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Date Topic

Fri, 7.10.2016 Introduction

Fri, 28.10.2016 D Introduction to Discrete Optimization + Greedy algorithms I

Fri, 4.11.2016 D Greedy algorithms II + Branch and bound

Fri, 18.11.2016 D Dynamic programming

Mon, 21.11.2016
in S103-S105

D Approximation algorithms and heuristics

Fri, 25.11.2016
in S103-S105

C Randomized Search Heuristics + Intro. to Continuous Opt. I

Mon, 28.11.2016
in S103-S105

C Introduction to Continuous Optimization II

Mon, 5.12.2016
in S103-S105

C Introduction to Continuous Optimization III

Fri, 9.12.2016 C Constrained Optimization + Descent Methods

Mon, 12.12.2016
in S103-S105

C Derivative Free Optimization I: CMA-ES

Fri, 16.12.2016 C Derivative Free Optimization II: Benchmarking Optimizers

with the COCO platform

Wed, 4.1.2017 Exam

Course Overview

if not indicated otherwise, classes take place in S115-S117
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Solution to the

Exercise: Comparing Gradient-Based 

Algorithms on Convex Quadratic Functions

http://researchers.lille.inria.fr/

~brockhof/introoptimization/



Derivative-Free Optimization
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DFO = blackbox optimization

Why blackbox scenario?

 gradients are not always available (binary code, no analytical 

model, ...)

 or not useful (noise, non-smooth, ...)

 problem domain specific knowledge is used only within the black 

box, e.g. within an appropriate encoding

 some algorithms are furthermore function-value-free, i.e. invariant

wrt. monotonous transformations of 𝑓.

Derivative-Free Optimization (DFO)

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ
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 (gradient-based algorithms which approximate the gradient by 

finite differences)

 coordinate descent

 pattern search methods, e.g. Nelder-Mead

 surrogate-assisted algorithms, e.g. NEWUOA or other trust-

region methods

 other function-value-free algorithms

 typically stochastic

 evolution strategies (ESs) and Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES)

 differential evolution

 particle swarm optimization

 simulated annealing

 ...

Derivative-Free Optimization Algorithms
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While not happy do:

[assuming minimization of 𝑓 and that 𝑥1, … , 𝑥𝑛+1 ∈ ℝ𝑛 form a simplex]

1) Order according to the values at the vertices: 𝑓 𝑥1 ≤ 𝑓 𝑥2 ≤ ⋯ ≤ 𝑓(𝑥𝑛+1)

2) Calculate 𝑥𝑜, the centroid of all points except 𝑥𝑛+1.
3) Reflection

Compute reflected point 𝑥𝑟 = 𝑥𝑜 + 𝛼 (𝑥𝑜 − 𝑥𝑛+1) (𝛼 > 0)

If 𝑥𝑟 better than second worst, but not better than best: 𝑥𝑛+1: = 𝑥𝑟 , and go to 1)

4) Expansion

If 𝑥𝑟 is the best point so far: compute the expanded point

𝑥𝑒 = 𝑥𝑜 + 𝛾 (𝑥𝑟 − 𝑥𝑜)(𝛾 > 0)
If 𝑥𝑒 better than 𝑥𝑟 then 𝑥𝑛+1 ≔ 𝑥𝑒 and go to 1)

Else 𝑥𝑛+1 ≔ 𝑥𝑟 and go to 1)

Else (i.e. reflected point is not better than second worst) continue with 5)

5) Contraction (here: 𝑓 𝑥𝑟 ≥ 𝑓(𝑥𝑛))

Compute contracted point 𝑥𝑐 = 𝑥𝑜 + 𝜌(𝑥𝑛+1 − 𝑥𝑜) (0 < 𝜌 ≤ 0.5)

If 𝑓 𝑥𝑐 < 𝑓(𝑥𝑛+1): 𝑥𝑛+1 ≔ 𝑥𝑐 and go to 1)

Else go to 6)

6) Shrink

𝑥𝑖 = 𝑥1 + 𝜎 𝑥𝑖 − 𝑥1 for all 𝑖 ∈ {2, … , 𝑛 + 1} and go to 1) 

J. A Nelder and R. Mead (1965). "A simplex method for function minimization". 

Computer Journal. 7: 308–313. doi:10.1093/comjnl/7.4.308

Downhill Simplex Method by Nelder and Mead
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 initial simplex is important: hence restarts necessary to have 

good performance

 illustration of working principles at 

https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method

 nice-to-read paper about the (historical) background of the 

method: http://www.math.uiuc.edu/documenta/vol-

ismp/42_wright-margaret.pdf

 turns out to be quite good in low-dimensional problems (with 2 or 

3 variables), but not in high dimension (see also this Friday's 

exercise)

Downhill Simplex Method by Nelder and Mead

https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
http://www.math.uiuc.edu/documenta/vol-ismp/42_wright-margaret.pdf
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A stochastic blackbox search template to minimize 𝒇:ℝ𝒏 → ℝ

Initialize distribution parameters 𝜃, set population size 𝜆 ∈ ℕ

While happy do:

 Sample distribution 𝑃 𝒙 𝜃 → 𝒙1, … , 𝒙𝜆 ∈ ℝ𝑛

 Evaluate 𝒙1, … , 𝒙𝜆 on 𝑓

 Update parameters 𝜃 ← 𝐹𝜃(𝜃, 𝒙1, … , 𝒙𝜆, 𝑓 𝒙1 , … , 𝑓 𝒙𝜆 )

 All depends on the choice of 𝑃 and 𝐹𝜃
deterministic algorithms are covered as well

 In Evolutionary Algorithms, 𝑃 and 𝐹𝜃 are often defined implicitly

via their operators.

Stochastic Search Template



12Introduction to Optimization @ ECP, Dec. 12, 2016© Dimo Brockhoff, Inria 12

Generic Framework of an EA

Nothing else: just

interpretation change

initialization

evaluation

evaluation

potential

parents

offspring

parents

crossover/

mutation

mating

selection

environmental

selection

stop?

best individual

stochastic operators

“Darwinism”

stopping criteria



13Introduction to Optimization @ ECP, Dec. 12, 2016© Dimo Brockhoff, Inria 13

CMA-ES in a Nutshell
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CMA-ES in a Nutshell

Goal:

Understand the main principles

of this state-of-the-art algorithm.
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 Last slide was taken from 
https://www.lri.fr/~hansen/copenhagen-cma-es.pdf

(copyright by Nikolaus Hansen, one of the main inventors of the 

CMA-ES algorithms)

 In the following, I will borrow more slides from there and from 
http://researchers.lille.inria.fr/~brockhof/optimiza

tionSaclay/slides/20151106-continuousoptIV.pdf

(by Anne Auger)

 In the following and the online material in particular, I refer to 

these pdfs as [Hansen, p. X] and [Auger, p. Y] respectively.

Copyright Notice
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Back to CMA-ES

Goal:

Understand the main principles

of this state-of-the-art algorithm.
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A stochastic blackbox search template to minimize 𝒇:ℝ𝒏 → ℝ

Initialize distribution parameters 𝜃, set population size 𝜆 ∈ ℕ

While happy do:

 Sample distribution 𝑃 𝒙 𝜃 → 𝒙1, … , 𝒙𝜆 ∈ ℝ𝑛

 Evaluate 𝒙1, … , 𝒙𝜆 on 𝑓

 Update parameters 𝜃 ← 𝐹𝜃(𝜃, 𝒙1, … , 𝒙𝜆, 𝑓 𝒙1 , … , 𝑓 𝒙𝜆 )

For CMA-ES and evolution strategies in general: 

sample distributions = multivariate Gaussian distributions

CMA-ES: Stochastic Search Template
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it remains to show how to adapt the parameters, but for now: normal 

distributions

Sampling New Candidate Solutions (Offspring)

from [Auger, p. 10]
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Excursion: Normal Distributions

from [Auger, p. 11]
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Excursion: Normal Distributions

from [Auger, p. 12]
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Excursion: Normal Distributions

from [Auger, p. 13]
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Excursion: Normal Distributions

from [Auger, p. 13]
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Excursion: Normal Distributions

from [Auger, p. 13]



24Introduction to Optimization @ ECP, Dec. 12, 2016© Dimo Brockhoff, Inria 24

Covariance Matrix: Lines of Equal Density

from [Auger, p. 14]
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Covariance Matrix: Lines of Equal Density

from [Auger, p. 14]
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Adaptation of Sample Distribution Parameters

from [Auger, p. 16]
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Adaptation of the Mean
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Plus and Comma Selection

from [Hansen, p. 35]
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Non-Elitism and Weighted Recombination

from [Hansen, p. 34]
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Invariance Against Order-Preserving 𝑓-Transformations

from [Hansen, p. 37]
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Invariance Against Translations in Search Space

from [Hansen, p. 38]
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Invariance Against Search Space Rotations

from [Hansen, p. 39]
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Invariance Against Rigid Search Space Transformations

from [Hansen, p. 40

]
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Invariance Against Rigid Search Space Transformations

from [Hansen, p. 41]
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Invariance Against Rigid Search Space Transformations

mainly Nelder-Mead and CMA-ES

have this property
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Invariances: Summary

from [Hansen, p. 43]
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Step-Size Adaptation
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Recap CMA-ES: What We Have So Far

from [Hansen, p. 45]
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Why At All Step-Size Adaptation?

What do you think will happen for a

(1+1)-ES with constant step-size?

from [Auger, p. 22]
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Why Step-Size Adaptation?

from [Auger, p. 22]
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Optimal Step-Size

from [Hansen, p. 47]
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Optimal Step-Size vs. Step-Size Control 

from [Hansen, p. 48]
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Optimal Step-Size vs. Step-Size Control 

from [Hansen, p. 49]
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Question:

How to actually adapt the step-size during the optimization?

Most common:

 1/5 success rule

 Cumulative Step-Size Adaptation (CSA, as in standard CMA-ES)

 others possible (Two-Point Adaptation, self-adaptive step-size, ...) 

Adapting the Step-Size
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One-Fifth Success Rule

from [Auger, p. 32]
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One-Fifth Success Rule

from [Auger, p. 33]
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One-Fifth Success Rule

from [Auger, p. 34]
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One-Fifth Success Rule

from [Auger, p. 35]
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Cumulative Step-Size Adaptation (CSA)

from [Auger, p. 36]
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Cumulative Step-Size Adaptation (CSA)

from [Auger, p. 37]
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Cumulative Step-Size Adaptation (CSA)

from [Auger, p. 38]
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Covariance Matrix Adaptation
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Recap CMA-ES: What We Have So Far

from [Auger, p. 40]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

from [Auger, p. 42]
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Rank-One Update: Summary

from [Hansen, p. 71]
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Evolution Path

from [Auger, p. 44]
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Utilizing the Evolution Path

from [Auger, p. 45]
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Utilizing the Evolution Path

from [Auger, p. 45
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Utilizing the Evolution Path

from [Auger, p. 45]
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Rank-𝝁 Update

from [Auger, p. 47]
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Rank-𝝁 Update

from [Auger, p. 47]
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Rank-𝝁 Update

from [Auger, p. 47]
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Illustration of Rank-𝝁 Update

from [Auger, p. 48]
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Illustration of Rank-𝝁 Update

from [Auger, p. 48]
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Illustration of Rank-𝝁 Update

from [Auger, p. 48]
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The rank-𝝁 update

 increases the possible learning rate for large populations

"large" when 𝜆 ≥ 3𝑛 + 10

 is the primary mechanism whenever a large population size 

is used

 can be easily combined with rank-one update

Rank-𝝁 Update: Summary
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CMA-ES in a Nutshell

Promised:

Understand the main principles

of this state-of-the-art algorithm.
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CMA-ES in a Nutshell
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CMA-ES: Almost Parameterless

from [Hansen, p. 90]
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Experimental Considerations
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Experimentum Crucis with CMA-ES

from [Hansen, p. 91]
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Experimentum Crucis with CMA-ES

from [Hansen, p. 92]



83Introduction to Optimization @ ECP, Dec. 12, 2016© Dimo Brockhoff, Inria 83

Experimentum Crucis with CMA-ES

from [Hansen, p. 93]
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Influence of Condition Number + Invariance
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Influence of Condition Number + Invariance
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Influence of Condition Number + Invariance
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Performance on BBOB Testbed: Data Profile
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Summary CMA-ES I
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Summary CMA-ES II
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I hope it became clear...

...that CMA-ES samples according to multivariate normal distributions

...how CMA-ES updates its mean, stepsize, and covariance matrix

...and what are the invariance properties of CMA-ES

Conclusions


