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Course Overview

Fri, 7.10.2016
Fri, 28.10.2016
Fri, 4.11.2016
Fri, 18.11.2016
Mon, 21.11.2016

in S103-S105

Fri, 25.11.2016

in S103-S105

Mon, 28.11.2016

in S103-S105

Mon, 5.12.2016

in S103-S105

Fri, 9.12.2016
Mon, 12.12.2016

in S103-S105

Fri, 16.12.2016

Wed, 4.1.2017
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Date | |Topic

Introduction

Introduction to Discrete Optimization + Greedy algorithms |
Greedy algorithms Il + Branch and bound

Dynamic programming

Approximation algorithms and-heuristies

Randomized Search Heuristics + Intro. to Continuous Opt. |
Introduction to Continuous Optimization Il

Introduction to Continuous Optimization Il

Constrained Optimization + Descent Methods
Derivative Free Optimization I: CMA-ES

Derivative Free Optimization Il: Benchmarking Optimizers
with the COCO platform

Exam if not indicated otherwise, classes take place in S115-S117
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Solution to the

Exercise: Comparing Gradient-Based
Algorithms on Convex Quadratic Functions

http://researchers.lille.inria.fr/
~brockhof/introoptimization/
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Derivative-Free Optimization



Derivative-Free Optimization (DFO)

DFO = blackbox optimization

Why blackbox scenario?

= gradients are not always available (binary code, no analytical
model, ...)

= or not useful (noise, non-smooth, ...)

= problem domain specific knowledge is used only within the black
box, e.g. within an appropriate encoding

= some algorithms are furthermore function-value-free, i.e. invariant
wrt. monotonous transformations of f.
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Derivative-Free Optimization Algorithms

= (gradient-based algorithms which approximate the gradient by
finite differences)

= coordinate descent
= pattern search methods, e.g. Nelder-Mead

» surrogate-assisted algorithms, e.g. NEWUOA or other trust-
region methods

= other function-value-free algorithms
= typically stochastic

= evolution strategies (ESs) and Covariance Matrix Adaptation
Evolution Strategy (CMA-ES)

= differential evolution
= particle swarm optimization
= simulated annealing
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Derivative-Free Optimization Algorithms

= (gradient-based algorithms which approximate the gradient by
finite differences)

= coordinate descent
= pattern search methods, e.g. Nelder-Mead

» surrogate-assisted algorithms, e.g. NEWUOA or other trust-
region methods

= other function-value-free algorithms
= typically stochastic

= evolution strategies (ESs) and Covariance Matrix Adaptation
Evolution Strategy (CMA-ES)

= differential evolution
= particle swarm optimization
= simulated annealing
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Downhill Simplex Method by Nelder and M

While not happy do:
[assuming minimization of f and that x4, ..., x,,.1 € R™ form a simplex]

1) Order according to the values at the vertices: f(x;) < f(x,) < < f(xp41)
2) Calculate x,, the centroid of all points except x,,. 1.
3) Reflection
Compute reflected point x,, = x, + a (x, — x,41) (@ > 0)
If x,- better than second worst, but not better than best: x,,,,: = x,, , and go to 1)
4) Expansion
If x,- IS the best point so far: compute the expanded point
Xe =X +y (% — x0)(y > 0)
If x, better than x,. then x,,,; = x, and go to 1)
Else x,,,;1 = x,, and go to 1)
Else (i.e. reflected point is not better than second worst) continue with 5)
5) Contraction (here: f(x,) = f(x,))
Compute contracted point x, = x, + p(x,,+1 — x,) (0 < p < 0.5)
If f(xc) < f(xnt1)i Xn41 = X and go to 1)
Else go to 6)
6) Shrink
x; = x; +o(x; — xy)foralli € {2,...,n+1}and goto 1)

J. A Nelder and R. Mead (1965). "A simplex method for function minimization".
Computer Journal. 7: 308-313. doi:10.1093/comjnl/7.4.308
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Downhill Simplex Method by Nelder and Me

* initial simplex is important: hence restarts necessary to have
good performance

= jllustration of working principles at
https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead method

= nice-to-read paper about the (historical) background of the
method: http://www.math.uiuc.edu/documenta/vol-
Ismp/42_wright-margaret.pdf

= turns out to be quite good in low-dimensional problems (with 2 or
3 variables), but not in high dimension (see also this Friday's
exercise)
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https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
http://www.math.uiuc.edu/documenta/vol-ismp/42_wright-margaret.pdf

Derivative-Free Optimization Algorithms

= (gradient-based algorithms which approximate the gradient by
finite differences)

= coordinate descent
= pattern search methods, e.g. Nelder-Mead

» surrogate-assisted algorithms, e.g. NEWUOA or other trust-
region methods

= other function-value-free algorithms
= typically stochastic

= evolution strategies (ESs) and Covariance Matrix Adaptation
Evolution Strategy (CMA-ES)

= differential evolution
= particle swarm optimization
= simulated annealing

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Dec. 12, 2016



Stochastic Search Template

A stochastic blackbox search template to minimize f: R" - R
Initialize distribution parameters @, set population size 1 € N
While happy do:

=  Sample distribution P(x|0) —» x4, ...,x; € R"

» Evaluate x4, ...,x;0nf

» Update parameters 6 « Fy(0, x4, ..., X3, f(x1), ..., f(x))

= All depends on the choice of P and Fy
deterministic algorithms are covered as well

= |n Evolutionary Algorithms, P and Fy are often defined implicitly
via their operators.

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Dec. 12, 2016



Generic Framework of an EA

Initialization best individual

: pOtentia mating
evaluation :
parents selection

environmental
selection

crossover/
mutation

evaluation

stochastic operators

erorotation dhan
<AL Interpretation change

J
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CMA-ES in a Nutshell

Evolution Strategies (ES)

The CMA-ES

Input: m € R*, 0 € Ry, A

Initialize: C =1, andp. =0, p, =0,

Set: cc ~4/n, co = 4/n, ¢y = 2/n?, Cp R [y /1%, C1 + cp <1,de =1+ \/%,
and wi—; _, such that s, = —<=— ~ 0.3\

2
i—1 Wi

While not terminate

xi=m+oy. yi ~ N;j(0,C), fori=1,..., A sampling
m<— Y b wixpy =m+ oy, wherey, =31 wiyi update mean
pe — (1 =co)pe + Mgy <15ym v/ 1 — (1 — ce)®>/itwyw  cumulation for C
Po — (1 —¢co)ps + \/1 — (1 — CJ)Z\/;TWC—%J:W cumulation for o
Ce(1—c1—c,)C+ crpepe’ + ¢ S0 wiviarh, update C
o4 0 X exp (g—z (%—1)) update of o

Not covered on this slide: termination, restarts, useful output, boundaries and
encoding

| 16/ 81
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CMA-ES In a Nutshell

Evolution Strategies (ES) A Search Template

The CMA-ES

Input: m € R*, 0 € Ry, A

Initialize: C =1, andp. =0, p, =0,

Set: cc 2 4/n, co = 4/n, ¢ = f_/fz Cp A /NP, 1+ cp < 1, de = 1+ /B2,
and w;—;._ such that p,, = Zp, 7~ 0.3\

While not terminate

xi=m+oy. yi ~ N;j(0,C), fori=1,..., A sampling
m4— Y 4L wixiy =m+ oy, Wherey, =31 wiyia update mean
pe — (1 =co)pe + Mgy <15ym v/ 1 — (1 — ce)®>/itwyw  cumulation for C
Po — (1= o) po + /1= (1 = ¢ )2\/tiw C 2y, cumulation for &

L T PPN R

(_,-%(1—.:1—(“#)(_, +C1]JJJLT +o N

0 4= 0 X eXp (i (E||J'l'}fg},']1)|| 1) Goal:
Understand the main principles
of this state-of-the-art algorithm.

—

16/ 81

Not covered on this slide: terminatic
encoding
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Copyright Notice

= Last slide was taken from
https://www.1lri.fr/~hansen/copenhagen-cma-es.pdf

(copyright by Nikolaus Hansen, one of the main inventors of the
CMA-ES algorithms)

* In the following, | will borrow more slides from there and from
http://researchers.lille.inria.fr/~brockhof/optimiza

tionSaclay/slides/20151106-continuousoptIV.pdf
(by Anne Auger)

* In the following and the online material in particular, | refer to
these pdfs as [Hansen, p. X] and [Auger, p. Y] respectively.
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Back to CMA-ES

Evolution Strategies (ES) A Search Template

The CMA-ES

Input: m € R*, 0 € Ry, A

Initialize: C =1, andp. =0, p, =0,

Set: cc 2 4/n, co = 4/n, ¢ = f_/fz Cp A /NP, 1+ cp < 1, de = 1+ /B2,
and w;—;._ such that p,, = Zp, 7~ 0.3\

While not terminate

xi=m+oy. yi ~ N;j(0,C), fori=1,..., A sampling
m4— Y 4L wixiy =m+ oy, Wherey, =31 wiyia update mean
pe — (1 =co)pe + Mgy <15ym v/ 1 — (1 — ce)®>/itwyw  cumulation for C
Po — (1= o) po + /1= (1 = ¢ )2\/tiw C 2y, cumulation for &

L T PPN R

(_,-%(1—.:1—(“#)(_, +C1]JJJLT +o N

0 4= 0 X eXp (i (E||J'l'}fg},']1)|| 1) Goal:
Understand the main principles
of this state-of-the-art algorithm.

—

16/ 81

Not covered on this slide: terminatic
encoding
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CMA-ES: Stochastic Search Template

A stochastic blackbox search template to minimize f: R" - R

Initialize distribution parameters @, set population size 1 € N
While happy do:

= Sample distribution P(x|6) = x4, ...,x; € R"
» Evaluate x4, ...,x;0nf
= Update parameters 0 « Fy(0,xq, ..., X3, f (x1), ..., f(x3))

For CMA-ES and evolution strategies in general:

sample distributions = multivariate Gaussian distributions

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Dec. 12, 2016



Sampling New Candidate Solutions (Offspring
Evolution Strategies

_________________________

New search points are sampled normally distributed

x; ~m+ o N;(0,C) fori=1.....\

as perturbations of m, where x;,m e R", 0 € Ry, C € R™" i
where

@ the mean vector m € R” represents the favorite solution
@ the so-called step-size o € R controls the step length

@ the covariance mairix C € R"™" determines the shape of
the distribution ellipsoid

here, all new points are sampled with the same parameters

It remains to show how to adapt the parameters, but for now: normal
distributions

from [Auger, p. 10]
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Excursion: Normal Distributions

Normal Distribution

1-D case

04 Standard Mormal Distribution

' probability density of the 1-D standard normal
203 distribution N (0, 1)
Em (expected (mean) value, variance) = (0,1)
%.[H (X) — 1 ex ( X2)

P = - P >
0

-4 -2 0 2 4

General case

> Normal distribution A/ (m, )

(expected value, variance) = (m, o?)

1 (x—m)*"

density: pm.o(x) = —=— exp (— 552 )

' 2Ta

» A normal distribution is entirely determined by its mean value and
variance

» The family of normal distributions is closed under linear transformations:
if X is normally distributed then a linear transformation aX + b is also
normally distributed
» Exercice: Show that m + oN(0,1) = N (m, o?)
from [Auger, p. 11]
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Excursion: Normal Distributions

Normal Distribution

General case

A random variable following a 1-D normal distribution is determined by its

mean value m and variance o?2.

In the n-dimensional case it is determined by its mean vector and covariance
matrix

Covariance Matrix

If the entries in a vector X = (X1, ... ,X,,)T are random variables, each with
finite variance, then the covariance matrix ¥ is the matrix whose (/, ) entries
are the covariance of (X;, Xj)

2ij =cov(X;,Xj) =E [(X, — pi)(Xj — P‘fj)]

where p1; = E(X;). Considering the expectation of a matrix as the expectation
of each entry, we have

¥ =E[(X —p)(X — )]

2 is symmetric, positive definite

from [Auger, p. 12]
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Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution A"(m, C) is uniquely determined by its

mean value m € R" and its symmetric positive definite n x n covariance matrix

C.
denSity: p,-\-"{m.(:‘,l(x) — {zﬁ)n__.-"ilcll,:‘z exp(_%(‘x o m)Tc_l(‘x o m))

fro__m [Al_,lge;_r\,l p. 13]

© Dimo Brockhoff, Inria Introduction to Optimization @



Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution A"(m, C) is uniquely determined by its

mean value m € R" and its symmetric positive definite n x n covariance matrix
C.

density: paqm,c)(X) = 1 exp(—%(x —m)'C (x — m))

o {zﬂn_..-’2|c|1,.-’z

. £

The mean value m

» determines the displacement (translation)
» value with the largest density (modal value)

» the distribution is symmetric about the
distribution mean

N(m,C)=m+N(0.C)

from [Auger, p. 13]
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Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution N (m, C) is uniquely determined by its

mean value m € R" and its symmetric positive definite n x n covariance matrix
C.

density: paqm,c)(X) = {zxjn.-’é|t:|1.--’2 exp(—%(x —m)'C (x — m))

.

The mean value m

» determines the displacement (translation)
» value with the largest density (modal value)

» the distribution is symmetric about the
distribution mean

N(m,C) =m+ N(0,C)
The covariance matrix C
» determines the shape

» geometrical interpretation: any covariance matrix can be uniquely
identified with the iso-density ellipsoid
(x eR"|(x —m)"C}(x —m) =1}

from [Auger, p. 13]
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Covariance Matrix: Lines of Equal Density

...any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x € R" | (x — m)'C!(x — m) =1}

Lines of Equal Density

N (m, le) ~m+ oN(0,1)
one degree of freedom o
components are

independent standard
normally distributed

where | is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A x A/ (0,1) ~ N(D,AAT) holds for all
A.

© Dimo Brockhoff, Inria
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Covariance Matrix: Lines of Equal Density

...any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x € R"|(x — m)"C™}(x — m) =1}

Lines of Equal Density

N(m.a?l)~m+oN(0,1) N (m.D?)~m+DAN(0.1)
one degree of freedom o n degrees of freedom
components are components are

independent standard independent, scaled

normally distributed

where | is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A x N/ (0.1) ~ N(D,AAT) holds for all
A.
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Covariance Matrix: Lines of Equal Density

...any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x € R"|(x — m)"C™}(x — m) =1}

Lines of Equal Density

N(m.a?l)~m+oN(0,1) N (m.D?)~m+DAN(0.1)
one degree of freedom o

N(m,C)~ m+C2N(0,1)
n degrees of freedom
components are

(n® 4+ n)/2 degrees of freedom
components are components are
independent standard independent, scaled correlated
normally distributed

where | is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A x N/ (0.1) ~ N(O,AAT) holds for all
A.

© Dimo Brockhoff, Inria
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Adaptation of Sample Distribution Parameters

Adaptation: What do we want to achieve?

New search points are sampled normally distributed

xj ~m+aN;(0,C) fori=1....,\

where x;, me R", c e R, C € R™"

» the mean vector should represent the favorite solution

» the step-size controls the step-length and thus convergence
rate

should allow to reach fastest convergence rate possible

» the covariance matrix C € R™" determines the shape of the
distribution ellipsoid

adaptation should allow to learn the “topography” of the problem
particulary important for ill-conditionned problems
C < H™! on convex quadratic functions

from [Auger, p. 16]
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Adaptation of the Mean
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Plus and Comma Selection

Evolution Strategies (ES) The Normal Distribution

Evolution Strategies

Terminology
(1. # of parents, \: # of offspring

Plus (elitist) and comma (non-elitist) selection

(1t + A\)-ES: selection in {parents} U {offspring}
(1, A\)-ES: selection in {offspring}

(1+1)-ES
Sample one offspring from parent m

x=m+oN(0,C)

If x better than m select

m+<—Xx

A

from fHansen, p.- 35]
- 25/81
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Non-Elitism and Weighted Recombination

Evolution Strategies (ES)

The (u/p, A)-ES

Non-elitist selection and intermediate (weighted) recombination

Given the i-th solution pointx; = m + o N;(0,C) = m + oy,
S——’
=:yi
Let x;., the i-th ranked solution point, such that f(x.,) < -+ < f(x).0).

The new mean reads

K M
n <— E WiXp\ = m-—+ao E Wi Vi-\

Y

Vw

where

B>

¥ ;‘1' 1 —_— 1 _ Pt
Wy > Zwy >0, P wi= 1 g =
=

The best ;1 points are selected from the new solutions (non-elitistic)

and weighted intermediate recombination is applied.
from [Hanﬁegs,;g. 34]
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Invariance Against Order-Preserving f-Transforms

Invariance: Function-Value Free Property
f=nh  f=gq0oh f=g20h

N

function value
function value

function value

& 4 3 2 1 [} 1 2 a Ll B L] e} a 2 L 2 1 2 3 B L1

Three functions belonging to the same equivalence class

A function-value free search algorithm is invariant under the
transformation with any order preserving (strictly increasing) g.

Invariances make

e observations meaningful as a rigorous notion of generalization

e algorithms predictable and/or "robust”
from [Hansen, p. 37]
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Invariance Against Translations in Search Spa

Evolution Strategies (ES)

Basic Invariance in Search Space

@ translation invariance
is true for most optimization algorithms

fx) & flx —a)

Identical behavior on f and f,

f: x—=fl(x), x(=0) = x,
fu: x> fx—a), x=9 =x;,+a

No difference can be observed w.r.t. the argument of f

from [Ha”ﬁe%, p: 38]
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Invariance Against Search Space Rotations

Evolution Strategies (ES)

Rotational Invariance in Search Space

@ invariance to orthogonal (rigid) transformations R, where RRT =1
e.g. true for simple evolution strategies
recombination operators might jeopardize rotational invariance

Fx) < f(Re) L

Identical behavior on f and fg

froxofl), x=x
fro X f(Re). x0= = R~ (xo)

45 No difference can be observed w.r.t. the argument of f

4Sal::uml:-n 1996. "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A
survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278

5Hansen 2000. Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies. Parallel Problem Solving from
Nature PPSN VI
from [HanSegn, p: 39]
29/ 81
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Invariance Against Rigid Search Space Transform

Evolution Strategies (ES) Invariance

Invariance Under Rigid Search Space Transformations

f = hRast f-level sets in dimension 2 f =h
I ; i
— A
T -
e
_2_.
-3 -2 -1 0 1 2 3

for example, invariance under search space rotation
(separable < non-separable)

from [Hansen, p. 40
27/ 81 ]
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Invariance Against Rigid Search Space Transform

Evolution Strategies (ES) Invariance

Invariance Under Rigid Search Space Transformations

f=hrasto R Flevel sets in dimension 2 f=hoR

for example, invariance under search space rotation
(separable < non-separable)

from [Hansen, p. 41]
- 27/81
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Invariance Against Rigid Search Space Transfor

Evolution Strategies (ES)

Invariance Under Rigid Search Space Transformations

f=hrasto R Flevel sets in dimension 2 f=hoR

for example, invariance un:

(separable < non-separak mainly Nelder-Mead and CMA-ES

have this property

| 27181
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Invariances: Summary

Evolution Strategies (ES)

Invariance

The grand aim of all science is to cover the greatest number of empirical facts by
logical deduction from the smallest number of hypotheses or axioms.
— Albert Einstein

@ Empirical performance results

» from benchmark functions
» from solved real world problems

are only useful if they do generalize to other problems

@ [nvariance is a strong non-empirical statement about

generalization
generalizing (identical) performance from a single function to a whole

class of functions

consequently, invariance is important for the evaluation of search
algorithms

from fHansen; . 43]
- 30/81
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Step-Size Adaptation
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Recap CMA-ES: What We Have So Far

Step-Size Control

Evolution Strategies

Recalling

New search points are sampled normally distributed |

xi ~m~+ aN;0,C) fori=1...., A -

as perturbations of , where x;,m € R*, 0 € R, C € R™*" |
where

@ the mean vector m € R” represents the favorite solution
and m < I wix;
@ the so-called step-size o € R, controls the step length

@ the covariance maltrix C € R"" determines the shape of
the distribution ellipsoid

The remaining question is how to update » and C.

from fHansen; . 45]
32/ 81
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Why At All Step-Size Adaptation?
Why Step-Size Control?

10° What do you think will happen for a
(1+1)-ES with constant step-size?
+
©10° .
S f(x)=>
"‘é i=1
-6
=10 in [<0.2,0.8]"
for n =10
_g : | | |
10 0 0.5 1 1.5 2

. . h
function evaluations % 10

from [Auger, p. 22]
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Why Step-Size Adaptation?
Why Step-Size Control?

100 m ........................ ....................... i
5 § random search
step-size too small - : :
) corésta tstep—sizeé
E -3 : :
T 10 | ,
C : _ 2
s Al f ) =3
- S N il Bl step-size too large— - — — - = — 1 .
U ; : f:].
C : : !
= 10_6_ ______________________ . L—\ _______ . 5 i n
g g g in [—0.2,0.8]
5 5 for n =10
optimal step-size
(scale invariant) .
107° : : :
0 05 1 15 2
function evaluations % 10°

from [Auger, p. 22]
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Optimal Step-Size

Step-Size Control

Why Step-Size Control?
(5/5w,10)-ES, H. runs

-

— with optimal step-size |-

f(x)

=

..............................................................................

forn = 10 and
x' € [-0.2,0.8]"

lm —x*|[ =

I \ i i
400 600 800 1000 1200
function evaluations

with optimal step-size o

i
0 200

from [Hansen, p.247]
- 34/81
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Optimal Step-Size vs. Step-Size Control

Step-Size Control

Why Step-Size Control?
(5/5w,10)-ES, tjmes 11Iruns

_"E-:;'f?,#‘_;\ ------------------ e — with optimal step-size [3
: — with step-size control |]

f(x)

=

.......................................................

forn =10 and
x' € [-0.2,0.8]"

|2 — x*||

i i g
400 600 800 1200

function evaluations

with optimal versus adaptive step-size o with too small initial o

i
200

from fHansen; .- 48]
35/ 81
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Optimal Step-Size vs. Step-Size Control

Step-Size Control

Why Step-Size Control?

(5/5w,10)-ES . :
10° - ------------------ e — with optimal step-size |
f — with step-size control |]
I : -  respective step-size |]
0 NS o : : :
ﬁ/ H H
S~
107 ko AN S R — — | "
_ , 5 a a 5 ] — -2
|| r : : : : : . f(x) _ }“!'
% | s s s s =1
P i N A A e
! : = ' | ’ | for n = 10 and
= | ; ; : ; x! € [-0.2,0.8]"
104 | NN e AR e :
107 5 200 400 500 800 1000 1200

function evaluations
comparing number of f-evals to reach |jm| = 107: 1810 ~ 1.5
from fHansen; . 49]
- 36/81
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Adapting the Step-Size

Question:
How to actually adapt the step-size during the optimization?

Most common:

= 1/5 success rule

= Cumulative Step-Size Adaptation (CSA, as in standard CMA-ES)
= others possible (Two-Point Adaptation, self-adaptive step-size, ...)

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP



One-Fifth Success Rule

One-fifth success rule

- —~ AN
\\\\ .
% *
)
N ’/"/
///
Increase o decrease o

from [Auger, p. 32]
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One-Fifth Success Rule

One-fifth success rule

/,.-*"“‘“\\
Probability of success (ps) Probability of success (ps)
1/2 1/5 “too small’

from [Auger, p. 33]
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One-Fifth Success Rule

One-fifth success rule

ps: # of successful offspring / # offspring (per generation)

1 pS - pl;a,['get) Increase a |f p_g = ptarget

g0 xexp| = x
P (3 1 — Prarget Decrease o if ps < prarget

(14 1)-ES
Ptarget — 1/5
|F offspring better parent
ps =1, 0+ 0 xexp(1l/3)

ELSE
ps =0, 0« 0/ exp(1/3)1/4

© Dimo Brockhoff, Inria Introduction to Optimization @
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One-Fifth Success Rule

Why 1/57

Asymptotic convergence rate and probability of success of
scale-invariant step-size (1+1)-ES

0.5 ) ) ) )

I e .
=

Q

I & 12 ] PRI S . PP .
=

@

E

o P L R .
)

E

k=]

[

T

— R

min (CR

. (1)
: : i | = = -proba of success
_0_3 1 1 1 I
0 2 4 6 8 10
sigma*dimension

N e

sphere - asymptotic results, i.e. n = 0o (see slides before)

1/5 trade-off of optimal probability of success on the sphere and
corridor from [Auger, p. 35]
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Cumulative Step-Size Adaptation (CSA)

Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

Xi = m+aoYyi
m < mM+oYyw

Measure the length of the evolution path

the pathway of the mean vector m in the generation

sequence
decrease o increase o

fro[n [AL_Jger, p. 36]
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Cumulative Step-Size Adaptation (CSA)

Path Length Control (CSA)

The Equations

Initialize m € R", o € R, evolution path p, =0,
set ¢, ~4/n, d, = 1.

m <+ m-+oy, Wherey, = ‘;”:1 Wi Y\ update mean

p, + (l—cg)pg+\/1—(1—Ca)2 vV Hw Yw

-
accounts for 1—c,

S 1o | )) .
g 4 o0X exp( ( —1 update step-size
U \d, \EIN(.Y 7))

>1 <= ||p-|| is greater than its expectation

accounts for w;

from [Auger, p. 37]
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Cumulative Step-Size Adaptation (CSA)

Step-size adaptation
What is achived

n
fx) =) x
i=1
stepérsize o

R R B - in [—0.2,0.8]"
for n =10

function value

optimal step—si adaptive

(scale invariant) A ! step-size G

0 500 1000
function evaluations

1500

Linear convergence

from [Auger, p. 38]
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Covariance Matrix Adaptation
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Recap CMA-ES: What We Have So Far

Evolution Strategies

Recalling

New search points are sampled normally

distributed T T
xi ~m+ o N;(0,C) fori=1.....\ L S
i - +:::--:. .
as perturbations of m, where x;, m e R", 0 € R_, ‘ J
C e RPXn
where

» the mean vector m € R" represents the favorite solution
» the so-called step-size o € R controls the step length
» the covariance matrix C € R"*" determines the shape
of the distribution ellipsoid
The remaining question is how to update C.

from [Auger, p. 40]
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Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

m <« m-+oYw. Yw= ?L:leJ’f:/\a leM(OC)

initial distribution, C = |

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

m <« m-+oYw. Yw= ?L:leJ’f:/\a leM(OC)

initial distribution, C = |

from [Auger, p. 41]
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Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

m < m+oyw., Yw =2 _1W¥ir. Yi~N;i0.C)

Y w, movement of the population mean m (disregarding o)

from [Auger, p. 41]
= = = = = Qv
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Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

m < m+oyy, Yw= WYixr Yi~N;i0C)

mixture of distribution C and step y,,,
C+08xC+02xywy,

from [Auger, p. 41]
] = = = = £y Q (v
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Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

new distribution (disregarding o)

from [Auger, p. 41]
] = = = = £y Q (v
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Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

m < m+oyw, Yw =2 i 1WYix, Yi~Ni(0C)

new distribution (disregarding o)

from [Auger, p. 41]
] = = = = £y Q (v
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Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

m < m+oyw, Yw =2 i 1WYix, Yi~Ni(0C)

movement of the population mean m

from [Auger, p. 41]

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Dec. 12, 2016



Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

m < m+0oyw, Yw = i1Wyix, Yi~Ni(0,C)

mixture of distribution C and step y,,,
C+08xC+02xywyl

from [Auger, p. 41]
] = = = = £y Q (v
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Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

m <« m+oyy, Yw=> _WYixr Yi~N;i0.C)

new distribution,
C+08xC+02xywy,
the ruling principle: the adaptation increases the likelihood of

successful steps, y,, to appear again
from [Auger, p. 41]

Introduction to Optimization @
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Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

Initialize m € R™, and C = |, set o = 1, learning rate c.,, ~ 2/n?

While not terminate
Xji = m+oy;. yi ~ Ni(0.C).

i
m < M-+0Yyy where Yw = Z Wi Vi
i=1
1

C + (11— ceov)C+ ceovtiw ywy$ where 11, = =5 5 > 1
—— i=1 Wi

rank-one

from [Auger, p. 42]

Introduction to Optimization @
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Rank-One Update: Summary

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

'(_: R (l - ('-'CO\;)(? + CCO‘#’JU’WyWyI‘

covariance matrix adaptation

@ learns all pairwise dependencies between variables
off-diagonal entries in the covariance matrix reflect the dependencies
@ conducts a principle component analysis (PCA) of steps y,,

sequentially in time and space
eigenvectors of the covariance matrix C are the principle
components / the principle axes of the mutation ellipsoid

@ |learns a new rotated problem representation L \/

components are mdependent t}nly)
in the new represeritation. ..

@ learns a new (Mahalanobis) metric

variable metric method
@ approximates the inverse Hessian on quadratic functions

transformation into the sphere function
@ for 1 = 1: conducts a natural gradient ascent on the distribution N/

entirely independent of the given coordinate system

from'THarsen p. 71]
47181
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Evolution Path

Cumulation
The Evolution Path

Evolution Path
Conceptually, the evolution path is the search path the strategy takes over a

number of generation steps. It can be expressed as a sum of consecutive steps

of the mean m.
An exponentially weighted sum

of steps y., is used

g
Py (L—c)f yi)
i=0 e

exponentially

fading weights

The recursive construction of the evolution path (cumulation):

P {l—cc)pc—i—\/l—(l—cc)21/,asw Yw
N’ N o s~

decay factor normalization factor input =

m—mgid

o

where (1 = ﬁ cc < 1. History information is accumulated in the
evolution path. from [Auger, p. 44]

Introduction to Optimi
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Utilizing the Evolution Path

Cumulation
Utilizing the Evolution Path

We used y,, y. for updating C. Because ywyw = —Yw(—yw)" the sign of y,,
is lost.

from [Auger, p. 45]
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Utilizing the Evolution Path

Cumulation
Utilizing the Evolution Path

We used y, y. for updating C. Because ywys = —yw(—yw)® the sign of y.,
is lost.

from [Auger, p. 45
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Utilizing the Evolution Path

Cumulation
Utilizing the Evolution Path

We used y,, y. for updating C. Because ywyw = —Yw(—yw)" the sign of y,,
is lost.

The sign information is (re-)introduced by using the evolution path.

pe +— (1—c) PC‘}"\/]-_(]-_CCPVHWJ’W
"—V—/ e - iy

decay factor normalization factor

C + (1-ceow)C+ Coovpepe’
N —

rank-one

where 1, = ﬁ ce < 1. from [Auger, p. 45]
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Rank-u Update

Rank-p Update

X; = m+toy;, yi ~ N;0,C),
m < m+oyw Yw = Db WiYia

The rank-;1 update extends the update rule for large population
sizes A\ using it > 1 vectors to update C at each generation step.

from [Auger, p. 47]
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Rank-u Update

Rank-p Update

m+oy;, yi ~ N;(0.C),
m-+ oyw Yw = E?le Wi ¥

T

X
m

The rank-;1 update extends the update rule for large population
sizes A\ using it > 1 vectors to update C at each generation step.
The matrix

[t
C,u — Z Win:)\y';l?,\
i=1
computes a weighted mean of the outer products of the best 1
steps and has rank min(/, n) with probability one.

from [Auger, p. 47]
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Rank-u Update

Rank-p Update

X; = m+oy;, yi ~ N;0,C),
m < m+oyw Yw = Db WiYia

The rank-;1 update extends the update rule for large population
sizes A\ using it > 1 vectors to update C at each generation step.
The matrix

[t
T
C,= Z Wi Yi)\Yin
i=1
computes a weighted mean of the outer products of the best 1

steps and has rank min(/, n) with probability one.
The rank-/1 update then reads

C+(1—-ceov)C+ v Cy
where c.ov & jtw/n? and c.oy < 1.

from [Auger, p. 47]
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lllustration of Rank-u Update

_________________________

sampling of
A = 150 solutions
where C = | and
og=1

from [Auger, p. 48]
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lllustration of Rank-u Update

——————————————————————————————————————————————————

PR N
By SRR | |
Xj = m+oy;, yi~N(0,C) C, - AZFE:AYEA
C <+ (-i —1)xC+1xC,
sampling of calculating C where
A = 150 solutions (t=>50, wy =--- =
where C = | and W, = ﬁ, and
og=1 Coov = 1

from [Auger, p. 48]
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lllustration of Rank-u Update

_________________________

_________________________

i : i :
i . + | i ¢ |
: & t++ x : : Eox :
| e e 1 1 " "
: =u| ._...-_--.-;-{-p I : A I
1 'l.‘- & e . 1 1 |
1 L = # o 1 1 1
L e | | |
1 4..+ * ..,+.Il.f.' 1 1 1
| e | | |
: AT i : i
1 N 1

| i | i
A A R N SR L

Xxi = m+o : ~ N(0,C) C LS yeyi
i = Yi- Yi : o YiaYia

sampling of
A = 150 solutions
where C = | and
oc=1

C <+ {i—l}x{:—klxc

calculating C where

(="50,wg =---=
1

szﬁ,
CCD‘V:]-

and

_________________________

new distribution

from [Auger, p. 48]
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Rank-u Update: Summary

The rank-u update

* |ncreases the possible learning rate for large populations
"large” when 1 = 3n 4+ 10
= |s the primary mechanism whenever a large population size
IS used

= can be easily combined with rank-one update

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP



CMA-ES In a Nutshell

Evolution Strategies (ES) A Search Template

The CMA-ES

|npu’[: m c Rn! a € R+, )\ Promlsed

Initialize: C =1, and p. =0,
Set: ce = 4/n, co = 4/n, ¢y 7
and w;—;._ such that p,, =

Understand the main principles
of this state-of-the-art algorithm.

=5

J

While not terminate

xi=m+oy. yi ~ N;j(0,C), fori=1,..., A sampling
m4— Y 4L wixiy =m+ oy, Wherey, =31 wiyia update mean
pe — (1 =co)pe + Mgy <15ym v/ 1 — (1 — ce)®>/itwyw  cumulation for C
Po — (1 —¢co)ps + \/1 — (1 = ¢o)*\/1tw C—%yw cumulation for &
Ce(1—c1—c,)C+ crpepe’ + ¢ S0 wiviarh, update C
o4 0 X exp (g—z (%— 1)) update of o

Not covered on this slide: termination, restarts, useful output, boundaries and
encoding

16/ 81
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CMA-ES in a Nutshell

Evolution Strategies (ES)

The CMA-ES

Input: m € R*, 0 € Ry, A

Initialize: C =1, andp. =0, p, =0,

Set: cc ~4/n, co = 4/n, ¢y = 2/n?, Cp R [y /1%, C1 + cp <1,de =1+ \/%,
and wi—; _, such that s, = —<=— ~ 0.3\

2
i—1 Wi

While not terminate

xi=m+oy. yi ~ N;j(0,C), fori=1,..., A sampling
m<— Y b wixpy =m+ oy, wherey, =31 wiyi update mean
pe — (1 =co)pe + Mgy <15ym v/ 1 — (1 — ce)®>/itwyw  cumulation for C
Po — (1 —¢co)ps + \/1 — (1 — CJ)Z\/;TWC—%J:W cumulation for o
Ce(1—c1—c,)C+ crpepe’ + ¢ S0 wiviarh, update C
o4 0 X exp (g—z (%—1)) update of o

Not covered on this slide: termination, restarts, useful output, boundaries and
encoding

| 16/ 81
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CMA-ES: Almost Parameterless

CMA-ES Summary

Strategy Internal Parameters

@ related to selection and recombination

» )\, offspring number, new solutions sampled, population size
» 4, parent number, solutions involved in updates of m, C, and &
> wi— ... .. recombination weights

@ related to C-update

» ¢, decay rate for the evolution path
» ¢, learning rate for rank-one update of C
> ¢, learning rate for rank-; update of C

@ related to o-update

» ¢, decay rate of the evolution path
» s, damping for o-change

Parameters were identified in carefully chosen experimental set ups. Parameters do not in the
first place depend on the objective function and are not meant to be in the users choice.
Only(?) the population size A (and the initial o) might be reasonably varied in a wide range,
depending on the objective function

Useful: restarts with increasing population size (IPOP)

from fHansen; .- 90]
- 59/ 81
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Experimental Considerations
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Experimentum Crucis with CMA-ES

CMA-ES Summary

Experimentum Crucis (0)

What did we want to achieve?

@ reduce any convex-quadratic function

e.g.f(x) = T, 101
to the sphere model

without use of derivatives

@ lines of equal density align with lines of equal fitness

Cx H!

in a stochastic sense

o 7 from fl—ian%ent;--ﬁ' - 91]
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Experimentum Crucis with CMA-ES

CMA-ES Summary

Experimentum Crucis (1)
f convex quadratic, separable

bIHe -abs(f), cyanf-min{f), green:sigma, red:axis ratio Object Variables (9-D)
10 T . 15 . T or(1)=3.0931e

(2)=2.2083¢
1 (B)=5.6127e
| K(N=2714Te
o x(8)=4.5138e

f : // h@=2741e-
= : f be(5)=—1.0864
: ? ™ (4)=—3.8371

-5 i : he(3)=—6.9109
0 2000 4000 sooE]

Stgndard Deviations in Coordinates divided by sigma
10 T T

1
2
/)
“
r
. _,_/’_) 5
iy el
"'\-\_,_\_\_‘_\_ ?
\\ .
107 : ' 107 ' : g
0 2000 4000 G000 0 2000 4000 6000
function evaluations function evaluations

Fla) = 3, 10%7 12, a = 6

o 7 from fl—ian%eﬁ.;--ﬁ' - 92]

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Dec. 12, 2016




Experimentum Crucis with CMA-ES

CMA-ES Summary

Experimentum Crucis (2)

f convex quadratic, as before but non-separable (rotated)

bl}ae:ahs(f}, cyan f—min(f), green:sigma, red:axis ratio Object Variables (9-0)

10 4 x(1)=2.0052e
_ K(5)=1.2552¢
10 B . f-!_—x(6}=1.24539
[ k(8)=—T7.3812
10° (4)=—2 9981
be(7)=—8.3583
107* e e 3)=—2 0364
; ; (2)=—2.1131

10 [=7.910557281860426—10 |

60583}!:—2.5301

0 2000 4000 6000

CocH 'forall ¢g.H

Principle Axes Lengths Standard Deviations in Coordinates divided by sigma
T T TS, T T ] 3

O N B I s A B - - B

g

i 2000 4000 6000 0 2000 4000
function evaluations function evaluations

f(x) = ¢ (x"Hx), ¢ : R — R stricly increasing

from fHansen; p.- 93]
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Influence of Condition Number + Invariance

Comparing Experimenis

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, separable with varying condition number «

Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

]

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

SP1

10 H diagonal
- NewuoA ]l g identity (for BFGS and
1[]2 i i pare N EWUOA)

g any order-preserving = strictly
increasing function (for all other)

Condition number
SP1 = average number of objective function evaluations'® to reach the target function
value of ¢=1(1077)

14Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
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Influence of Condition Number + Invariance

Comparing Experimenis

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, non-separable (rotated) with varying condition number «

Rotated Ellipsoid dimension 20, 21 trials, tolerance 12-09, eval max 1e+07

]

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

SP1

ma H full
- - NewuoA ]l g identity (for BFGS and
1[]2 25 i Dl N EWUOA)

g any order-preserving = strictly
increasing function (for all other)

Condition number
SP1 = average number of objective function evaluations'® to reach the target function
value of ¢=1(1077)

15Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
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Influence of Condition Number + Invariance

Comparing Experimenis

Comparison to BFGS, NEWUOA, PSO and DE

f non-convex, non-separable (rotated) with varying condition number «

Sqrt of sqrt of rotated ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

= H full
TNewuorll g :x — x'/* (for BFGS and
10 X E}ESS NEWUOA)
O A S et AN omes 1 g any order-preserving = strictly
100 ! I I f L Increasing function (for all other)

Condition number
SP1 = average number of objective function evaluations'® to reach the target function
value of ¢=1(1077)

16Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA
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Performance on BBOB Testbed: Data Profile

Comparing Experiments

Comparison during BBOB at GECCO 2009

24 functiong and 31 | allnr;r.itll'lmg in ?Q-D _

o 1 [ best200

: . AMaLGaMl IDEA
s _!iAMaLGaM IDEA
& ~ - JVNS (Garlcia)

- 'MA-LS-CHain

0.8

(1+1)-E

o
=)

'GLOBAL
- ALPS-GA

3 - = <full NEWJOA
[ < ~NELDER {Han)
x: N—ELDER Doe)

~ “EDA-P50

o
~

Proportion of functions

8
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Summary CMA-ES |

Summary and Final Remarks

Main Characteristics of (CMA) Evolution Strategies

@ Multivariate normal distribution to generate new search points
follows the maximum entropy principle

Q@ Rank-based selection
implies invariance, same performance on g(f(x)) for any increasing g
more invariance properties are featured

© Step-size control facilitates fast (log-linear) convergence and

possibly linear scaling with the dimension
in CMA-ES based on an evolution path (a non-local trajectory)

© Covariance matrix adaptation (CMA) increases the likelihood of
previously successful steps and can improve performance by

orders of magnitude
the update follows the natural gradient

C o< H™! «= adapts a variable metric
<= new (rotated) problem representation
— f:x > g(x"Hx) reduces tox — x'x

| 79/ 81
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Summary CMA-ES Il

Summary and Final Remarks

Limitations
of CMA Evolution Strategies

@ internal CPU-time: 10~%n* seconds per function evaluation on a 2GHz

PC, tweaks are available
1000000 f-evaluations in 100-D take 100 seconds internal CPU-time

@ better methods are presumably available in case of

» partly separable problems

» specific problems, for example with cheap gradients
specific methods

» small dimension (n < 10)
for example Nelder-Mead

» small running times (number of f-evaluations < 100n)
model-based methods

80/ 81
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Conclusions

| hope it became clear...

...that CMA-ES samples according to multivariate normal distributions
...how CMA-ES updates its mean, stepsize, and covariance matrix
...and what are the invariance properties of CMA-ES
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