{N}(\boldsymbol{m}, \sigma^2)$

from [Auger, p. 11]

Normal Distribution

General case

A random variable following a 1-D normal distribution is determined by its mean value m and variance σ^2 .

In the *n*-dimensional case it is determined by its mean vector and covariance matrix

Covariance Matrix

If the entries in a vector $\mathbf{X} = (X_1, \dots, X_n)^T$ are random variables, each with finite variance, then the covariance matrix Σ is the matrix whose (i, j) entries are the covariance of (X_i, X_j)

$$\Sigma_{ij} = \operatorname{cov}(X_i, X_j) = \operatorname{E}\left[(X_i - \mu_i)(X_j - \mu_j)\right]$$

where $\mu_i = E(X_i)$. Considering the expectation of a matrix as the expectation of each entry, we have

$$\Sigma = \mathrm{E}[(X - \mu)(X - \mu)^{T}]$$

 $\boldsymbol{\Sigma}$ is symmetric, positive definite

(日本) (日本)

from [Auger, p. 12]

The Multi-Variate (*n*-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(m, \mathbb{C})$ is uniquely determined by its mean value $m \in \mathbb{R}^n$ and its symmetric positive definite $n \times n$ covariance matrix \mathbb{C} .

density: $p_{\mathcal{N}(m,C)}(x) = \frac{1}{(2\pi)^{n/2} |C|^{1/2}} \exp\left(-\frac{1}{2}(x-m)^{\mathrm{T}} C^{-1}(x-m)\right),$

from [Auger, p. 13]

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(m, \mathbb{C})$ is uniquely determined by its mean value $m \in \mathbb{R}^n$ and its symmetric positive definite $n \times n$ covariance matrix \mathbb{C} .

density: $p_{\mathcal{N}(m,C)}(x) = \frac{1}{(2\pi)^{n/2} |C|^{1/2}} \exp\left(-\frac{1}{2}(x-m)^{\mathrm{T}} C^{-1}(x-m)\right),$

The mean value m

- determines the displacement (translation)
- value with the largest density (modal value)
- the distribution is symmetric about the distribution mean

$$\mathcal{N}(\boldsymbol{m}, \mathbf{C}) = \boldsymbol{m} + \mathcal{N}(\mathbf{0}, \mathbf{C})$$

from [Auger, p. 13]

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(m, \mathbb{C})$ is uniquely determined by its mean value $m \in \mathbb{R}^n$ and its symmetric positive definite $n \times n$ covariance matrix \mathbb{C} .

density: $p_{\mathcal{N}(m,C)}(x) = \frac{1}{(2\pi)^{n/2}|C|^{1/2}} \exp\left(-\frac{1}{2}(x-m)^{\mathrm{T}}C^{-1}(x-m)\right),$

The mean value m

- determines the displacement (translation)
- value with the largest density (modal value)
- the distribution is symmetric about the distribution mean

$$\mathcal{N}(\boldsymbol{m}, \boldsymbol{\mathsf{C}}) = \boldsymbol{m} + \mathcal{N}(\boldsymbol{0}, \boldsymbol{\mathsf{C}})$$

The covariance matrix C

- determines the shape
- geometrical interpretation: any covariance matrix can be uniquely identified with the iso-density ellipsoid $\{x \in \mathbb{R}^n \mid (x m)^T \mathbf{C}^{-1} (x m) = 1\}$

< 🗗 >

from [Auger, p. 13]

Covariance Matrix: Lines of Equal Density

...any covariance matrix can be uniquely identified with the iso-density ellipsoid $\{x \in \mathbb{R}^n \mid (x - m)^T C^{-1}(x - m) = 1\}$

 $\mathcal{N}(\mathbf{m}, \sigma^2 \mathbf{I}) \sim \mathbf{m} + \sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$ one degree of freedom σ components are independent standard normally distributed

where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}(\mathbf{0}, \mathbf{A}\mathbf{A}^{\mathrm{T}})$ holds for all A.

< 🗗 🕨

from [Auger, p.

Covariance Matrix: Lines of Equal Density

...any covariance matrix can be uniquely identified with the iso-density ellipsoid $\{x \in \mathbb{R}^n \mid (x - m)^T C^{-1}(x - m) = 1\}$

 $\mathcal{N}(\mathbf{m}, \sigma^2 \mathbf{I}) \sim \mathbf{m} + \sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$ one degree of freedom σ components are independent standard normally distributed $\mathcal{N}(\mathbf{m}, \mathbf{D}^2) \sim \mathbf{m} + \mathbf{D}\mathcal{N}(\mathbf{0}, \mathbf{I})$ *n* degrees of freedom components are independent, scaled

where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}(\mathbf{0}, \mathbf{A}\mathbf{A}^{\mathrm{T}})$ holds for all A.

< ⊡ >

trom [Auger, p.

Covariance Matrix: Lines of Equal Density

...any covariance matrix can be uniquely identified with the iso-density ellipsoid $\{x \in \mathbb{R}^n \mid (x - m)^T C^{-1}(x - m) = 1\}$

where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}(\mathbf{0}, \mathbf{A}\mathbf{A}^{\mathrm{T}})$ holds for all A.

< 🗗 ▶

from [Auger, p.

Adaptation of Sample Distribution Parameters

Adaptation: What do we want to achieve?

New search points are sampled normally distributed

 $\mathbf{x}_i \sim \mathbf{m} + \sigma \mathcal{N}_i(\mathbf{0}, \mathbf{C})$ for $i = 1, \dots, \lambda$

where $\mathbf{x}_i, \mathbf{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\mathbf{C} \in \mathbb{R}^{n \times n}$

- the mean vector should represent the favorite solution
- the step-size controls the step-length and thus convergence rate

should allow to reach fastest convergence rate possible

• the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

adaptation should allow to learn the "topography" of the problem particulary important for ill-conditionned problems $\mathbf{C} \propto \boldsymbol{H}^{-1}$ on convex quadratic functions

from [Auger, p. 16]

Adaptation of the Mean

Plus and Comma Selection

Evolution Strategies (ES) The Normal Distribution

Evolution Strategies

Terminology

 μ : # of parents, λ : # of offspring

Plus (elitist) and comma (non-elitist) selection

 $(\mu + \lambda)$ -ES: selection in {parents} \cup {offspring} (μ, λ) -ES: selection in {offspring}

(1+1)-ES

Sample one offspring from parent m

$$\boldsymbol{x} = \boldsymbol{m} + \sigma \, \mathcal{N}(\boldsymbol{0}, \mathbf{C})$$

If x better than m select

 $m \leftarrow x$

25/81

• • • • • • • from [Hansen; p. 35]

Non-Elitism and Weighted Recombination

Evolution Strategies (ES) The Normal Distribution

The ($\mu/\mu,\lambda$)-ES

Non-elitist selection and intermediate (weighted) recombination Given the *i*-th solution point $x_i = m + \sigma \mathcal{N}_i(\mathbf{0}, \mathbf{C}) = m + \sigma y_i$

Let $x_{i:\lambda}$ the *i*-th ranked solution point, such that $f(x_{1:\lambda}) \leq \cdots \leq f(x_{\lambda:\lambda})$. The new mean reads

$$\boldsymbol{m} \leftarrow \sum_{i=1}^{\mu} w_i \boldsymbol{x}_{i:\lambda} = \boldsymbol{m} + \sigma \underbrace{\sum_{i=1}^{\mu} w_i \boldsymbol{y}_{i:\lambda}}_{=: y_w}$$

where

$$w_1 \ge \dots \ge w_\mu > 0, \quad \sum_{i=1}^\mu w_i = 1, \quad \frac{1}{\sum_{i=1}^\mu w_i^2} =: \mu_w \approx \frac{\lambda}{4}$$

The best μ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied.

Invariance Against Order-Preserving *f***-Transformations**

Three functions belonging to the same equivalence class

A *function-value free search algorithm* is invariant under the transformation with any order preserving (strictly increasing) g.

Invariances make

observations meaningful

as a rigorous notion of generalization

algorithms predictable and/or "robust"

from [Hansen, p. 37]

Invariance Against Translations in Search Space

Evolution Strategies (ES)

Invariance

Basic Invariance in Search Space

translation invariance

is true for most optimization algorithms

Identical behavior on f and f_a

$$f: \mathbf{x} \mapsto f(\mathbf{x}), \qquad \mathbf{x}^{(t=0)} = \mathbf{x}_0$$

$$f_{\mathbf{a}}: \mathbf{x} \mapsto f(\mathbf{x} - \mathbf{a}), \quad \mathbf{x}^{(t=0)} = \mathbf{x}_0 + \mathbf{a}$$

No difference can be observed w.r.t. the argument of f

from [Hansen, p. 38]

Invariance Against Search Space Rotations

Evolution Strategies (ES) Invar

Invariance

Rotational Invariance in Search Space

• invariance to orthogonal (rigid) transformations **R**, where $\mathbf{R}\mathbf{R}^{T} = \mathbf{I}$ e.g. true for simple evolution strategies

recombination operators might jeopardize rotational invariance

Identical behavior on f and $f_{\mathbf{R}}$

$$f: \mathbf{x} \mapsto f(\mathbf{x}), \quad \mathbf{x}^{(t=0)} = \mathbf{x}_0$$

$$f_{\mathbf{R}}: \mathbf{x} \mapsto f(\mathbf{R}\mathbf{x}), \quad \mathbf{x}^{(t=0)} = \mathbf{R}^{-1}(\mathbf{x}_0)$$

45

No difference can be observed w.r.t. the argument of f

⁴Salomon 1996. "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278

Hansen 2000. Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies. Parallel Problem Solving from Nature PPSN VI

Invariance Against Rigid Search Space Transformations

Invariance

Evolution Strategies (ES)

for example, invariance under search space rotation (separable ⇔ non-separable)

© Dimo Brockhoff, Inria

Introduction to Optimization @ ECP, Dec. 9, 2016

from [Hansen, p. 40

27 / 81

Invariance Against Rigid Search Space Transformations

for example, invariance under search space rotation (separable \Leftrightarrow non-separable)

from [Hansen, p. 41]

27 / 81

Invariance Against Rigid Search Space Transformations

for example, invariance un (separable ⇔ non-separab

mainly Nelder-Mead and CMA-ES have this property

Invariances: Summary

Evolution Strategies (ES)

Invariance

Invariance

The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest number of hypotheses or axioms. Albert Einstein

- Empirical performance results
 - from benchmark functions
 - from solved real world problems

are only useful if they do generalize to other problems

Invariance is a strong non-empirical statement about generalization generalizing (identical) performance from a single function to a whole class of functions

consequently, invariance is important for the evaluation of search algorithms

30/81

Step-Size Adaptation

Recap CMA-ES: What We Have So Far

Step-Size Control

Evolution Strategies

Recalling

New search points are sampled normally distributed

 $x_i \sim m + \sigma \mathcal{N}_i(\mathbf{0}, \mathbf{C})$ for $i = 1, \dots, \lambda$

as perturbations of m, where $x_i, m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\mathbb{C} \in \mathbb{R}^{n \times n}$

where

- the mean vector $m \in \mathbb{R}^n$ represents the favorite solution and $m \leftarrow \sum_{i=1}^{\mu} w_i x_{i:\lambda}$
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

The remaining question is how to update σ and C.

32/81

Why At All Step-Size Adaptation?

Why Step-Size Control?

ଚବତ

Why Step-Size Adaptation?

Why Step-Size Control?

© Dimo Brockhoff, Inria

÷

< E

from [Auger, p. 22]

900

æ

-∢≣⇒

Optimal Step-Size

Step-Size Control

Why Step-Size Control

66

34/81

Optimal Step-Size vs. Step-Size Control

Step-Size Control

Why Step-Size Control

with optimal versus adaptive step-size σ with too small initial σ

< □ ▶ < ⊡ ▶

from [Hansen, p. 48]

35/81

Optimal Step-Size vs. Step-Size Control

Step-Size Control

Why Step-Size Control

Adapting the Step-Size

How to actually adapt the step-size during the optimization?

Most common:

- 1/5 success rule
- Cumulative Step-Size Adaptation (CSA, as in standard CMA-ES)
- others possible (Two-Point Adaptation, self-adaptive step-size, ...)

One-fifth success rule

イロン イロン イヨン イヨン

from [Auger, p. 32]

900

군.

One-fifth success rule

Probability of success (p_s)

1/2

Probability of success (p_s)

"too small"

1/5

from [Auger, p. 33]

æ

æ

900

One-fifth success rule

 $\begin{array}{l} p_s: \ \# \ \text{of successful offspring} \ / \ \# \ \text{offspring} \ (\text{per generation}) \\ \sigma \leftarrow \sigma \times \exp\left(\frac{1}{3} \times \frac{p_s - p_{\text{target}}}{1 - p_{\text{target}}}\right) & \text{Increase} \ \sigma \ \text{if} \ p_s > p_{\text{target}} \\ \text{Decrease} \ \sigma \ \text{if} \ p_s < p_{\text{target}} \end{array}$

(1 + 1)-ES $p_{target} = 1/5$ IF offspring better parent $p_s = 1, \ \sigma \leftarrow \sigma \times \exp(1/3)$ ELSE $p_s = 0, \ \sigma \leftarrow \sigma / \exp(1/3)^{1/4}$

© Dimo Brockhoff, Inria

from [Auger, p. 34]

Why 1/5?

Asymptotic convergence rate and probability of success of scale-invariant step-size (1+1)-ES

sphere - asymptotic results, i.e. $n = \infty$ (see slides before)

1/5 trade-off of optimal probability of success on the sphere and from [Auger, p. 35]

Cumulative Step-Size Adaptation (CSA)

Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

 $\begin{array}{rcl} \mathbf{x}_i &=& \mathbf{m} + \sigma \, \mathbf{y}_i \\ \mathbf{m} &\leftarrow& \mathbf{m} + \sigma \, \mathbf{y}_w \end{array}$

- 4 回 ト - 4 三 ト - 4 三 ト

Measure the length of the evolution path

the pathway of the mean vector \boldsymbol{m} in the generation sequence

from [Auger, p. 36]

996

Ξ.
Cumulative Step-Size Adaptation (CSA)

Path Length Control (CSA)

The Equations

Initialize $\boldsymbol{m} \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, evolution path $\boldsymbol{p}_{\sigma} = \boldsymbol{0}$, set $\boldsymbol{c}_{\sigma} \approx 4/n$, $\boldsymbol{d}_{\sigma} \approx 1$.

$$m \leftarrow m + \sigma \mathbf{y}_{w} \text{ where } \mathbf{y}_{w} = \sum_{i=1}^{\mu} \mathbf{w}_{i} \mathbf{y}_{i:\lambda} \text{ update mean}$$

$$p_{\sigma} \leftarrow (1 - c_{\sigma}) \mathbf{p}_{\sigma} + \sqrt{1 - (1 - c_{\sigma})^{2}} \underbrace{\sqrt{\mu_{w}}}_{\text{accounts for } 1 - c_{\sigma}} \mathbf{y}_{w}$$

$$\sigma \leftarrow \sigma \times \underbrace{\exp\left(\frac{c_{\sigma}}{d_{\sigma}}\left(\frac{\|\mathbf{p}_{\sigma}\|}{\mathbb{E}\|\mathcal{N}(\mathbf{0},\mathbf{I})\|} - 1\right)\right)}_{>1 \iff \|\mathbf{p}_{\sigma}\| \text{ is greater than its expectation}} \text{ update step-size}$$

< 由 > < 圖 > < 플 > < 플 >

from [Auger, p. 37]

900

2

Cumulative Step-Size Adaptation (CSA)

Step-size adaptation

What is achived

from [Auger, p. 38]

900

з.

Covariance Matrix Adaptation

Recap CMA-ES: What We Have So Far

Evolution Strategies

Recalling

New search points are sampled normally distributed

 $\mathbf{x}_i \sim \mathbf{m} + \sigma \, \mathcal{N}_i(\mathbf{0}, \mathbf{C}) \qquad \text{for } i = 1, \dots, \lambda$

as perturbations of *m*,

where
$$\mathbf{x}_i, \mathbf{m} \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \mathbf{C} \in \mathbb{R}^{n \times n}$$

where

- ▶ the mean vector $m \in \mathbb{R}^n$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- ▶ the covariance matrix $C \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

The remaining question is how to update C.

from [Auger, p. 40]

Recap CMA-ES: What We Have So Far

Evolution Strategies

Recalling

New search points are sampled normally distributed

 $\mathbf{x}_i \sim \mathbf{m} + \sigma \mathcal{N}_i(\mathbf{0}, \mathbf{C})$ for $i = 1, \dots, \lambda$

as perturbations of *m*,

where
$$\mathbf{x}_i, \mathbf{m} \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \mathbf{C} \in \mathbb{R}^{n \times n}$$

where

- the mean vector $\boldsymbol{m} \in \mathbb{R}^n$ represents the favorite solution
- the so-called step-size ...which is what we will see in the last
 - the covariance matrix of the distribution elli
 Iecture next Friday

The remaining question is how to update C.

from [Auger, p. 40]