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Date Topic

Fri, 7.10.2016 Introduction

Fri, 28.10.2016 D Introduction to Discrete Optimization + Greedy algorithms I

Fri, 4.11.2016 D Greedy algorithms II + Branch and bound

Fri, 18.11.2016 D Dynamic programming

Mon, 21.11.2016
in S103-S105

D Approximation algorithms and heuristics

Fri, 25.11.2016
in S103-S105

C Randomized Search Heuristics + Intro. to Continuous Opt. I

Mon, 28.11.2016
in S103-S105

C Introduction to Continuous Optimization II

Mon, 5.12.2016
in S103-S105

C Introduction to Continuous Optimization III

Fri, 9.12.2016 C Constrained Optimization + Descent Methods

Mon, 12.12.2016
in S103-S105

C Derivative Free Optimization I: CMA-ES

Fri, 16.12.2016 C Derivative Free Optimization II: Benchmarking Optimizers

with the COCO platform

Wed, 4.1.2017 Exam

Course Overview

if not indicated otherwise, classes take place in S115-S117
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Introduction to Continuous Optimization

 examples (from ML / black-box problems)

 typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

 reminders about differentiability, gradient, Hessian matrix

 unconstraint optimization

 first and second order conditions

 convexity

 constrained optimization

Gradient-based Algorithms

 gradient descent

 quasi-Newton method (BFGS)

Derivative Free Optimization

 stochastic adaptive algorithms (CMA-ES)

 Benchmarking Numerical Blackbox Optimizers

Overview Continuous Optimization Part
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Let 𝑈 be a convex open set of ℝ𝑛 and 𝑓:𝑈 → ℝ. The function 𝑓 is

said to be convex if for all 𝒙, 𝒚 ∈ 𝑈 and for all 𝑡 ∈ [0,1]

𝑓 1 − 𝑡 𝒙 + 𝑡𝒚 ≤ 1 − 𝑡 𝑓 𝒙 + 𝑡𝑓(𝒚)

Theorem

If 𝑓 is differentiable, then 𝑓 is convex if and only if for all 𝒙, 𝒚

𝑓 𝒚 − 𝑓 𝒙 ≥ 𝛻𝑓 𝒙
𝑇
(𝒚 − 𝒙)

if 𝑛 = 1, the curve is on top of the tangent

If 𝑓 is twice continuously differentiable, then 𝑓 is convex if and only if 

𝛻2𝑓(𝒙) is positive semi-definite for all 𝒙.

Convex Functions
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Examples of Convex Functions:

 𝑓 𝒙 = 𝑎𝑇𝒙 + 𝑏

 𝑓 𝒙 =
1

2
𝒙𝑇𝐴𝒙 + 𝑎𝑇𝒙 + 𝑏, 𝐴 symmetric positive definite

 the negative of the entropy function (i. e. 𝑓 𝒙 = − 𝑖=1
𝑛 𝒙𝑖 ln(𝒙𝒊) )

Convex Functions: Why Convexity?

Exercise:

Let 𝑓:𝑈 → ℝ be a convex and differentiable function on a

convex open 𝑈.

Show that if 𝛻𝑓 𝒙∗ = 0, then 𝒙∗ is a global minimum of 𝑓



Constrained Optimization
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Objective:

Generalize the necessary condition of 𝛻𝑓 𝑥 = 0 at the optima of f

when 𝑓 is in 𝒞1, i.e. is differentiable and its derivative is continuous

Theorem:

Be 𝑈 an open set of 𝐸, | | , and 𝑓: 𝑈 → ℝ, 𝑔:𝑈 → ℝ in 𝒞1.

Let 𝑎 ∈ 𝐸 satisfy

 
𝑓 𝑎 = inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛, 𝑔 𝑥 = 0}

𝑔 𝑎 = 0

i.e. 𝑎 is optimum of the problem

If 𝛻𝑔 𝑎 ≠ 0, then there exists a constant 𝜆 ∈ ℝ called Lagrange 

multiplier, such that

𝛻𝑓 𝑎 + 𝜆𝛻𝑔 𝑎 = 0

i.e. gradients of 𝑓 and 𝑔 in 𝑎 are colinear

Note: 𝑎 need not be a global minimum but a local one

Equality Constraint
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Geometrical Interpretation Using an Example

Exercise:

Consider the problem

inf 𝑓 𝑥, 𝑦 𝑥, 𝑦 ∈ ℝ2, 𝑔 𝑥, 𝑦 = 0}

𝑓 𝑥, 𝑦 = 𝑦 − 𝑥2 𝑔 𝑥, 𝑦 = 𝑥2 + 𝑦2 − 1

1) Plot the level sets of 𝑓, plot 𝑔 = 0
2) Compute 𝛻𝑓 and 𝛻𝑔
3) Find the solutions with 𝛻𝑓 + 𝜆𝛻𝑔 = 0

equation solving with 3 unknowns (𝑥, 𝑦, 𝜆)

4) Plot the solutions of 3) on top of the level set graph of 1)
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Intuitive way to retrieve the Euler-Lagrange equation:

 In a local minimum 𝑎 of a constrained problem, the 

hypersurfaces (or level sets) 𝑓 = 𝑓(𝑎) and 𝑔 = 0 are necessarily

tangent (otherwise we could decrease 𝑓 by moving along 𝑔 = 0).

 Since the gradients 𝛻𝑓 𝑎 and 𝛻𝑔(𝑎) are orthogonal to the level

sets 𝑓 = 𝑓(𝑎) and 𝑔 = 0, it follows that 𝛻𝑓(𝑎) and 𝛻𝑔(𝑎) are 

colinear.

Interpretation of Euler-Lagrange Equation
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Theorem

 Assume 𝑓:𝑈 → ℝ and 𝑔𝑘: 𝑈 → ℝ (1 ≤ 𝑘 ≤ 𝑝) are 𝒞1.

 Let 𝑎 be such that

 
𝑓 𝑎 = inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛, 𝑔𝑘 𝑥 = 0, 1 ≤ 𝑘 ≤ 𝑝}

𝑔𝑘 𝑎 = 0 for all 1 ≤ 𝑘 ≤ 𝑝

 If 𝛻𝑔𝑘 𝑎
1≤𝑘≤𝑝

are linearly independent, then there exist 𝑝 real 

constants 𝜆𝑘 1≤𝑘≤𝑝 such that

𝛻𝑓 𝑎 +  

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑎 = 0

again: 𝑎 does not need to be global but local minimum

Generalization to More than One Constraint

Lagrange multiplier
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 Define the Lagrangian on ℝ𝑛 × ℝ𝑝 as

ℒ 𝑥, 𝜆𝑘 = 𝑓 𝑥 +  

𝑘=1

𝑝

𝜆𝑘𝑔𝑘(𝑥)

 To find optimal solutions, we can solve the optimality system

Find 𝑥, 𝜆𝑘 ∈ ℝ𝑛 × ℝ𝑝 such that 𝛻𝑓 𝑥 +  

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑥 = 0

𝑔𝑘 𝑥 = 0 for all 1 ≤ 𝑘 ≤ 𝑝

⟺  
Find 𝑥, 𝜆𝑘 ∈ ℝ𝑛 × ℝ𝑝 such that 𝛻𝑥ℒ 𝑥, {𝜆𝑘} = 0

𝛻𝜆𝑘ℒ 𝑥, {𝜆𝑘} 𝑥 = 0 for all 1 ≤ 𝑘 ≤ 𝑝

The Lagrangian
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Let 𝒰 = 𝑥 ∈ ℝ𝑛 𝑔𝑘 𝑥 = 0 for 𝑘 ∈ 𝐸 , 𝑔𝑘(𝑥) ≤ 0 (for 𝑘 ∈ 𝐼)}.

Definition:

The points in ℝ𝑛 that satisfy the constraints are also called feasible

points.

Definition:

Let 𝑎 ∈ 𝒰, we say that the constraint 𝑔𝑘 𝑥 ≤ 0 (for 𝑘 ∈ 𝐼) is active

in 𝑎 if 𝑔𝑘 𝑎 = 0.

Inequality Constraints: Definitions
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Theorem (Karush-Kuhn-Tucker, KKT):

Let 𝑈 be an open set of 𝐸, | ||) and 𝑓: 𝑈 → ℝ, 𝑔𝑘: 𝑈 → ℝ, all 𝒞1

Furthermore, let 𝑎 ∈ 𝑈 satisfy

 

𝑓 𝑎 = inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛, 𝑔𝑘(𝑥) = 0 for 𝑘 ∈ 𝐸 , 𝑔𝑘 𝑥 ≤ 0 (for 𝑘 ∈ I)

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

Let 𝐼𝑎
0 be the set of constraints that are active in 𝑎. Assume that

𝛻𝑔𝑘 𝑎
𝑘 ∈ 𝐸 ∪ 𝐼𝑎

0 are linearly independent.

Then there exist 𝜆𝑘 1≤𝑘≤𝑝 that satisfy

𝛻𝑓 𝑎 +  

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑎 = 0

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

𝜆𝑘 ≥ 0 (for 𝑘 ∈ 𝐼𝑎
0)

𝜆𝑘𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸 ∪ 𝐼)

Inequality Constraint: Karush-Kuhn-Tucker Theorem

also works again for 𝑎
being a local minimum
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Theorem (Karush-Kuhn-Tucker, KKT):

Let 𝑈 be an open set of 𝐸, | ||) and 𝑓: 𝑈 → ℝ, 𝑔𝑘: 𝑈 → ℝ, all 𝒞1

Furthermore, let 𝑎 ∈ 𝑈 satisfy

 

𝑓 𝑎 = inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛, 𝑔𝑘(𝑥) = 0 for 𝑘 ∈ 𝐸 , 𝑔𝑘 𝑥 ≤ 0 (for 𝑘 ∈ I)

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

Let 𝐼𝑎
0 be the set of constraints that are active in 𝑎. Assume that

𝛻𝑔𝑘 𝑎
𝑘 ∈ 𝐸 ∪ 𝐼𝑎

0 are linearly independent.

Then there exist 𝜆𝑘 1≤𝑘≤𝑝 that satisfy

𝛻𝑓 𝑎 +  

𝑘=1

𝑝

𝜆𝑘𝛻𝑔𝑘 𝑎 = 0

𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸)

𝑔𝑘 𝑎 ≤ 0 (for 𝑘 ∈ 𝐼)

𝜆𝑘 ≥ 0 (for 𝑘 ∈ 𝐼𝑎
0)

𝜆𝑘𝑔𝑘 𝑎 = 0 (for 𝑘 ∈ 𝐸 ∪ 𝐼)

Inequality Constraint: Karush-Kuhn-Tucker Theorem

either active constraint

or 𝜆𝑘 = 0



Descent Methods
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General principle

 choose an initial point 𝒙0, set 𝑡 = 1

 while not happy

 choose a descent direction 𝒅𝑡 ≠ 0

 line search:

 choose a step size 𝜎𝑡 > 0

 set 𝒙𝑡+1 = 𝒙𝑡 + 𝜎𝑡𝒅𝑡

 set 𝑡 = 𝑡 + 1

Remaining questions

 how to choose 𝒅𝑡?

 how to choose 𝜎𝑡? 

Descent Methods
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Rationale: 𝒅𝑡 = −𝛻𝑓(𝒙𝑡) is a descent direction

indeed for 𝑓 differentiable

𝑓 𝑥 − 𝜎𝛻𝑓 𝑥 = 𝑓 𝑥 − 𝜎||𝛻𝑓 𝑥 ||2 + 𝑜(𝜎||𝛻𝑓 𝑥 ||)

< 𝑓(𝑥) for 𝜎 small enough

Step-size

 optimal step-size: 𝜎𝑡 = argmin
𝜎

𝑓(𝒙𝑡 − 𝜎𝛻𝑓 𝒙𝑡 )

 Line Search: total or partial optimization w.r.t. 𝜎
Total is however often too "expensive" (needs to be performed at 

each iteration step)

Partial optimization: execute a limited number of trial steps until a 

loose approximation of the optimum is found. Typical rule for 

partial optimization: Armijo rule
see next slide and exercise

Stopping criteria:

norm of gradient smaller than 𝜖

Gradient Descent
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Choosing the step size:

 Only a decreasing 𝑓-value is not enough to converge (quickly)

 Want to have a reasonably large decrease in 𝑓

Armijo-Goldstein rule:

 also known as backtracking line search

 starts with a (too) large estimate of 𝜎 and reduces it until 𝑓 is 

reduced enough

 what is enough?

 assuming a linear 𝑓 e.g. 𝑚𝑘(𝑥) = 𝑓(𝑥𝑘) + 𝛻 𝑓 𝑥𝑘
𝑇(𝑥 − 𝑥𝑘)

 expected decrease if step of 𝜎𝑘 is done in direction 𝒅: 

𝜎𝑘𝛻𝑓 𝑥𝑘
𝑇𝒅

 actual decrease: 𝑓 𝑥𝑘 − 𝑓(𝑥𝑘 + 𝜎𝑘𝒅)

 stop if actual decrease is at least constant times expected 

decrease (constant typically chosen in [0, 1])

The Armijo-Goldstein Rule
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The Actual Algorithm:

Armijo, in his original publication chose 𝛽 = 𝜃 = 0.5.

Choosing 𝜃 = 0 means the algorithm accepts any decrease.

The Armijo-Goldstein Rule
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Graphical Interpretation

The Armijo-Goldstein Rule

𝑥

𝜎0
linear approximation

(expected decrease)

accepted decrease

actual increase
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Graphical Interpretation

The Armijo-Goldstein Rule

𝑥

𝜎1
linear approximation

(expected decrease)

accepted decrease

decrease in 𝑓
but not sufficiently large
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Graphical Interpretation

The Armijo-Goldstein Rule

𝑥

𝜎2
linear approximation 

(expected decrease)

accepted decrease

decrease in 𝑓
now sufficiently large
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Assume 𝑓 is twice continuously differentiable, convex and that 

𝜇𝐼𝑑 ≼ 𝛻2𝑓 𝑥 ≼ 𝐿𝐼𝑑 with 𝜇 > 0 holds, assume a fixed step-size 𝜎𝑡 =
1

𝐿

Note: 𝐴 ≼ 𝐵 means 𝑥𝑇𝐴𝑥 ≤ 𝑥𝑇𝐵𝑥 for all 𝑥

𝑥𝑡+1 − 𝑥∗ = 𝑥𝑡 − 𝑥∗ − 𝜎𝑡𝛻
2𝑓 𝑦𝑡 𝑥𝑡 − 𝑥∗ for some 𝑦𝑡 ∈ [𝑥𝑡 , 𝑥

∗]

𝑥𝑡+1 − 𝑥∗ = 𝐼𝑑 −
1

𝐿
𝛻2𝑓 𝑦𝑡 𝑥𝑡 − 𝑥∗

Hence | 𝑥𝑡+1 − 𝑥∗ |2 ≤ |||𝐼𝑑 −
1

𝐿
𝛻2𝑓 𝑦𝑡 |||2 | 𝑥𝑡 − 𝑥∗ |2

≤ 1 −
𝜇

𝐿

2

||𝑥𝑡 − 𝑥∗||2

Linear convergence: | 𝑥𝑡+1 − 𝑥∗ | ≤ 1 −
𝜇

𝐿
||𝑥𝑡 − 𝑥∗||

algorithm slower and slower with increasing condition number

Non-convex setting: convergence towards stationary point

Gradient Descent: Simple Theoretical Analysis
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Newton Method

 descent direction: − 𝛻2𝑓 𝑥𝑘
−1𝛻𝑓(𝑥𝑘) [so-called Newton 

direction]

 The Newton direction:

 minimizes the best (locally) quadratic approximation of 𝑓: 

 𝑓 𝑥 + Δ𝑥 = 𝑓 𝑥 + 𝛻𝑓 𝑥 𝑇Δ𝑥 +
1

2
Δ𝑥 𝑇𝛻2𝑓 𝑥 Δx

 points towards the optimum on 𝑓 𝑥 = 𝑥 − 𝑥∗ 𝑇𝐴 𝑥 − 𝑥∗

 however, Hessian matrix is expensive to compute in general and 

its inversion is also not easy

quadratic convergence

(i.e. lim
𝑘→∞

|𝑥𝑘+1−𝑥
∗|

𝑥𝑘−𝑥
∗ 2 = 𝜇 > 0 )

Newton Algorithm
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Affine Invariance: same behavior on 𝑓 𝑥 and 𝑓(𝐴𝑥 + 𝑏) for 𝐴 ∈
GLn(ℝ)

 Newton method is affine invariant
see http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/

Lecture_6_Scribe_Notes.final.pdf

 same convergence rate on all convex-quadratic functions

 Gradient method not affine invariant

Remark: Affine Invariance
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𝑥𝑡+1 = 𝑥𝑡 − 𝜎𝑡𝐻𝑡𝛻𝑓(𝑥𝑡) where 𝐻𝑡 is an approximation of the inverse 

Hessian

Key idea of Quasi Newton:

successive iterates 𝑥𝑡, 𝑥𝑡+1 and gradients 𝛻𝑓 𝑥𝑡 , 𝛻𝑓(𝑥𝑡+1) yield

second order information

𝑞𝑡 ≈ 𝛻2𝑓 𝑥𝑡+1 𝑝𝑡

where  𝑝𝑡 = 𝑥𝑡+1 − 𝑥𝑡 and 𝑞𝑡 = 𝛻𝑓 𝑥𝑡+1 − 𝛻𝑓 𝑥𝑡

Most popular implementation of this idea: Broyden-Fletcher-

Goldfarb-Shanno (BFGS)

 default in MATLAB's fminunc and python's 

scipy.optimize.minimize

Quasi-Newton Method: BFGS
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I hope it became clear...

...what are the difficulties to cope with when solving numerical 

optimization problems

in particular dimensionality, non-separability and ill-conditioning

...what are gradient and Hessian

...what is the difference between gradient and Newton direction

...and that adapting the step size in descent algorithms is crucial.

Conclusions
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Exercise: Comparing Gradient-Based 

Algorithms on Convex Quadratic Functions

http://researchers.lille.inria.fr/

~brockhof/introoptimization/



Derivative-Free Optimization
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DFO = blackbox optimization

Why blackbox scenario?

 gradients are not always available (binary code, no analytical 

model, ...)

 or not useful (noise, non-smooth, ...)

 problem domain specific knowledge is used only within the black 

box, e.g. within an appropriate encoding

 some algorithms are furthermore function-value-free, i.e. invariant

wrt. monotonous transformations of 𝑓.

Derivative-Free Optimization (DFO)

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ
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 (gradient-based algorithms which approximate the gradient by 

finite differences)

 coordinate descent

 pattern search methods, e.g. Nelder-Mead

 surrogate-assisted algorithms, e.g. NEWUOA or other trust-

region methods

 other function-value-free algorithms

 typically stochastic

 evolution strategies (ESs) and Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES)

 differential evolution

 particle swarm optimization

 simulated annealing

 ...

Derivative-Free Optimization Algorithms
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While not happy do:

[assuming minimization of 𝑓 and that 𝑥1, … , 𝑥𝑛+1 ∈ ℝ𝑛 form a simplex]

1) Order according to the values at the vertices: 𝑓 𝑥1 ≤ 𝑓 𝑥2 ≤ ⋯ ≤ 𝑓(𝑥𝑛+1)

2) Calculate 𝑥𝑜, the centroid of all points except 𝑥𝑛+1.
3) Reflection

Compute reflected point 𝑥𝑟 = 𝑥𝑜 + 𝛼 (𝑥𝑜 − 𝑥𝑛+1) (𝛼 > 0)

If 𝑥𝑟 better than second worst, but not better than best: 𝑥𝑛+1: = 𝑥𝑟 , and go to 1)

4) Expansion

If 𝑥𝑟 is the best point so far: compute the expanded point

𝑥𝑒 = 𝑒𝑜 + 𝛾 (𝑥𝑟 − 𝑥𝑜)(\gamma > 0)
If 𝑥𝑒 better than 𝑥𝑟 then 𝑥𝑛+1 ≔ 𝑥𝑒 and go to 1)

Else 𝑥𝑛+1 ≔ 𝑥𝑟 and go to 1)

Else (i.e. reflected point is not better than second worst) continue with 5)

5) Contraction (here: 𝑓 𝑥𝑟 ≥ 𝑓(𝑥𝑛))

Compute contracted point 𝑥𝑐 = 𝑥𝑜 + 𝜌(𝑥𝑛+1 − 𝑥𝑜) (0 < 𝜌 ≤ 0.5)

If 𝑓 𝑥𝑐 < 𝑓(𝑥𝑛+1): 𝑥𝑛+1 ≔ 𝑥𝑐 and go to 1)

Else go to 6)

6) Shrink

𝑥𝑖 = 𝑥1 + 𝜎 𝑥𝑖 - 𝑥1 for all 𝑖 ∈ {2, … , 𝑛 + 1} and go to 1) 

Nelder, John A.; R. Mead (1965). "A simplex method for function minimization". 

Computer Journal. 7: 308–313. doi:10.1093/comjnl/7.4.308

Downhill Simplex Method by Nelder and Mead
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A stochastic blackbox search template to minimize 𝒇:ℝ𝒏 → ℝ

Initialize distribution parameters 𝜃, set population size 𝜆 ∈ ℕ

While happy do:

 Sample distribution 𝑃 𝒙 𝜃 → 𝒙1, … , 𝒙𝜆 ∈ ℝ𝑛

 Evaluate 𝒙1, … , 𝒙𝜆 on 𝑓

 Update parameters 𝜃 ← 𝐹𝜃(𝜃, 𝒙1, … , 𝒙𝜆, 𝑓 𝒙1 , … , 𝑓 𝒙𝜆 )

 All depends on the choice of 𝑃 and 𝐹𝜃
deterministic algorithms are covered as well

 In Evolutionary Algorithms, 𝑃 and 𝐹𝜃 are often defined implicitly

via their operators.

Stochastic Search Template
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Generic Framework of an EA

Nothing else: just

interpretation change

initialization

evaluation

evaluation

potential

parents

offspring

parents

crossover/

mutation

mating

selection

environmental

selection

stop?

best individual

stochastic operators

“Darwinism”

stopping criteria
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CMA-ES in a Nutshell
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CMA-ES in a Nutshell

Goal:

Understand the main principles

of this state-of-the-art algorithm.
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 Last slide was taken from 
https://www.lri.fr/~hansen/copenhagen-cma-es.pdf

(copyright by Nikolaus Hansen, one of the main inventors of the 

CMA-ES algorithms)

 In the following, I will borrow more slides from there and from 
http://researchers.lille.inria.fr/~brockhof/optimiza

tionSaclay/slides/20151106-continuousoptIV.pdf

(by Anne Auger)

 In the following and the online material in particular, I refer to 

these pdfs as [Hansen, p. X] and [Auger, p. Y] respectively.

Copyright Notice
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Back to CMA-ES

Goal:

Understand the main principles

of this state-of-the-art algorithm.
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A stochastic blackbox search template to minimize 𝒇:ℝ𝒏 → ℝ

Initialize distribution parameters 𝜃, set population size 𝜆 ∈ ℕ

While happy do:

 Sample distribution 𝑃 𝒙 𝜃 → 𝒙1, … , 𝒙𝜆 ∈ ℝ𝑛

 Evaluate 𝒙1, … , 𝒙𝜆 on 𝑓

 Update parameters 𝜃 ← 𝐹𝜃(𝜃, 𝒙1, … , 𝒙𝜆, 𝑓 𝒙1 , … , 𝑓 𝒙𝜆 )

For CMA-ES and evolution strategies in general: 

sample distributions = multivariate Gaussian distributions

CMA-ES: Stochastic Search Template
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it remains to show how to adapt the parameters, but for now: normal 

distributions

Sampling New Candidate Solutions (Offspring)

from [Auger, p. 10]
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Excursion: Normal Distributions

from [Auger, p. 11]
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Excursion: Normal Distributions

from [Auger, p. 12]
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Excursion: Normal Distributions

from [Auger, p. 13]
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Excursion: Normal Distributions

from [Auger, p. 13]
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Excursion: Normal Distributions

from [Auger, p. 13]
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Covariance Matrix: Lines of Equal Density

from [Auger, p. 14]
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Covariance Matrix: Lines of Equal Density

from [Auger, p. 14]
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Covariance Matrix: Lines of Equal Density

from [Auger, p. 14]
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Adaptation of Sample Distribution Parameters

from [Auger, p. 16]
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Adaptation of the Mean
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Plus and Comma Selection

from [Hansen, p. 35]
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Non-Elitism and Weighted Recombination

from [Hansen, p. 34]
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Invariance Against Order-Preserving 𝑓-Transformations

from [Hansen, p. 37]
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Invariance Against Translations in Search Space

from [Hansen, p. 38]
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Invariance Against Search Space Rotations

from [Hansen, p. 39]
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Invariance Against Rigid Search Space Transformations

from [Hansen, p. 40

]
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Invariance Against Rigid Search Space Transformations

from [Hansen, p. 41]



60Introduction to Optimization @ ECP, Dec. 9, 2016© Dimo Brockhoff, Inria 60

Invariance Against Rigid Search Space Transformations

mainly Nelder-Mead and CMA-ES

have this property
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Invariances: Summary

from [Hansen, p. 43]
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Step-Size Adaptation
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Recap CMA-ES: What We Have So Far

from [Hansen, p. 45]
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Why At All Step-Size Adaptation?

What do you think will happen for a

(1+1)-ES with constant step-size?

from [Auger, p. 22]
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Why Step-Size Adaptation?

from [Auger, p. 22]
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Optimal Step-Size

from [Hansen, p. 47]
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Optimal Step-Size vs. Step-Size Control 

from [Hansen, p. 48]
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Optimal Step-Size vs. Step-Size Control 

from [Hansen, p. 49]
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 How to actually adapt the step-size during the optimization?

Most common:

 1/5 success rule

 Cumulative Step-Size Adaptation (CSA, as in standard CMA-ES)

 others possible (Two-Point Adaptation, self-adaptive step-size, ...) 

Adapting the Step-Size
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One-Fifth Success Rule

from [Auger, p. 32]
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One-Fifth Success Rule

from [Auger, p. 33]
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One-Fifth Success Rule

from [Auger, p. 34]
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One-Fifth Success Rule

from [Auger, p. 35]
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Cumulative Step-Size Adaptation (CSA)

from [Auger, p. 36]
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Cumulative Step-Size Adaptation (CSA)

from [Auger, p. 37]
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Cumulative Step-Size Adaptation (CSA)

from [Auger, p. 38]
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Covariance Matrix Adaptation
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Recap CMA-ES: What We Have So Far

from [Auger, p. 40]
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Recap CMA-ES: What We Have So Far

from [Auger, p. 40]

...which is what we will see in the last

lecture next Friday


