Introduction to Optimization
 Constrained Optimization + Descent Methods

December 9, 2016
École Centrale Paris, Châtenay-Malabry, France

Dimo Brockhoff
Inria Saclay - Ile-de-France

Course Overview

Date		Topic
Fri, 7.10.2016		Introduction
Fri, 28.10.2016	D	Introduction to Discrete Optimization + Greedy algorithms I
Fri, 4.11.2016	D	Greedy algorithms II + Branch and bound
Fri, 18.11.2016	D	Dynamic programming
Mon, 21.11.2016 in S103-S105	D	Approximation algorithms and heuristics
Fri, 25.11.2016 in S103-s105	C	Randomized Search Heuristics + Intro. to Continuous Opt. I
Mon, 28.11.2016 in S103-s105	C	Introduction to Continuous Optimization II
Mon, 5.12.2016 in S103-S105	C	Introduction to Continuous Optimization III
Fri, 9.12.2016	C	Constrained Optimization + Descent Methods
Mon, 12.12.2016 in S103-s105	C	Derivative Free Optimization I: CMA-ES
Fri, 16.12.2016	C	Derivative Free Optimization II: Benchmarking Optimizers with the COCO platform Wed, 4.1.2017
Exam		

Overview Continuous Optimization Part

Introduction to Continuous Optimization

- examples (from ML / black-box problems)
- typical difficulties in optimization (e.g. constraints)

Mathematical Tools to Characterize Optima

- reminders about differentiability, gradient, Hessian matrix
- unconstraint optimization
- first and second order conditions
- convexity
- constrained optimization

Gradient-based Algorithms

- gradient descent
- quasi-Newton method (BFGS)

Derivative Free Optimization

- stochastic adaptive algorithms (CMA-ES)
- Benchmarking Numerical Blackbox Optimizers

Convex Functions

Let U be a convex open set of \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}$. The function f is said to be convex if for all $\boldsymbol{x}, \boldsymbol{y} \in U$ and for all $t \in[0,1]$

$$
f((1-t) \boldsymbol{x}+t \boldsymbol{y}) \leq(1-t) f(\boldsymbol{x})+t f(\boldsymbol{y})
$$

Theorem

If f is differentiable, then f is convex if and only if for all $\boldsymbol{x}, \boldsymbol{y}$

$$
\begin{aligned}
f(\boldsymbol{y})-f(\boldsymbol{x}) & \geq(\nabla f(\boldsymbol{x}))^{T}(\boldsymbol{y}-\boldsymbol{x}) \\
\text { if } n & =1, \text { the curve is on top of the tangent }
\end{aligned}
$$

If f is twice continuously differentiable, then f is convex if and only if $\nabla^{2} f(x)$ is positive semi-definite for all \boldsymbol{x}.

Convex Functions: Why Convexity?

Examples of Convex Functions:

- $f(\boldsymbol{x})=a^{T} \boldsymbol{x}+b$
- $f(x)=\frac{1}{2} \boldsymbol{x}^{T} A \boldsymbol{x}+a^{T} \boldsymbol{x}+b, A$ symmetric positive definite
- the negative of the entropy function (i. e. $f(x)=-\sum_{i=1}^{n} x_{i} \ln \left(x_{i}\right)$)

Exercise:

Let $f: U \rightarrow \mathbb{R}$ be a convex and differentiable function on a convex open U.
Show that if $\nabla f\left(\boldsymbol{x}^{*}\right)=0$, then \boldsymbol{x}^{*} is a global minimum of f

Constrained Optimization

Equality Constraint

Objective:

Generalize the necessary condition of $\nabla f(x)=0$ at the optima of \mathfrak{f} when f is in \mathcal{C}^{1}, i.e. is differentiable and its derivative is continuous

Theorem:

Be U an open set of $(E,\| \|)$, and $f: U \rightarrow \mathbb{R}, g: U \rightarrow \mathbb{R}$ in \mathcal{C}^{1}.
Let $a \in E$ satisfy

$$
\left\{\begin{array}{c}
f(a)=\inf \left\{f(x) \mid x \in \mathbb{R}^{n}, g(x)=0\right\} \\
g(a)=0
\end{array}\right.
$$

i.e. a is optimum of the problem

If $\nabla g(a) \neq 0$, then there exists a constant $\lambda \in \mathbb{R}$ called Lagrange multiplier, such that

$$
\nabla \underbrace{\nabla f(a)+\lambda \nabla g(a)=0}
$$

i.e. gradients of f and g in a are colinear

Note: a need not be a global minimum but a local one

Geometrical Interpretation Using an Example

Exercise:

Consider the problem

$$
\inf \left\{f(x, y) \mid(x, y) \in \mathbb{R}^{2}, g(x, y)=0\right\}
$$

$$
f(x, y)=y-x^{2} \quad g(x, y)=x^{2}+y^{2}-1
$$

1) Plot the level sets of f, plot $g=0$
2) Compute ∇f and ∇g
3) Find the solutions with $\nabla f+\lambda \nabla g=0$
equation solving with 3 unknowns (x, y, λ)
4) Plot the solutions of 3) on top of the level set graph of 1)

Interpretation of Euler-Lagrange Equation

Intuitive way to retrieve the Euler-Lagrange equation:

- In a local minimum a of a constrained problem, the hypersurfaces (or level sets) $f=f(a)$ and $g=0$ are necessarily tangent (otherwise we could decrease f by moving along $g=0$).
- Since the gradients $\nabla f(a)$ and $\nabla g(a)$ are orthogonal to the level sets $f=f(a)$ and $g=0$, it follows that $\nabla f(a)$ and $\nabla g(a)$ are colinear.

Generalization to More than One Constraint

Theorem

- Assume $f: U \rightarrow \mathbb{R}$ and $g_{k}: U \rightarrow \mathbb{R}(1 \leq k \leq p)$ are \mathcal{C}^{1}.
- Let a be such that

$$
\left\{\begin{array}{r}
f(a)=\inf \left\{f(x) \mid x \in \mathbb{R}^{n}, \quad g_{k}(x)=0, \quad 1 \leq k \leq p\right\} \\
g_{k}(a)=0 \text { for all } 1 \leq k \leq p
\end{array}\right.
$$

- If $\left(\nabla g_{k}(a)\right)_{1 \leq k \leq p}$ are linearly independent, then there exist p real constants $\left(\lambda_{k}\right)_{1 \leq k \leq p}$ such that

$$
\nabla f(a)+\sum_{k=1 \uparrow}^{p} \lambda_{k} \nabla g_{k}(a)=0
$$

again: a does not need to be global but local minimum

The Lagrangian

- Define the Lagrangian on $\mathbb{R}^{n} \times \mathbb{R}^{p}$ as

$$
\mathcal{L}\left(x,\left\{\lambda_{k}\right\}\right)=f(x)+\sum_{k=1}^{p} \lambda_{k} g_{k}(x)
$$

- To find optimal solutions, we can solve the optimality system
$\left\{\right.$ Find $\left(x,\left\{\lambda_{k}\right\}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{p}$ such that $\nabla f(x)+\sum_{k=1}^{p} \lambda_{k} \nabla g_{k}(x)=0$

$$
g_{k}(x)=0 \text { for all } 1 \leq k \leq p
$$

$$
\Leftrightarrow\left\{\begin{array}{c}
\text { Find }\left(x,\left\{\lambda_{k}\right\}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{p} \text { such that } \nabla_{x} \mathcal{L}\left(x,\left\{\lambda_{k}\right\}\right)=0 \\
\nabla_{\lambda_{k}} \mathcal{L}\left(x,\left\{\lambda_{k}\right\}\right)(x)=0 \text { for all } 1 \leq k \leq p
\end{array}\right.
$$

Inequality Constraints: Definitions

Let $U=\left\{x \in \mathbb{R}^{n} \mid g_{k}(x)=0\right.$ (for $k \in E$), $g_{k}(x) \leq 0$ (for $k \in I$) $\}$.

Definition:

The points in \mathbb{R}^{n} that satisfy the constraints are also called feasible points.

Definition:

Let $a \in U$, we say that the constraint $g_{k}(x) \leq 0$ (for $k \in I$) is active in a if $g_{k}(a)=0$.

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):
Let U be an open set of $(E,\| \|)$ and $f: U \rightarrow \mathbb{R}, g_{k}: U \rightarrow \mathbb{R}$, all \mathcal{C}^{1}
Furthermore, let $a \in U$ satisfy
$\left\{\begin{aligned} f(a)=\inf \left(f(x) \mid x \in \mathbb{R}^{n}, g_{k}(x)=0(\text { for } k \in E),\right. & g_{k}(x) \leq 0(\text { for } k \in \mathrm{I}) \\ g_{k}(a)=0(\text { for } k \in E) & \text { also works again for } a \\ g_{k}(a) \leq 0(\text { for } k \in I) & \text { being a local minimum }\end{aligned}\right.$
Let I_{a}^{0} be the set of constraints that are active in a. Assume that $\left(\nabla g_{k}(a)\right)_{k \in E \cup I_{a}^{0}}$ are linearly independent.
Then there exist $\left(\lambda_{k}\right)_{1 \leq k \leq p}$ that satisfy

$$
\left\{\begin{array}{c}
\nabla f(a)+\sum_{k=1}^{p} \lambda_{k} \nabla g_{k}(a)=0 \\
g_{k}(a)=0(\text { for } k \in E) \\
g_{k}(a) \leq 0(\text { for } k \in I) \\
\lambda_{k} \geq 0\left(\text { for } k \in I_{a}^{0}\right) \\
\lambda_{k} g_{k}(a)=0(\text { for } k \in E \cup I)
\end{array}\right.
$$

Inequality Constraint: Karush-Kuhn-Tucker Theorem

Theorem (Karush-Kuhn-Tucker, KKT):
Let U be an open set of $(E,\| \|)$ and $f: U \rightarrow \mathbb{R}, g_{k}: U \rightarrow \mathbb{R}$, all \mathcal{C}^{1}
Furthermore, let $a \in U$ satisfy

$$
\left\{\begin{array}{c}
f(a)=\inf \left(f(x) \mid x \in \mathbb{R}^{n}, g_{k}(x)=0(\text { for } k \in E), g_{k}(x) \leq 0(\text { for } k \in \mathrm{I})\right. \\
g_{k}(a)=0(\text { for } k \in E) \\
g_{k}(a) \leq 0(\text { for } k \in I)
\end{array}\right.
$$

Let I_{a}^{0} be the set of constraints that are active in a. Assume that $\left(\nabla g_{k}(a)\right)_{k \in E \cup I_{a}^{0}}$ are linearly independent.
Then there exist $\left(\lambda_{k}\right)_{1 \leq k \leq p}$ that satisfy

$$
\left\{\begin{array}{c}
\nabla f(a)+\sum_{k=1}^{p} \lambda_{k} \nabla g_{k}(a)=0 \\
g_{k}(a)=0(\text { for } k \in E) \\
g_{k}(a) \leq 0(\text { for } k \in I) \\
\lambda_{k} \geq 0\left(\text { for } k \in I_{a}^{\sigma}\right) \\
\lambda_{k} g_{k}(a)=0(\text { for } k \in E \cup I)
\end{array}\right.
$$

either active constraint or $\lambda_{k}=0$

Descent Methods

Descent Methods

General principle

(1) choose an initial point x_{0}, set $t=1$
(2) while not happy

- choose a descent direction $\boldsymbol{d}_{t} \neq 0$
- line search:
- choose a step size $\sigma_{t}>0$
- set $\boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}+\sigma_{t} \boldsymbol{d}_{t}$
- set $t=t+1$

Remaining questions

- how to choose \boldsymbol{d}_{t} ?
- how to choose σ_{t} ?

Gradient Descent

Rationale: $\boldsymbol{d}_{t}=-\nabla f\left(\boldsymbol{x}_{t}\right)$ is a descent direction indeed for f differentiable

$$
\begin{aligned}
f(x-\sigma \nabla f(x)) & =f(x)-\sigma\|\nabla f(x)\|^{2}+o(\sigma\|\nabla f(x)\|) \\
< & f(x) \text { for } \sigma \text { small enough }
\end{aligned}
$$

Step-size

- optimal step-size: $\sigma_{t}=\operatorname{argmin} f\left(\boldsymbol{x}_{t}-\sigma \nabla f\left(\boldsymbol{x}_{t}\right)\right)$
- Line Search: total or partial optimization w.r.t. σ Total is however often too "expensive" (needs to be performed at each iteration step)
Partial optimization: execute a limited number of trial steps until a loose approximation of the optimum is found. Typical rule for partial optimization: Armijo rule
see next slide and exercise

Stopping criteria:

norm of gradient smaller than ϵ

The Armijo-Goldstein Rule

Choosing the step size:

- Only a decreasing f-value is not enough to converge (quickly)
- Want to have a reasonably large decrease in f

Armijo-Goldstein rule:

- also known as backtracking line search
- starts with a (too) large estimate of σ and reduces it until f is reduced enough
- what is enough?
- assuming a linear f e.g. $m_{k}(x)=f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{T}\left(x-x_{k}\right)$
- expected decrease if step of σ_{k} is done in direction \boldsymbol{d} : $\sigma_{k} \nabla f\left(x_{k}\right)^{T} \boldsymbol{d}$
- actual decrease: $f\left(x_{k}\right)-f\left(x_{k}+\sigma_{k} \boldsymbol{d}\right)$
- stop if actual decrease is at least constant times expected decrease (constant typically chosen in [0, 1])

The Armijo-Goldstein Rule

The Actual Algorithm:

Input: descent direction d, point \mathbf{x}, objective function $f(\mathbf{x})$ and its gradient $\nabla f(\mathbf{x})$, parameters $\sigma_{0}=10, \theta \in[0,1]$ and $\beta \in(0,1)$
Output: step-size σ
Initialize $\sigma: \sigma \leftarrow \sigma_{0}$
while $f(\mathbf{x}+\sigma \mathbf{d})>f(\mathbf{x})+\theta \sigma \nabla f(\mathbf{x})^{T} \mathbf{d}$ do
$\sigma \leftarrow \beta \sigma$
end while

Armijo, in his original publication chose $\beta=\theta=0.5$.
Choosing $\theta=0$ means the algorithm accepts any decrease.

The Armijo-Goldstein Rule

Graphical Interpretation

linear approximation
(expected decrease)

The Armijo-Goldstein Rule

Graphical Interpretation

linear approximation
(expected decrease)

The Armijo-Goldstein Rule

Graphical Interpretation

linear approximation
(expected decrease)

Gradient Descent: Simple Theoretical Analysis

Assume f is twice continuously differentiable, convex and that $\mu I_{d} \leqslant \nabla^{2} f(x) \leqslant L I_{d}$ with $\mu>0$ holds, assume a fixed step-size $\sigma_{t}=\frac{1}{L}$ Note: $A \preccurlyeq B$ means $x^{T} A x \leq x^{T} B x$ for all x

$$
\begin{gathered}
x_{t+1}-x^{*}=x_{t}-x^{*}-\sigma_{t} \nabla^{2} f\left(y_{t}\right)\left(x_{t}-x^{*}\right) \text { for some } y_{t} \in\left[x_{t}, x^{*}\right] \\
x_{t+1}-x^{*}=\left(I_{d}-\frac{1}{L} \nabla^{2} f\left(y_{t}\right)\right)\left(x_{t}-x^{*}\right)
\end{gathered}
$$

$$
\text { Hence }\left\|x_{t+1}-x^{*}\right\|^{2} \leq\| \| I_{d}-\frac{1}{L} \nabla^{2} f\left(y_{t}\right)\| \|^{2}\left\|x_{t}-x^{*}\right\|^{2}
$$

$$
\leq\left(1-\frac{\mu}{L}\right)^{2}\left\|x_{t}-x^{*}\right\|^{2}
$$

Linear convergence: $\left\|x_{t+1}-x^{*}\right\| \leq\left(1-\frac{\mu}{L}\right)\left\|x_{t}-x^{*}\right\|$
algorithm slower and slower with increasing condition number
Non-convex setting: convergence towards stationary point

Newton Algorithm

Newton Method

- descent direction: $-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)$ [so-called Newton direction]
- The Newton direction:
- minimizes the best (locally) quadratic approximation of f :

$$
\tilde{f}(x+\Delta x)=f(x)+\nabla f(x)^{T} \Delta x+\frac{1}{2}(\Delta x)^{T} \nabla^{2} f(x) \Delta \mathrm{x}
$$

- points towards the optimum on $f(x)=\left(x-x^{*}\right)^{T} A\left(x-x^{*}\right)$
- however, Hessian matrix is expensive to compute in general and its inversion is also not easy
quadratic convergence

$$
\text { (i.e. } \lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|^{2}}=\mu>0 \text {) }
$$

Remark: Affine Invariance

Affine Invariance: same behavior on $f(x)$ and $f(A x+b)$ for $A \in$ GLn(R)

- Newton method is affine invariant see http://users.ece.utexas.edu/~cmcaram/EE381v_2012F/ Lecture_6_Scribe_Notes.final.pdf
- same convergence rate on all convex-quadratic functions
- Gradient method not affine invariant

Quasi-Newton Method: BFGS

$x_{t+1}=x_{t}-\sigma_{t} H_{t} \nabla f\left(x_{t}\right)$ where H_{t} is an approximation of the inverse Hessian

Key idea of Quasi Newton:

successive iterates x_{t}, x_{t+1} and gradients $\nabla f\left(x_{t}\right), \nabla f\left(x_{t+1}\right)$ yield second order information

$$
\begin{gathered}
q_{t} \approx \nabla^{2} f\left(x_{t+1}\right) p_{t} \\
\text { where } p_{t}=x_{t+1}-x_{t} \text { and } q_{t}=\nabla f\left(x_{t+1}\right)-\nabla f\left(x_{t}\right)
\end{gathered}
$$

Most popular implementation of this idea: Broyden-Fletcher-Goldfarb-Shanno (BFGS)

- default in MATLAB's fminunc and python's scipy.optimize.minimize

Conclusions

I hope it became clear...
...what are the difficulties to cope with when solving numerical optimization problems
in particular dimensionality, non-separability and ill-conditioning
...what are gradient and Hessian
...what is the difference between gradient and Newton direction
...and that adapting the step size in descent algorithms is crucial.

Exercise: Comparing Gradient-Based Algorithms on Convex Quadratic Functions

http://researchers.lille.inria.fr/ ~brockhof/introoptimization/

Derivative-Free Optimization

Derivative-Free Optimization (DFO)

DFO = blackbox optimization

Why blackbox scenario?

- gradients are not always available (binary code, no analytical model, ...)
- or not useful (noise, non-smooth, ...)
- problem domain specific knowledge is used only within the black box, e.g. within an appropriate encoding
- some algorithms are furthermore function-value-free, i.e. invariant wrt. monotonous transformations of f.

Derivative-Free Optimization Algorithms

- (gradient-based algorithms which approximate the gradient by finite differences)
- coordinate descent
- pattern search methods, e.g. Nelder-Mead
- surrogate-assisted algorithms, e.g. NEWUOA or other trustregion methods
- other function-value-free algorithms
- typically stochastic
- evolution strategies (ESs) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
- differential evolution
- particle swarm optimization
- simulated annealing

Downhill Simplex Method by Nelder and Mead

While not happy do:
[assuming minimization of f and that $x_{1}, \ldots, x_{n+1} \in \mathbb{R}^{n}$ form a simplex]

1) Order according to the values at the vertices: $f\left(x_{1}\right) \leq f\left(x_{2}\right) \leq \cdots \leq f\left(x_{n+1}\right)$
2) Calculate x_{o}, the centroid of all points except x_{n+1}.
3) Reflection

Compute reflected point $x_{r}=x_{o}+\alpha\left(x_{o}-x_{n+1}\right)(\alpha>0)$
If x_{r} better than second worst, but not better than best: $x_{n+1}:=x_{r}$, and go to 1)
4) Expansion

If x_{r} is the best point so far: compute the expanded point

$$
x_{e}=e_{o}+\gamma\left(x_{r}-x_{o}\right)(\backslash \text { gamma }>0)
$$

If x_{e} better than x_{r} then $x_{n+1}:=x_{e}$ and go to 1)
Else $x_{n+1}:=x_{r}$ and go to 1)
Else (i.e. reflected point is not better than second worst) continue with 5)
5) Contraction (here: $\left.f\left(x_{r}\right) \geq f\left(x_{n}\right)\right)$

Compute contracted point $x_{c}=x_{o}+\rho\left(x_{n+1}-x_{o}\right)(0<\rho \leq 0.5)$
If $f\left(x_{c}\right)<f\left(x_{n+1}\right): x_{n+1}:=x_{c}$ and go to 1)
Else go to 6)
6) Shrink
$x_{i}=x_{1}+\sigma\left(x_{i}-x_{1}\right)$ for all $i \in\{2, \ldots, n+1\}$ and go to 1)
Nelder, John A.; R. Mead (1965). "A simplex method for function minimization".
Computer Journal. 7: 308-313. doi:10.1093/comjn/7.4.308

Stochastic Search Template

A stochastic blackbox search template to minimize $f: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}$ Initialize distribution parameters θ, set population size $\lambda \in \mathbb{N}$ While happy do:

- Sample distribution $P(\boldsymbol{x} \mid \theta) \rightarrow \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda} \in \mathbb{R}^{n}$
- Evaluate $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda}$ on f
- Update parameters $\theta \leftarrow F_{\theta}\left(\theta, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda}, f\left(\boldsymbol{x}_{1}\right), \ldots, f\left(\boldsymbol{x}_{\lambda}\right)\right)$
- All depends on the choice of P and F_{θ} deterministic algorithms are covered as well
- In Evolutionary Algorithms, P and F_{θ} are often defined implicitly via their operators.

Generic Framework of an EA

stochastic operators
"Darwinism"
stopping criteria

Nothing else: just interpretation change

CMA-ES in a Nutshell

The CMA-ES

Input: $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \lambda$
Initialize: $\mathbf{C}=\mathbf{I}$, and $p_{\mathrm{c}}=\mathbf{0}, p_{\sigma}=\mathbf{0}$,
Set: $c_{\mathrm{c}} \approx 4 / n, c_{\sigma} \approx 4 / n, c_{1} \approx 2 / n^{2}, c_{\mu} \approx \mu_{w} / n^{2}, c_{1}+c_{\mu} \leq 1, d_{\sigma} \approx 1+\sqrt{\frac{\mu_{w}}{n}}$, and $w_{i=1 \ldots \lambda}$ such that $\mu_{w}=\frac{1}{\sum_{i=1}^{\mu} w_{i}} \approx 0.3 \lambda$
While not terminate

$$
\begin{array}{rlr}
\boldsymbol{x}_{i} & =m+\sigma \boldsymbol{y}_{i}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}), \quad \text { for } i=1, \ldots, \lambda & \text { sampling } \\
m & \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}=m+\sigma \boldsymbol{y}_{w} \quad \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} & \text { update mean } \\
p_{\mathrm{c}} & \leftarrow\left(1-c_{\mathrm{c}}\right) p_{\mathrm{c}}+1_{\left\{\left\|p_{\sigma}\right\|<1.5 \sqrt{n}\right\}}^{1-\left(1-c_{\mathrm{c}}\right)^{2}} \sqrt{\mu_{w}} \boldsymbol{y}_{w} & \text { cumulation for } \mathrm{C} \\
p_{\sigma} & \leftarrow\left(1-c_{\sigma}\right) p_{\sigma}+\sqrt{1-\left(1-c_{\sigma}\right)^{2}} \sqrt{\mu_{w}} \mathrm{C}^{-\frac{1}{2} \boldsymbol{y}_{w}} & \text { cumulation for } \sigma \\
\mathrm{C} & \leftarrow\left(1-c_{1}-c_{\mu}\right) \mathrm{C}+c_{1} p_{\mathrm{c}} p_{\mathrm{c}}^{\mathrm{T}}+c_{\mu} \sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \boldsymbol{y}_{i: \lambda}^{\mathrm{T}} & \text { update } \mathrm{C} \\
\sigma \leftarrow \sigma \times \exp \left(\frac{c_{\sigma}}{d_{\sigma}}\left(\frac{\| \| p_{c}\|(\mathbb{N}, \mathbf{1})\|}{}-1\right)\right) & \text { update of } \sigma
\end{array}
$$

Not covered on this slide: termination, restarts, useful output, boundaries and encoding

CMA-ES in a Nutshell

The CMA-ES

Input: $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \lambda$
Initialize: $\mathbf{C}=\mathbf{I}$, and $p_{\mathrm{c}}=\mathbf{0}, p_{\sigma}=\mathbf{0}$,
Set: $c_{\mathrm{c}} \approx 4 / n, c_{\sigma} \approx 4 / n, c_{1} \approx 2 / n^{2}, c_{\mu} \approx \mu_{w} / n^{2}, c_{1}+c_{\mu} \leq 1, d_{\sigma} \approx 1+\sqrt{\frac{\mu_{w}}{n}}$, and $w_{i=1 \ldots \lambda}$ such that $\mu_{w}=\frac{1}{\sum_{i=1}^{\mu} w_{i}^{2}} \approx 0.3 \lambda$
While not terminate

$$
\begin{array}{rlr}
\boldsymbol{x}_{i} & =m+\sigma \boldsymbol{y}_{i}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}), \quad \text { for } i=1, \ldots, \lambda & \text { sampling } \\
m & \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}=m+\sigma \boldsymbol{y}_{w} & \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda}
\end{array} \text { update mean } .
$$

Copyright Notice

- Last slide was taken from
https://www.lri.fr/~hansen/copenhagen-cma-es.pdf (copyright by Nikolaus Hansen, one of the main inventors of the CMA-ES algorithms)
- In the following, I will borrow more slides from there and from http://researchers.lille.inria.fr/~brockhof/optimiza tionSaclay/slides/20151106-continuousoptIV.pdf (by Anne Auger)
- In the following and the online material in particular, I refer to these pdfs as [Hansen, p. X] and [Auger, p. Y] respectively.

Back to CMA-ES

The CMA-ES

Input: $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \lambda$
Initialize: $\mathbf{C}=\mathbf{I}$, and $p_{\mathrm{c}}=\mathbf{0}, p_{\sigma}=\mathbf{0}$,
Set: $c_{\mathrm{c}} \approx 4 / n, c_{\sigma} \approx 4 / n, c_{1} \approx 2 / n^{2}, c_{\mu} \approx \mu_{w} / n^{2}, c_{1}+c_{\mu} \leq 1, d_{\sigma} \approx 1+\sqrt{\frac{\mu_{w}}{n}}$, and $w_{i=1 \ldots \lambda}$ such that $\mu_{w}=\frac{1}{\sum_{i=1}^{\mu} w_{i}^{2}} \approx 0.3 \lambda$
While not terminate

$$
\begin{array}{rlr}
\boldsymbol{x}_{i} & =m+\sigma \boldsymbol{y}_{i}, \quad y_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}), \quad \text { for } i=1, \ldots, \lambda & \text { sampling } \\
m & \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}=m+\sigma \boldsymbol{y}_{w} & \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda}
\end{array} \text { update mean } .
$$

CMA-ES: Stochastic Search Template

A stochastic blackbox search template to minimize $f: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}$ Initialize distribution parameters θ, set population size $\lambda \in \mathbb{N}$ While happy do:

- Sample distribution $P(\boldsymbol{x} \mid \theta) \rightarrow \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda} \in \mathbb{R}^{n}$
- Evaluate $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda}$ on f
- Update parameters $\theta \leftarrow F_{\theta}\left(\theta, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda}, f\left(\boldsymbol{x}_{1}\right), \ldots, f\left(\boldsymbol{x}_{\lambda}\right)\right)$

For CMA-ES and evolution strategies in general:
sample distributions = multivariate Gaussian distributions

Sampling New Candidate Solutions (Offspring)

Evolution Strategies

New search points are sampled normally distributed

$$
\boldsymbol{x}_{i} \sim m+\sigma \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \quad \text { for } i=1, \ldots, \lambda
$$

as perturbations of m, \quad where $\boldsymbol{x}_{i}, m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \mathrm{C} \in \mathbb{R}^{n \times n}$
 where

- the mean vector $m \in \mathbb{R}^{n}$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_{+}$controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid
here, all new points are sampled with the same parameters
it remains to show how to adapt the parameters, but for now: normal distributions
from [Auger, p. 10]

Excursion: Normal Distributions

Normal Distribution

1-D case

probability density of the 1-D standard normal distribution $\mathcal{N}(0,1)$
$($ expected $($ mean $)$ value, variance $)=(0,1)$

$$
p(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

General case
$($ expected value, variance $)=\left(\boldsymbol{m}, \sigma^{2}\right)$ density: $p_{\boldsymbol{m}, \sigma}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\boldsymbol{m})^{2}}{2 \sigma^{2}}\right)$

- A normal distribution is entirely determined by its mean value and variance
- The family of normal distributions is closed under linear transformations: if X is normally distributed then a linear transformation $a X+b$ is also normally distributed
- Exercice: Show that $m+\sigma \mathcal{N}(0,1)=\mathcal{N}\left(m, \sigma^{2}\right)$

Excursion: Normal Distributions

Normal Distribution

General case

A random variable following a 1-D normal distribution is determined by its mean value m and variance σ^{2}.

In the n-dimensional case it is determined by its mean vector and covariance matrix

Covariance Matrix
If the entries in a vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ are random variables, each with finite variance, then the covariance matrix Σ is the matrix whose (i, j) entries are the covariance of $\left(X_{i}, X_{j}\right)$

$$
\Sigma_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)=\mathrm{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]
$$

where $\mu_{i}=\mathrm{E}\left(X_{i}\right)$. Considering the expectation of a matrix as the expectation of each entry, we have

$$
\Sigma=\mathrm{E}\left[(X-\mu)(X-\mu)^{T}\right]
$$

Σ is symmetric, positive definite

Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(m, C)$ is uniquely determined by its mean value $m \in \mathbb{R}^{n}$ and its symmetric positive definite $n \times n$ covariance matrix C.

$$
\text { density: } p_{\mathcal{N}(\boldsymbol{m}, \mathbf{C})}(x)=\frac{1}{(2 \pi)^{n / 2}|\mathbf{C}|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\boldsymbol{m})^{\mathrm{T}} \mathbf{C}^{-1}(x-\boldsymbol{m})\right),
$$

Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(m, C)$ is uniquely determined by its mean value $m \in \mathbb{R}^{n}$ and its symmetric positive definite $n \times n$ covariance matrix C.

$$
\text { density: } p_{\mathcal{N}(\boldsymbol{m}, \mathbf{C})}(x)=\frac{1}{(2 \pi)^{n / 2}|\mathbf{C}|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\boldsymbol{m})^{\mathrm{T}} \mathbf{C}^{-1}(x-\boldsymbol{m})\right),
$$

The mean value m

- determines the displacement (translation)
- value with the largest density (modal value)
- the distribution is symmetric about the distribution mean

$$
\mathcal{N}(\boldsymbol{m}, \mathbf{C})=\boldsymbol{m}+\mathcal{N}(0, \mathbf{C})
$$

Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(m, C)$ is uniquely determined by its mean value $m \in \mathbb{R}^{n}$ and its symmetric positive definite $n \times n$ covariance matrix C.

$$
\text { density: } p_{\mathcal{N}(\boldsymbol{m}, \mathbf{C})}(x)=\frac{1}{(2 \pi)^{n / 2}|\mathbf{C}|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\boldsymbol{m})^{\mathrm{T}} \mathbf{C}^{-1}(x-\boldsymbol{m})\right),
$$

The mean value m

- determines the displacement (translation)
- value with the largest density (modal value)
- the distribution is symmetric about the distribution mean

$$
\mathcal{N}(\boldsymbol{m}, \mathbf{C})=\boldsymbol{m}+\mathcal{N}(0, \mathbf{C})
$$

The covariance matrix C

- determines the shape
- geometrical interpretation: any covariance matrix can be uniquely identified with the iso-density ellipsoid

$$
\left\{x \in \mathbb{R}^{n} \mid(x-m)^{\mathrm{T}} \mathbf{C}^{-1}(x-m)=1\right\}
$$

from [Auger, p. 13]

Covariance Matrix: Lines of Equal Density

... any covariance matrix can be uniquely identified with the iso-density ellipsoid $\left\{x \in \mathbb{R}^{n} \mid(x-m)^{\mathrm{T}} \mathbf{C}^{-1}(x-m)=1\right\}$

Lines of Equal Density

$\mathcal{N}\left(\boldsymbol{m}, \sigma^{2} \mathbf{I}\right) \sim \boldsymbol{m}+\sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$
one degree of freedom σ
components are
independent standard
normally distributed
where \mathbf{I} is the identity matrix (isotropic case) and \mathbf{D} is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{A} \mathbf{A}^{\mathrm{T}}\right)$ holds for all A.

Covariance Matrix: Lines of Equal Density

... any covariance matrix can be uniquely identified with the iso-density ellipsoid $\left\{x \in \mathbb{R}^{n} \mid(x-m)^{\mathrm{T}} \mathbf{C}^{-1}(x-m)=1\right\}$

Lines of Equal Density

$\mathcal{N}\left(\boldsymbol{m}, \sigma^{2} \mathbf{I}\right) \sim \boldsymbol{m}+\sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$
one degree of freedom σ components are independent standard

$$
\mathcal{N}\left(m, \mathbf{D}^{2}\right) \sim m+\mathbf{D} \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

n degrees of freedom
components are independent, scaled normally distributed
where \mathbf{I} is the identity matrix (isotropic case) and \mathbf{D} is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{A} \mathbf{A}^{\mathrm{T}}\right)$ holds for all A.

Covariance Matrix: Lines of Equal Density

... any covariance matrix can be uniquely identified with the iso-density ellipsoid $\left\{x \in \mathbb{R}^{n} \mid(x-m)^{\mathrm{T}} \mathrm{C}^{-1}(x-m)=1\right\}$

Lines of Equal Density

$\mathcal{N}\left(\boldsymbol{m}, \sigma^{2} \mathbf{I}\right) \sim m+\sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$
one degree of freedom σ components are independent standard normally distributed
where \mathbf{I} is the identity matrix (isotropic case) and \mathbf{D} is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{A} \mathbf{A}^{\mathrm{T}}\right)$ holds for all A.

Adaptation of Sample Distribution Parameters

Adaptation: What do we want to achieve?
New search points are sampled normally distributed

$$
\begin{aligned}
& \boldsymbol{x}_{i} \sim m+\sigma \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \quad \text { for } i
\end{aligned}=1, \ldots, \lambda, \quad \begin{aligned}
& \text { where } \boldsymbol{x}_{i}, \boldsymbol{m} \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \mathrm{C} \in \mathbb{R}^{n \times n}
\end{aligned}
$$

- the mean vector should represent the favorite solution
- the step-size controls the step-length and thus convergence rate

```
should allow to reach fastest convergence rate possible
```

- the covariance matrix $C \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid
adaptation should allow to learn the "topography" of the problem particulary important for ill-conditionned problems $\mathbf{C} \propto \boldsymbol{H}^{-1}$ on convex quadratic functions from [Auger, p. 16]

Adaptation of the Mean

Plus and Comma Selection

Evolution Strategies

Terminology
μ : \# of parents, λ : \# of offspring
Plus (elitist) and comma (non-elitist) selection
$(\mu+\lambda)$-ES: selection in $\{$ parents $\} \cup\{$ offspring $\}$
(μ, λ)-ES: selection in $\{$ offspring $\}$

$$
(1+1)-E S
$$

Sample one offspring from parent m

$$
\boldsymbol{x}=m+\sigma \mathcal{N}(\mathbf{0}, \mathrm{C})
$$

If x better than m select

$$
m \leftarrow \boldsymbol{x}
$$

Non-Elitism and Weighted Recombination

The $(\mu / \mu, \lambda)$-ES
Non-elitist selection and intermediate (weighted) recombination
Given the i-th solution point $\boldsymbol{x}_{i}=m+\sigma \underbrace{\mathcal{N}_{i}(\mathbf{0}, \mathbf{C})}_{=: y_{i}}=m+\sigma \boldsymbol{y}_{i}$
Let $\boldsymbol{x}_{i: \lambda}$ the i-th ranked solution point, such that $f\left(\boldsymbol{x}_{1: \lambda}\right) \leq \cdots \leq f\left(\boldsymbol{x}_{\lambda: \lambda}\right)$. The new mean reads

$$
m \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}=m+\sigma \underbrace{\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda}}_{=: \boldsymbol{y}_{w}}
$$

where

$$
w_{1} \geq \cdots \geq w_{\mu}>0, \quad \sum_{i=1}^{\mu} w_{i}=1, \quad \frac{1}{\sum_{i=1}^{\mu} w_{i}^{2}}=: \mu_{w} \approx \frac{\lambda}{4}
$$

The best μ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied.

Invariance Against Order-Preserving f-Transformations

Invariance: Function-Value Free Property

Three functions belonging to the same equivalence class

A function-value free search algorithm is invariant under the transformation with any order preserving (strictly increasing) g.

Invariances make

- observations meaningful as a rigorous notion of generalization
- algorithms predictable and/or "robust"

Invariance Against Translations in Search Space

Basic Invariance in Search Space

- translation invariance
is true for most optimization algorithms

$$
f(\boldsymbol{x}) \leftrightarrow f(\boldsymbol{x}-\boldsymbol{a})
$$

Identical behavior on f and f_{a}

$$
\begin{aligned}
f: & \boldsymbol{x} \mapsto f(\boldsymbol{x}), & & \boldsymbol{x}^{(t=0)}=\boldsymbol{x}_{0} \\
f_{\boldsymbol{a}}: & & \boldsymbol{x} \mapsto f(\boldsymbol{x}-\boldsymbol{a}), & \boldsymbol{x}^{(t=0)}=\boldsymbol{x}_{0}+\boldsymbol{a}
\end{aligned}
$$

No difference can be observed w.r.t. the argument of f

Invariance Against Search Space Rotations

Rotational Invariance in Search Space

- invariance to orthogonal (rigid) transformations \mathbf{R}, where $\mathbf{R R}^{\mathrm{T}}=\mathbf{I}$
e.g. true for simple evolution strategies recombination operators might jeopardize rotational invariance

$$
f(\boldsymbol{x}) \leftrightarrow f(\mathbf{R} \boldsymbol{x})
$$

Identical behavior on f and $f_{\mathbf{R}}$

$$
\begin{array}{rlll}
f: & \boldsymbol{x} \mapsto f(\boldsymbol{x}), & \boldsymbol{x}^{(t=0)}=\boldsymbol{x}_{0} \\
f_{\mathbf{R}}: & & \boldsymbol{x} \mapsto f(\mathbf{R} \boldsymbol{x}), & \boldsymbol{x}^{(t=0)}=\mathbf{R}^{-1}\left(\boldsymbol{x}_{0}\right)
\end{array}
$$

45
No difference can be observed w.r.t. the argument of f

[^0]
Invariance Against Rigid Search Space Transformations

Invariance Under Rigid Search Space Transformations

for example, invariance under search space rotation (separable \Leftrightarrow non-separable)
from [Hansen, p. 40

Invariance Against Rigid Search Space Transformations

Invariance Under Rigid Search Space Transformations

for example, invariance under search space rotation (separable \Leftrightarrow non-separable)
from [Hansen, p. 41]

Invariance Against Rigid Search Space Transformations

Invariance Under Rigid Search Space Transformations

for example, invariance un (separable \Leftrightarrow non-separab

mainly Nelder-Mead and CMA-ES have this property

Invariances: Summary

Invariance

The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest number of hypotheses or axioms.

- Albert Einstein
- Empirical performance results
- from benchmark functions
- from solved real world problems
are only useful if they do generalize to other problems
- Invariance is a strong non-empirical statement about generalization
generalizing (identical) performance from a single function to a whole class of functions
consequently, invariance is important for the evaluation of search algorithms

Step-Size Adaptation

Recap CMA-ES: What We Have So Far

Evolution Strategies

Recalling
New search points are sampled normally distributed

$$
\boldsymbol{x}_{i} \sim m+\sigma \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \quad \text { for } i=1, \ldots, \lambda
$$

as perturbations of m, \quad where $\boldsymbol{x}_{i}, m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \mathrm{C} \in \mathbb{R}^{n \times n}$
where

- the mean vector $m \in \mathbb{R}^{n}$ represents the favorite solution and $m \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}$
- the so-called step-size $\sigma \in \mathbb{R}_{+}$controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

The remaining question is how to update σ and C .

Why At All Step-Size Adaptation?

Why Step-Size Control?

Why Step-Size Adaptation?

Why Step-Size Control?

$$
f(x)=\sum_{i=1}^{n} x_{i}^{2}
$$

$$
\text { in }[-0.2,0.8]^{n}
$$

$$
\text { for } n=10
$$

Optimal Step-Size

Why Step-Size Control?

$$
\begin{aligned}
& f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}^{2} \\
& \text { for } n=10 \text { and } \\
& \boldsymbol{x}^{0} \in[-0.2,0.8]^{n}
\end{aligned}
$$

with optimal step-size σ

Optimal Step-Size vs. Step-Size Control

Why Step-Size Control?

(5/5w, 10)-ES, 2 times 11 runs

$$
\begin{gathered}
f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}^{2} \\
\text { for } n=10 \text { and } \\
\boldsymbol{x}^{0} \in[-0.2,0.8]^{n}
\end{gathered}
$$

with optimal versus adaptive step-size σ with too small initial σ

Optimal Step-Size vs. Step-Size Control

Why Step-Size Control?

$$
\begin{aligned}
& f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}^{2} \\
& \text { for } n=10 \text { and } \\
& \boldsymbol{x}^{0} \in[-0.2,0.8]^{n}
\end{aligned}
$$

comparing number of f-evals to reach $\|m\|=10^{-5}: \frac{1100-100}{650} \approx 1.5$

Adapting the Step-Size

- How to actually adapt the step-size during the optimization?

Most common:

- $1 / 5$ success rule
- Cumulative Step-Size Adaptation (CSA, as in standard CMA-ES)
- others possible (Two-Point Adaptation, self-adaptive step-size, ...)

One-Fifth Success Rule

One-fifth success rule

increase σ

from [Auger, p. 32]

One-Fifth Success Rule

One-fifth success rule

Probability of success $\left(p_{s}\right)$
$1 / 2$

Probability of success $\left(p_{s}\right)$
"too small"

One-Fifth Success Rule

One-fifth success rule

p_{s} : \# of successful offspring / \# offspring (per generation)
$\sigma \leftarrow \sigma \times \exp \left(\frac{1}{3} \times \frac{p_{s}-p_{\text {target }}}{1-p_{\text {target }}}\right) \quad \begin{aligned} & \text { Increase } \sigma \text { if } p_{s}>p_{\text {target }} \\ & \text { Decrease } \sigma \text { if } p_{s}<p_{\text {target }}\end{aligned}$
$(1+1)$-ES

$$
p_{\text {target }}=1 / 5
$$

IF offspring better parent

$$
p_{s}=1, \sigma \leftarrow \sigma \times \exp (1 / 3)
$$

ELSE

$$
p_{s}=0, \sigma \leftarrow \sigma / \exp (1 / 3)^{1 / 4}
$$

One-Fifth Success Rule

Why $1 / 5$?
Asymptotic convergence rate and probability of success of scale-invariant step-size ($1+1$)-ES

sphere - asymptotic results, i.e. $n=\infty$ (see slides before)
$1 / 5$ trade-off of optimal probability of success on the sphere and

Cumulative Step-Size Adaptation (CSA)

Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

$$
\begin{aligned}
& \boldsymbol{x}_{i}=\boldsymbol{m}+\sigma \boldsymbol{y}_{i} \\
& \boldsymbol{m} \leftarrow m+\sigma \boldsymbol{y}_{w}
\end{aligned}
$$

Measure the length of the evolution path the pathway of the mean vector m in the generation sequence

Cumulative Step-Size Adaptation (CSA)

Path Length Control (CSA)

The Equations

Initialize $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}$, evolution path $p_{\sigma}=\mathbf{0}$, set $c_{\sigma} \approx 4 / n, d_{\sigma} \approx 1$.

$$
\begin{aligned}
& m \leftarrow m+\sigma \boldsymbol{y}_{w} \quad \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \quad \text { update mean } \\
& p_{\sigma} \leftarrow\left(1-c_{\sigma}\right) \boldsymbol{p}_{\sigma}+\underbrace{\sqrt{1-\left(1-c_{\sigma}\right)^{2}}}_{\text {accounts for } 1-c_{\sigma}} \underbrace{\sqrt{\mu_{w}}}_{\text {accounts for } w_{i}} \boldsymbol{y}_{w} \\
& \sigma \leftarrow \sigma \times \underbrace{\exp \left(\frac{c_{\sigma}}{d_{\sigma}}\left(\frac{\left\|p_{\sigma}\right\|}{\mathrm{E}\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|}-1\right)\right)}_{>1 \Longleftrightarrow\left\|\boldsymbol{p}_{\sigma}\right\| \text { is greater than its expectation }} \text { update step-size }
\end{aligned}
$$

Cumulative Step-Size Adaptation (CSA)

Step-size adaptation

What is achived

Linear convergence
from [Auger, p. 38]

Covariance Matrix Adaptation

Recap CMA-ES: What We Have So Far

Evolution Strategies

Recalling
New search points are sampled normally distributed

$$
\boldsymbol{x}_{i} \sim m+\sigma \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \quad \text { for } i=1, \ldots, \lambda
$$

as perturbations of m, where $\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{m} \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}$,

$$
C \in \mathbb{R}^{n \times n}
$$

where

- the mean vector $m \in \mathbb{R}^{n}$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_{+}$controls the step length
- the covariance matrix $C \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

The remaining question is how to update C .

Recap CMA-ES: What We Have So Far

Evolution Strategies

Recalling
New search points are sampled normally distributed

$$
\boldsymbol{x}_{i} \sim m+\sigma \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \quad \text { for } i=1, \ldots, \lambda
$$

as perturbations of m, where $\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{m} \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}$,

$$
C \in \mathbb{R}^{n \times n}
$$

where

- the mean vector $m \in \mathbb{R}^{n}$ represents the favorite solution
- the so-called step-size ...which is what we will see in the last
- the covariance matrix of the distribution elli lecture next Friday

The remaining question is how to update C .

[^0]: ${ }^{4}$ Salomon 1996. "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278
 ${ }^{5}$ Hansen 2000. Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies. Parallel Problem Solving from Nature PPSN VI

