Introduction to Optimization
 Derivative-Free Optimization I: CMA-ES

December 12, 2016
École Centrale Paris, Châtenay-Malabry, France

Dimo Brockhoff
Inria Saclay - Ile-de-France

Course Overview

Date		Topic
Fri, 7.10.2016		Introduction
Fri, 28.10.2016	D	Introduction to Discrete Optimization + Greedy algorithms I
Fri, 4.11.2016	D	Greedy algorithms II + Branch and bound
Fri, 18.11.2016	D	Dynamic programming
Mon, 21.11.2016 in S103-s105	D	Approximation algorithms and heuristics
Fri, 25.11.2016 in S103-s105	C	Randomized Search Heuristics + Intro. to Continuous Opt. I
Mon, 28.11.2016 in S103-s105	C	Introduction to Continuous Optimization II
Mon, 5.12.2016 in S103-S105	C	Introduction to Continuous Optimization III
Fri, 9.12.2016	C	Constrained Optimization + Descent Methods
Mon, 12.12.2016 in S103-s105	C	Derivative Free Optimization I: CMA-ES
Fri, 16.12.2016	C	Derivative Free Optimization II: Benchmarking Optimizers with the COCO platform
Wed, 4.1.2017	Exam	

Solution to the

Exercise: Comparing Gradient-Based Algorithms on Convex Quadratic Functions

http://researchers.lille.inria.fr/
~brockhof/introoptimization/

Derivative-Free Optimization

Derivative-Free Optimization (DFO)

DFO = blackbox optimization

Why blackbox scenario?

- gradients are not always available (binary code, no analytical model, ...)
- or not useful (noise, non-smooth, ...)
- problem domain specific knowledge is used only within the black box, e.g. within an appropriate encoding
- some algorithms are furthermore function-value-free, i.e. invariant wrt. monotonous transformations of f.

Derivative-Free Optimization Algorithms

- (gradient-based algorithms which approximate the gradient by finite differences)
- coordinate descent
- pattern search methods, e.g. Nelder-Mead
- surrogate-assisted algorithms, e.g. NEWUOA or other trustregion methods
- other function-value-free algorithms
- typically stochastic
- evolution strategies (ESs) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
- differential evolution
- particle swarm optimization
- simulated annealing

Derivative-Free Optimization Algorithms

- (gradient-based algorithms which approximate the gradient by finite differences)
- coordinate descent
- pattern search methods, e.g. Nelder-Mead
- surrogate-assisted algorithms, e.g. NEWUOA or other trustregion methods
- other function-value-free algorithms
- typically stochastic
- evolution strategies (ESs) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
- differential evolution
- particle swarm optimization
- simulated annealing

Downhill Simplex Method by Nelder and Mead

While not happy do:
[assuming minimization of f and that $x_{1}, \ldots, x_{n+1} \in \mathbb{R}^{n}$ form a simplex]

1) Order according to the values at the vertices: $f\left(x_{1}\right) \leq f\left(x_{2}\right) \leq \cdots \leq f\left(x_{n+1}\right)$
2) Calculate x_{o}, the centroid of all points except x_{n+1}.
3) Reflection

Compute reflected point $x_{r}=x_{o}+\alpha\left(x_{o}-x_{n+1}\right)(\alpha>0)$
If x_{r} better than second worst, but not better than best: $x_{n+1}:=x_{r}$, and go to 1)
4) Expansion

If x_{r} is the best point so far: compute the expanded point

$$
x_{e}=x_{o}+\gamma\left(x_{r}-x_{o}\right)(\gamma>0)
$$

If x_{e} better than x_{r} then $x_{n+1}:=x_{e}$ and go to 1)
Else $x_{n+1}:=x_{r}$ and go to 1)
Else (i.e. reflected point is not better than second worst) continue with 5)
5) Contraction (here: $\left.f\left(x_{r}\right) \geq f\left(x_{n}\right)\right)$

Compute contracted point $x_{c}=x_{o}+\rho\left(x_{n+1}-x_{o}\right)(0<\rho \leq 0.5)$
If $f\left(x_{c}\right)<f\left(x_{n+1}\right): x_{n+1}:=x_{c}$ and go to 1)
Else go to 6)
6) Shrink
$x_{i}=x_{1}+\sigma\left(x_{i}-x_{1}\right)$ for all $i \in\{2, \ldots, n+1\}$ and go to 1)
J. A Nelder and R. Mead (1965). "A simplex method for function minimization".

Computer Journal. 7: 308-313. doi:10.1093/comjnl/7.4.308

Downhill Simplex Method by Nelder and Mead

- initial simplex is important: hence restarts necessary to have good performance
- illustration of working principles at https://en.wikipedia.org/wiki/Nelder\�\�\�Mead method
- nice-to-read paper about the (historical) background of the method: http://www.math.uiuc.edu/documenta/volismp/42 wright-margaret.pdf
- turns out to be quite good in low-dimensional problems (with 2 or 3 variables), but not in high dimension (see also this Friday's exercise)

Derivative-Free Optimization Algorithms

- (gradient-based algorithms which approximate the gradient by finite differences)
- coordinate descent
- pattern search methods, e.g. Nelder-Mead
- surrogate-assisted algorithms, e.g. NEWUOA or other trustregion methods
- other function-value-free algorithms
- typically stochastic
- evolution strategies (ESs) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
- differential evolution
- particle swarm optimization
- simulated annealing

Stochastic Search Template

A stochastic blackbox search template to minimize $f: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}$ Initialize distribution parameters θ, set population size $\lambda \in \mathbb{N}$ While happy do:

- Sample distribution $P(\boldsymbol{x} \mid \theta) \rightarrow \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda} \in \mathbb{R}^{n}$
- Evaluate $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda}$ on f
- Update parameters $\theta \leftarrow F_{\theta}\left(\theta, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda}, f\left(\boldsymbol{x}_{1}\right), \ldots, f\left(\boldsymbol{x}_{\lambda}\right)\right)$
- All depends on the choice of P and F_{θ} deterministic algorithms are covered as well
- In Evolutionary Algorithms, P and F_{θ} are often defined implicitly via their operators.

Generic Framework of an EA

stochastic operators
"Darwinism"
stopping criteria

Nothing else: just interpretation change

CMA-ES in a Nutshell

The CMA-ES

Input: $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \lambda$
Initialize: $\mathbf{C}=\mathbf{I}$, and $p_{\mathrm{c}}=\mathbf{0}, p_{\sigma}=\mathbf{0}$,
Set: $c_{\mathrm{c}} \approx 4 / n, c_{\sigma} \approx 4 / n, c_{1} \approx 2 / n^{2}, c_{\mu} \approx \mu_{w} / n^{2}, c_{1}+c_{\mu} \leq 1, d_{\sigma} \approx 1+\sqrt{\frac{\mu_{w}}{n}}$, and $w_{i=1 \ldots \lambda}$ such that $\mu_{w}=\frac{1}{\sum_{i=1}^{\mu} w_{i}} \approx 0.3 \lambda$
While not terminate

$$
\begin{array}{rlr}
\boldsymbol{x}_{i} & =m+\sigma \boldsymbol{y}_{i}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}), \quad \text { for } i=1, \ldots, \lambda & \text { sampling } \\
m & \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}=m+\sigma \boldsymbol{y}_{w} & \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \\
p_{\mathrm{c}} & \leftarrow\left(1-c_{\mathrm{c}}\right) p_{\mathrm{c}}+\mathbb{1}_{\left\{\left\|p_{\rho}\right\|<1.5 \sqrt{n}\right\}}^{1-\left(1-c_{\mathrm{c}}\right)^{2}} \sqrt{\mu_{w}} \boldsymbol{y}_{w} & \text { cumulate mean } \\
p_{\sigma} & \leftarrow\left(1-c_{\sigma}\right) p_{\sigma}+\sqrt{1-\left(1-c_{\sigma}\right)^{2}} \sqrt{\mu_{w}} \mathrm{C}^{-\frac{1}{2} \boldsymbol{y}_{w}} & \text { cumulation for } \sigma \\
\mathrm{C} & \leftarrow\left(1-c_{1}-c_{\mu}\right) \mathrm{C}+c_{1} p_{\mathrm{c}} p_{\mathrm{c}}^{\mathrm{T}}+c_{\mu} \sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \boldsymbol{y}_{i: \lambda}^{\mathrm{T}} & \text { update } \mathrm{C} \\
\sigma & \text { update of } \sigma
\end{array}
$$

Not covered on this slide: termination, restarts, useful output, boundaries and encoding

CMA-ES in a Nutshell

The CMA-ES

Input: $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \lambda$
Initialize: $\mathbf{C}=\mathbf{I}$, and $p_{\mathrm{c}}=\mathbf{0}, p_{\sigma}=\mathbf{0}$,
Set: $c_{\mathrm{c}} \approx 4 / n, c_{\sigma} \approx 4 / n, c_{1} \approx 2 / n^{2}, c_{\mu} \approx \mu_{w} / n^{2}, c_{1}+c_{\mu} \leq 1, d_{\sigma} \approx 1+\sqrt{\frac{\mu_{w}}{n}}$, and $w_{i=1 \ldots \lambda}$ such that $\mu_{w}=\frac{1}{\sum_{i=1}^{\mu} w_{i}^{2}} \approx 0.3 \lambda$
While not terminate

$$
\begin{array}{rlr}
\boldsymbol{x}_{i} & =m+\sigma \boldsymbol{y}_{i}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}), \quad \text { for } i=1, \ldots, \lambda & \text { sampling } \\
m & \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}=m+\sigma \boldsymbol{y}_{w} & \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda}
\end{array} \text { update mean } .
$$

Copyright Notice

- Last slide was taken from
https://www.lri.fr/~hansen/copenhagen-cma-es.pdf (copyright by Nikolaus Hansen, one of the main inventors of the CMA-ES algorithms)
- In the following, I will borrow more slides from there and from http://researchers.lille.inria.fr/~brockhof/optimiza tionSaclay/slides/20151106-continuousoptIV.pdf (by Anne Auger)
- In the following and the online material in particular, I refer to these pdfs as [Hansen, p. X] and [Auger, p. Y] respectively.

Back to CMA-ES

The CMA-ES

Input: $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \lambda$
Initialize: $\mathbf{C}=\mathbf{I}$, and $p_{\mathrm{c}}=\mathbf{0}, p_{\sigma}=\mathbf{0}$,
Set: $c_{\mathrm{c}} \approx 4 / n, c_{\sigma} \approx 4 / n, c_{1} \approx 2 / n^{2}, c_{\mu} \approx \mu_{w} / n^{2}, c_{1}+c_{\mu} \leq 1, d_{\sigma} \approx 1+\sqrt{\frac{\mu_{w}}{n}}$, and $w_{i=1 \ldots \lambda}$ such that $\mu_{w}=\frac{1}{\sum_{i=1}^{\mu} w_{i}^{2}} \approx 0.3 \lambda$
While not terminate

$$
\begin{array}{rlr}
\boldsymbol{x}_{i} & =m+\sigma \boldsymbol{y}_{i}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}), \quad \text { for } i=1, \ldots, \lambda & \text { sampling } \\
m & \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}=m+\sigma \boldsymbol{y}_{w} & \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda}
\end{array} \text { update mean } .
$$

CMA-ES: Stochastic Search Template

A stochastic blackbox search template to minimize $f: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}$ Initialize distribution parameters θ, set population size $\lambda \in \mathbb{N}$ While happy do:

- Sample distribution $P(\boldsymbol{x} \mid \theta) \rightarrow \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda} \in \mathbb{R}^{n}$
- Evaluate $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda}$ on f
- Update parameters $\theta \leftarrow F_{\theta}\left(\theta, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\lambda}, f\left(\boldsymbol{x}_{1}\right), \ldots, f\left(\boldsymbol{x}_{\lambda}\right)\right)$

For CMA-ES and evolution strategies in general:
sample distributions = multivariate Gaussian distributions

Sampling New Candidate Solutions (Offspring)

Evolution Strategies

New search points are sampled normally distributed

$$
\boldsymbol{x}_{i} \sim m+\sigma \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \quad \text { for } i=1, \ldots, \lambda
$$

as perturbations of m, \quad where $\boldsymbol{x}_{i}, m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \mathrm{C} \in \mathbb{R}^{n \times n}$
 where

- the mean vector $m \in \mathbb{R}^{n}$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_{+}$controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid
here, all new points are sampled with the same parameters
it remains to show how to adapt the parameters, but for now: normal distributions
from [Auger, p. 10]

Excursion: Normal Distributions

Normal Distribution

1-D case

probability density of the 1-D standard normal distribution $\mathcal{N}(0,1)$
$($ expected $($ mean $)$ value, variance $)=(0,1)$

$$
p(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

General case
$($ expected value, variance $)=\left(\boldsymbol{m}, \sigma^{2}\right)$ density: $p_{\boldsymbol{m}, \sigma}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\boldsymbol{m})^{2}}{2 \sigma^{2}}\right)$

- A normal distribution is entirely determined by its mean value and variance
- The family of normal distributions is closed under linear transformations: if X is normally distributed then a linear transformation $a X+b$ is also normally distributed
- Exercice: Show that $m+\sigma \mathcal{N}(0,1)=\mathcal{N}\left(m, \sigma^{2}\right)$

Excursion: Normal Distributions

Normal Distribution

General case

A random variable following a 1-D normal distribution is determined by its mean value m and variance σ^{2}.

In the n-dimensional case it is determined by its mean vector and covariance matrix

Covariance Matrix
If the entries in a vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ are random variables, each with finite variance, then the covariance matrix Σ is the matrix whose (i, j) entries are the covariance of $\left(X_{i}, X_{j}\right)$

$$
\Sigma_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)=\mathrm{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]
$$

where $\mu_{i}=\mathrm{E}\left(X_{i}\right)$. Considering the expectation of a matrix as the expectation of each entry, we have

$$
\Sigma=\mathrm{E}\left[(X-\mu)(X-\mu)^{T}\right]
$$

Σ is symmetric, positive definite

Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(m, C)$ is uniquely determined by its mean value $m \in \mathbb{R}^{n}$ and its symmetric positive definite $n \times n$ covariance matrix C.

$$
\text { density: } p_{\mathcal{N}(\boldsymbol{m}, \mathbf{C})}(x)=\frac{1}{(2 \pi)^{n / 2}|\mathbf{C}|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\boldsymbol{m})^{\mathrm{T}} \mathbf{C}^{-1}(x-\boldsymbol{m})\right),
$$

Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(m, C)$ is uniquely determined by its mean value $m \in \mathbb{R}^{n}$ and its symmetric positive definite $n \times n$ covariance matrix C.

$$
\text { density: } p_{\mathcal{N}(\boldsymbol{m}, \mathbf{C})}(x)=\frac{1}{(2 \pi)^{n / 2}|\mathbf{C}|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\boldsymbol{m})^{\mathrm{T}} \mathbf{C}^{-1}(x-\boldsymbol{m})\right),
$$

The mean value m

- determines the displacement (translation)
- value with the largest density (modal value)
- the distribution is symmetric about the distribution mean

$$
\mathcal{N}(\boldsymbol{m}, \mathbf{C})=\boldsymbol{m}+\mathcal{N}(0, \mathbf{C})
$$

Excursion: Normal Distributions

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(m, C)$ is uniquely determined by its mean value $m \in \mathbb{R}^{n}$ and its symmetric positive definite $n \times n$ covariance matrix C.

$$
\text { density: } p_{\mathcal{N}(\boldsymbol{m}, \mathbf{C})}(x)=\frac{1}{(2 \pi)^{n / 2}|\mathbf{C}|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\boldsymbol{m})^{\mathrm{T}} \mathbf{C}^{-1}(x-\boldsymbol{m})\right),
$$

The mean value m

- determines the displacement (translation)
- value with the largest density (modal value)
- the distribution is symmetric about the distribution mean

$$
\mathcal{N}(\boldsymbol{m}, \mathbf{C})=\boldsymbol{m}+\mathcal{N}(0, \mathbf{C})
$$

The covariance matrix C

- determines the shape
- geometrical interpretation: any covariance matrix can be uniquely identified with the iso-density ellipsoid

$$
\left\{x \in \mathbb{R}^{n} \mid(x-m)^{\mathrm{T}} \mathbf{C}^{-1}(x-m)=1\right\}
$$

from [Auger, p. 13]

Covariance Matrix: Lines of Equal Density

... any covariance matrix can be uniquely identified with the iso-density ellipsoid $\left\{x \in \mathbb{R}^{n} \mid(x-m)^{\mathrm{T}} \mathbf{C}^{-1}(x-m)=1\right\}$

Lines of Equal Density

$\mathcal{N}\left(\boldsymbol{m}, \sigma^{2} \mathbf{I}\right) \sim \boldsymbol{m}+\sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$
one degree of freedom σ
components are
independent standard
normally distributed
where \mathbf{I} is the identity matrix (isotropic case) and \mathbf{D} is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{A} \mathbf{A}^{\mathrm{T}}\right)$ holds for all A.

Covariance Matrix: Lines of Equal Density

... any covariance matrix can be uniquely identified with the iso-density ellipsoid $\left\{x \in \mathbb{R}^{n} \mid(x-m)^{\mathrm{T}} \mathbf{C}^{-1}(x-m)=1\right\}$

Lines of Equal Density

$\mathcal{N}\left(\boldsymbol{m}, \sigma^{2} \mathbf{I}\right) \sim \boldsymbol{m}+\sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$
one degree of freedom σ components are independent standard

$$
\mathcal{N}\left(m, \mathbf{D}^{2}\right) \sim m+\mathbf{D} \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

n degrees of freedom
components are independent, scaled normally distributed
where \mathbf{I} is the identity matrix (isotropic case) and \mathbf{D} is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{A} \mathbf{A}^{\mathrm{T}}\right)$ holds for all A.

Covariance Matrix: Lines of Equal Density

... any covariance matrix can be uniquely identified with the iso-density ellipsoid $\left\{x \in \mathbb{R}^{n} \mid(x-m)^{\mathrm{T}} \mathrm{C}^{-1}(x-m)=1\right\}$

Lines of Equal Density

$\mathcal{N}\left(\boldsymbol{m}, \sigma^{2} \mathbf{I}\right) \sim m+\sigma \mathcal{N}(\mathbf{0}, \mathbf{I})$
one degree of freedom σ components are independent standard normally distributed
where \mathbf{I} is the identity matrix (isotropic case) and \mathbf{D} is a diagonal matrix (reasonable for separable problems) and $\mathbf{A} \times \mathcal{N}(\mathbf{0}, \mathbf{I}) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{A} \mathbf{A}^{\mathrm{T}}\right)$ holds for all A.

Adaptation of Sample Distribution Parameters

Adaptation: What do we want to achieve?
New search points are sampled normally distributed

$$
\begin{aligned}
& \boldsymbol{x}_{i} \sim m+\sigma \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \quad \text { for } i
\end{aligned}=1, \ldots, \lambda, \quad \begin{aligned}
& \text { where } \boldsymbol{x}_{i}, \boldsymbol{m} \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \mathrm{C} \in \mathbb{R}^{n \times n}
\end{aligned}
$$

- the mean vector should represent the favorite solution
- the step-size controls the step-length and thus convergence rate

```
should allow to reach fastest convergence rate possible
```

- the covariance matrix $C \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid
adaptation should allow to learn the "topography" of the problem particulary important for ill-conditionned problems $\mathbf{C} \propto \boldsymbol{H}^{-1}$ on convex quadratic functions from [Auger, p. 16]

Adaptation of the Mean

Plus and Comma Selection

Evolution Strategies

Terminology
μ : \# of parents, λ : \# of offspring
Plus (elitist) and comma (non-elitist) selection
$(\mu+\lambda)$-ES: selection in $\{$ parents $\} \cup\{$ offspring $\}$
(μ, λ)-ES: selection in $\{$ offspring $\}$

$$
(1+1)-E S
$$

Sample one offspring from parent m

$$
\boldsymbol{x}=m+\sigma \mathcal{N}(\mathbf{0}, \mathrm{C})
$$

If x better than m select

$$
m \leftarrow \boldsymbol{x}
$$

Non-Elitism and Weighted Recombination

The $(\mu / \mu, \lambda)$-ES
Non-elitist selection and intermediate (weighted) recombination
Given the i-th solution point $\boldsymbol{x}_{i}=m+\sigma \underbrace{\mathcal{N}_{i}(\mathbf{0}, \mathbf{C})}_{=: y_{i}}=m+\sigma \boldsymbol{y}_{i}$
Let $\boldsymbol{x}_{i: \lambda}$ the i-th ranked solution point, such that $f\left(\boldsymbol{x}_{1: \lambda}\right) \leq \cdots \leq f\left(\boldsymbol{x}_{\lambda: \lambda}\right)$. The new mean reads

$$
m \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}=m+\sigma \underbrace{\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda}}_{=: \boldsymbol{y}_{w}}
$$

where

$$
w_{1} \geq \cdots \geq w_{\mu}>0, \quad \sum_{i=1}^{\mu} w_{i}=1, \quad \frac{1}{\sum_{i=1}^{\mu} w_{i}^{2}}=: \mu_{w} \approx \frac{\lambda}{4}
$$

The best μ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied.

Invariance Against Order-Preserving f-Transformations

Invariance: Function-Value Free Property

Three functions belonging to the same equivalence class

A function-value free search algorithm is invariant under the transformation with any order preserving (strictly increasing) g.

Invariances make

- observations meaningful as a rigorous notion of generalization
- algorithms predictable and/or "robust"

Invariance Against Translations in Search Space

Basic Invariance in Search Space

- translation invariance
is true for most optimization algorithms

$$
f(\boldsymbol{x}) \leftrightarrow f(\boldsymbol{x}-\boldsymbol{a})
$$

Identical behavior on f and f_{a}

$$
\begin{aligned}
f: & \boldsymbol{x} \mapsto f(\boldsymbol{x}), & & \boldsymbol{x}^{(t=0)}=\boldsymbol{x}_{0} \\
f_{\boldsymbol{a}}: & & \boldsymbol{x} \mapsto f(\boldsymbol{x}-\boldsymbol{a}), & \boldsymbol{x}^{(t=0)}=\boldsymbol{x}_{0}+\boldsymbol{a}
\end{aligned}
$$

No difference can be observed w.r.t. the argument of f

Invariance Against Search Space Rotations

Rotational Invariance in Search Space

- invariance to orthogonal (rigid) transformations \mathbf{R}, where $\mathbf{R R}^{\mathrm{T}}=\mathbf{I}$
e.g. true for simple evolution strategies recombination operators might jeopardize rotational invariance

$$
f(\boldsymbol{x}) \leftrightarrow f(\mathbf{R} \boldsymbol{x})
$$

Identical behavior on f and $f_{\mathbf{R}}$

$$
\begin{array}{rlll}
f: & \boldsymbol{x} \mapsto f(\boldsymbol{x}), & \boldsymbol{x}^{(t=0)}=\boldsymbol{x}_{0} \\
f_{\mathbf{R}}: & & \boldsymbol{x} \mapsto f(\mathbf{R} \boldsymbol{x}), & \boldsymbol{x}^{(t=0)}=\mathbf{R}^{-1}\left(\boldsymbol{x}_{0}\right)
\end{array}
$$

45
No difference can be observed w.r.t. the argument of f

[^0]
Invariance Against Rigid Search Space Transformations

Invariance Under Rigid Search Space Transformations

for example, invariance under search space rotation (separable \Leftrightarrow non-separable)
from [Hansen, p. 40

Invariance Against Rigid Search Space Transformations

Invariance Under Rigid Search Space Transformations

for example, invariance under search space rotation (separable \Leftrightarrow non-separable)

Invariance Against Rigid Search Space Transformations

Invariance Under Rigid Search Space Transformations

for example, invariance un (separable \Leftrightarrow non-separab

mainly Nelder-Mead and CMA-ES have this property

Invariances: Summary

Invariance

The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest number of hypotheses or axioms.

- Albert Einstein
- Empirical performance results
- from benchmark functions
- from solved real world problems
are only useful if they do generalize to other problems
- Invariance is a strong non-empirical statement about generalization
generalizing (identical) performance from a single function to a whole class of functions
consequently, invariance is important for the evaluation of search algorithms

Step-Size Adaptation

Recap CMA-ES: What We Have So Far

Evolution Strategies

Recalling
New search points are sampled normally distributed

$$
\boldsymbol{x}_{i} \sim m+\sigma \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \quad \text { for } i=1, \ldots, \lambda
$$

as perturbations of m, \quad where $\boldsymbol{x}_{i}, m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \mathrm{C} \in \mathbb{R}^{n \times n}$
where

- the mean vector $m \in \mathbb{R}^{n}$ represents the favorite solution and $m \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}$
- the so-called step-size $\sigma \in \mathbb{R}_{+}$controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

The remaining question is how to update σ and C .

Why At All Step-Size Adaptation?

Why Step-Size Control?

Why Step-Size Adaptation?

Why Step-Size Control?

$$
f(x)=\sum_{i=1}^{n} x_{i}^{2}
$$

$$
\text { in }[-0.2,0.8]^{n}
$$

$$
\text { for } n=10
$$

from [Auger, p. 22]

Optimal Step-Size

Why Step-Size Control?

$$
\begin{aligned}
& \qquad f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}^{2} \\
& \text { for } n=10 \text { and } \\
& \boldsymbol{x}^{0} \in[-0.2,0.8]^{n}
\end{aligned}
$$

with optimal step-size σ

Optimal Step-Size vs. Step-Size Control

Why Step-Size Control?

(5/5w, 10)-ES, 2 times 11 runs

$$
\begin{gathered}
f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}^{2} \\
\text { for } n=10 \text { and } \\
\boldsymbol{x}^{0} \in[-0.2,0.8]^{n}
\end{gathered}
$$

with optimal versus adaptive step-size σ with too small initial σ

Optimal Step-Size vs. Step-Size Control

Why Step-Size Control?

$$
\begin{gathered}
f(\boldsymbol{x})=\sum_{i=1}^{n} x_{i}^{2} \\
\text { for } n=10 \text { and } \\
\boldsymbol{x}^{0} \in[-0.2,0.8]^{n}
\end{gathered}
$$

comparing number of f-evals to reach $\|m\|=10^{-5}: \frac{1100-100}{650} \approx 1.5$

Adapting the Step-Size

Question:

How to actually adapt the step-size during the optimization?

Most common:

- $1 / 5$ success rule
- Cumulative Step-Size Adaptation (CSA, as in standard CMA-ES)
- others possible (Two-Point Adaptation, self-adaptive step-size, ...)

One-Fifth Success Rule

One-fifth success rule

increase σ

from [Auger, p. 32]

One-Fifth Success Rule

One-fifth success rule

Probability of success $\left(p_{s}\right)$
$1 / 2$

Probability of success $\left(p_{s}\right)$
"too small"

One-Fifth Success Rule

One-fifth success rule

p_{s} : \# of successful offspring / \# offspring (per generation)
$\sigma \leftarrow \sigma \times \exp \left(\frac{1}{3} \times \frac{p_{s}-p_{\text {target }}}{1-p_{\text {target }}}\right) \quad \begin{aligned} & \text { Increase } \sigma \text { if } p_{s}>p_{\text {target }} \\ & \text { Decrease } \sigma \text { if } p_{s}<p_{\text {target }}\end{aligned}$
$(1+1)$-ES

$$
p_{\text {target }}=1 / 5
$$

IF offspring better parent

$$
p_{s}=1, \sigma \leftarrow \sigma \times \exp (1 / 3)
$$

ELSE

$$
p_{s}=0, \sigma \leftarrow \sigma / \exp (1 / 3)^{1 / 4}
$$

One-Fifth Success Rule

Why $1 / 5$?
Asymptotic convergence rate and probability of success of scale-invariant step-size ($1+1$)-ES

sphere - asymptotic results, i.e. $n=\infty$ (see slides before)
$1 / 5$ trade-off of optimal probability of success on the sphere and corridor

Cumulative Step-Size Adaptation (CSA)

Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

$$
\begin{aligned}
& \boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{m}+\sigma \boldsymbol{y}_{i} \\
& \boldsymbol{m} \leftarrow \boldsymbol{m}+\sigma \boldsymbol{y}_{w}
\end{aligned}
$$

Measure the length of the evolution path the pathway of the mean vector m in the generation sequence

Cumulative Step-Size Adaptation (CSA)

Path Length Control (CSA)

The Equations

Initialize $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}$, evolution path $p_{\sigma}=\mathbf{0}$, set $c_{\sigma} \approx 4 / n, d_{\sigma} \approx 1$.

$$
\begin{aligned}
& m \leftarrow m+\sigma \boldsymbol{y}_{w} \quad \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \quad \text { update mean } \\
& p_{\sigma} \leftarrow\left(1-c_{\sigma}\right) \boldsymbol{p}_{\sigma}+\underbrace{\sqrt{1-\left(1-c_{\sigma}\right)^{2}}}_{\text {accounts for } 1-c_{\sigma}} \underbrace{\sqrt{\mu_{w}}}_{\text {accounts for } w_{i}} \boldsymbol{y}_{w} \\
& \sigma \leftarrow \sigma \times \underbrace{\exp \left(\frac{c_{\sigma}}{d_{\sigma}}\left(\frac{\left\|p_{\sigma}\right\|}{\mathrm{E}\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|}-1\right)\right)}_{>1 \Longleftrightarrow\left\|\boldsymbol{p}_{\sigma}\right\| \text { is greater than its expectation }} \text { update step-size }
\end{aligned}
$$

Cumulative Step-Size Adaptation (CSA)

Step-size adaptation

What is achived

Linear convergence
from [Auger, p. 38]

Covariance Matrix Adaptation

Recap CMA-ES: What We Have So Far

Evolution Strategies

Recalling
New search points are sampled normally distributed

$$
\boldsymbol{x}_{i} \sim m+\sigma \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \quad \text { for } i=1, \ldots, \lambda
$$

as perturbations of m, where $\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{m} \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}$,

$$
C \in \mathbb{R}^{n \times n}
$$

where

- the mean vector $m \in \mathbb{R}^{n}$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_{+}$controls the step length
- the covariance matrix $C \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

The remaining question is how to update C .

Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

initial distribution, $\mathrm{C}=\mathrm{I}$

Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

initial distribution, $\mathrm{C}=\mathrm{I}$

Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

$$
m \leftarrow m+\sigma \boldsymbol{y}_{w}, \quad \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathrm{C})
$$

y_{w}, movement of the population mean m (disregarding σ)

Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

from [Auger, p. 41]

Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

new distribution,
$\mathrm{C} \leftarrow 0.8 \times \mathrm{C}+0.2 \times \boldsymbol{y}_{w} \boldsymbol{y}_{w}^{\mathrm{T}}$ the ruling principle: the adaptation increases the likelihood of successful steps, \boldsymbol{y}_{w}, to appear again

Rank-One Update of Covariance Matrix

Covariance Matrix Adaptation
Rank-One Update

Initialize $m \in \mathbb{R}^{n}$, and $\mathbf{C}=\mathbf{I}$, set $\sigma=1$, learning rate $c_{\text {cov }} \approx 2 / n^{2}$ While not terminate

$$
\begin{aligned}
\boldsymbol{x}_{i} & =m+\sigma \boldsymbol{y}_{i}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}), \\
m & \leftarrow m+\sigma \boldsymbol{y}_{w} \quad \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \\
\mathrm{C} & \leftarrow\left(1-c_{\mathrm{cov}}\right) \mathrm{C}+c_{\mathrm{cov}} \mu_{w} \underbrace{\boldsymbol{y}_{w} \boldsymbol{y}_{w}^{\mathrm{T}}}_{\text {rank-one }} \quad \text { where } \mu_{w}=\frac{1}{\sum_{i=1}^{\mu} w_{i}{ }^{2}} \geq 1
\end{aligned}
$$

Rank-One Update: Summary

$$
\mathrm{C} \leftarrow\left(1-c_{\mathrm{cov}}\right) \mathrm{C}+c_{\mathrm{cov}} \mu_{w} \boldsymbol{y}_{w} \boldsymbol{y}_{w}^{\mathrm{T}}
$$

covariance matrix adaptation

- learns all pairwise dependencies between variables
off-diagonal entries in the covariance matrix reflect the dependencies
- conducts a principle component analysis (PCA) of steps \boldsymbol{y}_{w}, sequentially in time and space
eigenvectors of the covariance matrix C are the principle
components / the principle axes of the mutation ellipsoid
- learns a new rotated problem representation

components are independent (ơnly)
in the new represertation
- learns a new (Mahalanobis) metric
variable metric method
- approximates the inverse Hessian on quadratic functions
transformation into the sphere function
- for $\mu=1$: conducts a natural gradient ascent on the distribution \mathcal{N} entirely independent of the given coordinate system

Evolution Path

Cumulation

The Evolution Path

Evolution Path

Conceptually, the evolution path is the search path the strategy takes over a number of generation steps. It can be expressed as a sum of consecutive steps of the mean m.

An exponentially weighted sum of steps \boldsymbol{y}_{w} is used

$$
p_{c} \propto \sum_{i=0}^{g} \underbrace{\left(1-c_{c}\right)^{g-i}}_{\substack{\text { exponentially } \\ \text { fading weights }}} y_{w}^{(i)}
$$

The recursive construction of the evolution path (cumulation):

$$
p_{\mathrm{c}} \leftarrow \underbrace{\left(1-c_{\mathrm{c}}\right)}_{\text {decay factor }} p_{\mathrm{c}}+\underbrace{\sqrt{1-\left(1-c_{\mathrm{c}}\right)^{2}} \sqrt{\mu_{\mathrm{w}}}}_{\text {normalization factor }} \underbrace{\boldsymbol{y}_{w}}_{\text {input }=\frac{m-m_{o l d}}{\sigma}}
$$

where $\mu_{w}=\frac{1}{\sum w_{i}{ }^{2}}, c_{c} \ll 1$. History information is accumulated in the evolution path.

Utilizing the Evolution Path

Cumulation

Utilizing the Evolution Path

We used $\boldsymbol{y}_{w} \boldsymbol{y}_{w}^{\mathrm{T}}$ for updating C. Because $\boldsymbol{y}_{w} \boldsymbol{y}_{w}^{\mathrm{T}}=-\boldsymbol{y}_{w}\left(-\boldsymbol{y}_{w}\right)^{\mathrm{T}}$ the sign of \boldsymbol{y}_{w} is lost.

from [Auger, p. 45]

Utilizing the Evolution Path

Cumulation

Utilizing the Evolution Path

We used $\boldsymbol{y}_{w} \boldsymbol{y}_{w}^{\mathrm{T}}$ for updating C. Because $\boldsymbol{y}_{w} \boldsymbol{y}_{w}^{\mathrm{T}}=-\boldsymbol{y}_{w}\left(-\boldsymbol{y}_{w}\right)^{\mathrm{T}}$ the sign of \boldsymbol{y}_{w} is lost.

from [Auger, p. 45

Utilizing the Evolution Path

Cumulation

Utilizing the Evolution Path

We used $\boldsymbol{y}_{w} \boldsymbol{y}_{w}^{\mathrm{T}}$ for updating C. Because $\boldsymbol{y}_{w} \boldsymbol{y}_{w}^{\mathrm{T}}=-\boldsymbol{y}_{w}\left(-\boldsymbol{y}_{w}\right)^{\mathrm{T}}$ the sign of \boldsymbol{y}_{w} is lost.

The sign information is (re-)introduced by using the evolution path.

$$
\begin{aligned}
& p_{\mathrm{c}} \leftarrow \underbrace{\left(1-c_{\mathrm{c}}\right)}_{\text {decay factor }} p_{\mathrm{c}}+\underbrace{\sqrt{1-\left(1-c_{\mathrm{c}}\right)^{2}} \sqrt{\mu_{w}}}_{\text {normalization factor }} \boldsymbol{y}_{w} \\
& \mathrm{C} \leftarrow\left(1-c_{\mathrm{cov}}\right) \mathrm{C}+c_{\mathrm{cov}} \underbrace{p_{\mathrm{c}} p_{\mathrm{c}}^{\mathrm{T}}}_{\text {rank-one }}
\end{aligned}
$$

where $\mu_{w}=\frac{1}{\sum w_{i}^{2}}, c_{c} \ll 1$.

Rank- μ Update

Rank- μ Update

$$
\begin{aligned}
\boldsymbol{x}_{\boldsymbol{i}} & =m+\sigma \boldsymbol{y}_{i},
\end{aligned} \quad \boldsymbol{y}_{\boldsymbol{i}} \quad \sim \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}),
$$

The rank- μ update extends the update rule for large population sizes λ using $\mu>1$ vectors to update C at each generation step.

Rank- μ Update

Rank- μ Update

$$
\begin{aligned}
\boldsymbol{x}_{\boldsymbol{i}} & =\boldsymbol{m}+\sigma \boldsymbol{y}_{i}, & \boldsymbol{y}_{i} & \sim \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \\
\boldsymbol{m} & \leftarrow \boldsymbol{m}+\sigma \boldsymbol{y}_{w} & \boldsymbol{y}_{w} & =\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda}
\end{aligned}
$$

The rank- μ update extends the update rule for large population sizes λ using $\mu>1$ vectors to update C at each generation step. The matrix

$$
\mathbf{C}_{\mu}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \boldsymbol{y}_{i: \lambda}^{\mathrm{T}}
$$

computes a weighted mean of the outer products of the best μ steps and has rank $\min (\mu, n)$ with probability one.

Rank- μ Update

Rank- μ Update

$$
\begin{aligned}
\boldsymbol{x}_{\boldsymbol{i}} & =\boldsymbol{m}+\sigma \boldsymbol{y}_{i}, & \boldsymbol{y}_{i} & \sim \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}) \\
\boldsymbol{m} & \leftarrow \boldsymbol{m}+\sigma \boldsymbol{y}_{w} & \boldsymbol{y}_{w} & =\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda}
\end{aligned}
$$

The rank- μ update extends the update rule for large population sizes λ using $\mu>1$ vectors to update C at each generation step. The matrix

$$
\mathbf{C}_{\mu}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \boldsymbol{y}_{i: \lambda}^{\mathrm{T}}
$$

computes a weighted mean of the outer products of the best μ steps and has rank $\min (\mu, \boldsymbol{n})$ with probability one.
The rank- μ update then reads

$$
\mathrm{C} \leftarrow\left(1-c_{\mathrm{cov}}\right) \mathrm{C}+c_{\mathrm{cov}} \mathbf{C}_{\mu}
$$

where $c_{\mathrm{cov}} \approx \mu_{\mathrm{w}} / n^{2}$ and $c_{\mathrm{cov}} \leq 1$.

Illustration of Rank- μ Update

sampling of
$\lambda=150$ solutions where $C=I$ and

$$
\sigma=1
$$

Illustration of Rank- μ Update

sampling of
$\lambda=150$ solutions where $\mathrm{C}=\mathrm{I}$ and

$$
\sigma=1
$$

calculating C where

$$
\mu=50, w_{1}=\cdots=
$$

$$
w_{\mu}=\frac{1}{\mu}, \text { and }
$$

$$
c_{\mathrm{cov}}=1
$$

Illustration of Rank- μ Update

sampling of
$\lambda=150$ solutions where $C=I$ and

$$
\sigma=1
$$

calculating C where

$$
\begin{gathered}
\mu=50, w_{1}=\cdots \\
w_{\mu}=\frac{1}{\mu}, \text { and } \\
c_{\mathrm{cov}}=1
\end{gathered}
$$

$m_{\text {new }} \quad \leftarrow \quad m+\frac{1}{\mu} \sum y_{i: \lambda}$

Rank- μ Update: Summary

The rank- μ update

- increases the possible learning rate for large populations

$$
\text { "large" when } \lambda \geq 3 n+10
$$

- is the primary mechanism whenever a large population size is used
- can be easily combined with rank-one update

CMA-ES in a Nutshell

The CMA-ES

Input: $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \lambda$
Initialize: $\mathbf{C}=\mathbf{I}$, and $p_{\mathrm{c}}=\mathbf{0}$,
Set: $c_{\mathbf{c}} \approx 4 / n, c_{\sigma} \approx 4 / n, c_{1}$ and $w_{i=1 \ldots \lambda}$ such that $\mu_{w}=$

Promised:

Understand the main principles

 of this state-of-the-art algorithm.While not terminate

$$
\begin{aligned}
\boldsymbol{x}_{i} & =m+\sigma \boldsymbol{y}_{i}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathbf{C}), \quad \text { for } i=1, \ldots, \lambda \\
m & \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}=m+\sigma \boldsymbol{y}_{w} \quad \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \\
p_{\mathrm{c}} & \leftarrow\left(1-c_{\mathbf{c}}\right) p_{\mathrm{c}}+1_{\left\{\left\|p_{\sigma}\right\|<1.5 \sqrt{n}\right\}} \sqrt{1-\left(1-c_{\mathbf{c}}\right)^{2}} \sqrt{\mu_{w}} \boldsymbol{y}_{w} \\
p_{\sigma} & \leftarrow\left(1-c_{\sigma}\right) p_{\sigma}+\sqrt{1-\left(1-c_{\sigma}\right)^{2}} \sqrt{\mu_{w}} \mathbf{C}^{-\frac{1}{2}} \boldsymbol{y}_{w} \\
\mathrm{C} & \leftarrow\left(1-c_{1}-c_{\mu}\right) \mathrm{C}+c_{1} p_{\mathrm{c}} p_{\mathrm{c}}^{\mathrm{T}}+c_{\mu} \sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \boldsymbol{y}_{i: \lambda}^{\mathrm{T}} \\
\sigma & \leftarrow \sigma \times \exp \left(\frac{c_{\sigma}}{d_{\sigma}}\left(\frac{\left\|p_{\sigma}\right\|}{\mathrm{E}\|\mathcal{N}(\mathbf{0}, \mathbf{I})\|}-1\right)\right)
\end{aligned}
$$

sampling
update mean cumulation for C cumulation for σ update C update of σ

Not covered on this slide: termination, restarts, useful output, boundaries and encoding

CMA-ES in a Nutshell

The CMA-ES

Input: $m \in \mathbb{R}^{n}, \sigma \in \mathbb{R}_{+}, \lambda$
Initialize: $\mathbf{C}=\mathbf{I}$, and $p_{\mathrm{c}}=\mathbf{0}, p_{\sigma}=\mathbf{0}$,
Set: $c_{\mathrm{c}} \approx 4 / n, c_{\sigma} \approx 4 / n, c_{1} \approx 2 / n^{2}, c_{\mu} \approx \mu_{w} / n^{2}, c_{1}+c_{\mu} \leq 1, d_{\sigma} \approx 1+\sqrt{\frac{\mu_{w}}{n}}$, and $w_{i=1 \ldots \lambda}$ such that $\mu_{w}=\frac{1}{\sum_{i=1}^{\mu} w_{i}} \approx 0.3 \lambda$
While not terminate

$$
\begin{array}{rlr}
\boldsymbol{x}_{i} & =m+\sigma \boldsymbol{y}_{i}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathrm{C}), \quad \text { for } i=1, \ldots, \lambda & \text { sampling } \\
m & \leftarrow \sum_{i=1}^{\mu} w_{i} \boldsymbol{x}_{i: \lambda}=m+\sigma \boldsymbol{y}_{w} & \text { where } \boldsymbol{y}_{w}=\sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \\
p_{\mathrm{c}} & \leftarrow\left(1-c_{\mathrm{c}}\right) p_{\mathrm{c}}+\mathbb{1}_{\left\{\left\|p_{\rho}\right\|<1.5 \sqrt{n}\right\}}^{1-\left(1-c_{\mathrm{c}}\right)^{2}} \sqrt{\mu_{w}} \boldsymbol{y}_{w} & \text { cumulate mean } \\
p_{\sigma} & \leftarrow\left(1-c_{\sigma}\right) p_{\sigma}+\sqrt{1-\left(1-c_{\sigma}\right)^{2}} \sqrt{\mu_{w}} \mathrm{C}^{-\frac{1}{2} \boldsymbol{y}_{w}} & \text { cumulation for } \sigma \\
\mathrm{C} & \leftarrow\left(1-c_{1}-c_{\mu}\right) \mathrm{C}+c_{1} p_{\mathrm{c}} p_{\mathrm{c}}^{\mathrm{T}}+c_{\mu} \sum_{i=1}^{\mu} w_{i} \boldsymbol{y}_{i: \lambda} \boldsymbol{y}_{i: \lambda}^{\mathrm{T}} & \text { update } \mathrm{C} \\
\sigma & \text { update of } \sigma
\end{array}
$$

Not covered on this slide: termination, restarts, useful output, boundaries and encoding

CMA-ES: Almost Parameterless

Strategy Internal Parameters

- related to selection and recombination
- λ, offspring number, new solutions sampled, population size
- μ, parent number, solutions involved in updates of m, C, and σ
- $w_{i=1, \ldots, \mu}$, recombination weights
- related to C-update
- $c_{\mathbf{c}}$, decay rate for the evolution path
- c_{1}, learning rate for rank-one update of C
- c_{μ}, learning rate for rank- μ update of C
- related to σ-update
- c_{σ}, decay rate of the evolution path
- d_{σ}, damping for σ-change

Parameters were identified in carefully chosen experimental set ups. Parameters do not in the first place depend on the objective function and are not meant to be in the users choice. Only(?) the population size λ (and the initial σ) might be reasonably varied in a wide range, depending on the objective function
Useful: restarts with increasing population size (IPOP)

Experimental Considerations

Experimentum Crucis with CMA-ES

Experimentum Crucis (0)

What did we want to achieve?

- reduce any convex-quadratic function

$$
f(\boldsymbol{x})=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{H} \boldsymbol{x}
$$

$$
\text { e.g. } f(x)=\sum_{i=1}^{n} 10^{\frac{i-1}{n-1}} x_{i}^{2}
$$

to the sphere model

$$
f(\boldsymbol{x})=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}
$$

without use of derivatives

- lines of equal density align with lines of equal fitness
$C \propto \boldsymbol{H}^{-1}$
in a stochastic sense

Experimentum Crucis with CMA-ES

Experimentum Crucis (1)

f convex quadratic, separable

Experimentum Crucis with CMA-ES

Experimentum Crucis (2)

f convex quadratic, as before but non-separable (rotated)

$\mathbf{C} \propto \boldsymbol{H}^{-1}$ for all g, \mathbf{H}
from Hansen, p: 93]
$62 / 81$

Influence of Condition Number + Invariance

Comparison to BFGS, NEWUOA, PSO and DE

 f convex quadratic, separable with varying condition number αEllipsoid dimension 20, 21 trials, tolerance $1 \mathrm{e}-09$, eval max $1 \mathrm{e}+07$

BFGS (Broyden et al 1970) NEWUAO (Powell 2004)
DE (Storn \& Price 1996)
PSO (Kennedy \& Eberhart 1995) CMA-ES (Hansen \& Ostermeier 2001)
$f(\boldsymbol{x})=g\left(\boldsymbol{x}^{\mathrm{T}} \mathbf{H} \boldsymbol{x}\right)$ with
H diagonal g identity (for BFGS and NEWUOA) g any order-preserving = strictly increasing function (for all other)

SP1 = average number of objective function evaluations ${ }^{14}$ to reach the target function value of $g^{-1}\left(10^{-9}\right)$
${ }^{14}$ Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA

Influence of Condition Number + Invariance

Comparison to BFGS, NEWUOA, PSO and DE

 f convex quadratic, non-separable (rotated) with varying condition number αRotated Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max $1 \mathrm{e}+07$

BFGS (Broyden et al 1970) NEWUAO (Powell 2004)
DE (Storn \& Price 1996) PSO (Kennedy \& Eberhart 1995) CMA-ES (Hansen \& Ostermeier 2001)

$$
f(\boldsymbol{x})=g\left(\boldsymbol{x}^{\mathrm{T}} \mathbf{H} \boldsymbol{x}\right) \text { with }
$$

H full g identity (for BFGS and NEWUOA) g any order-preserving = strictly increasing function (for all other)

SP1 = average number of objective function evaluations ${ }^{15}$ to reach the target function value of $g^{-1}\left(10^{-9}\right)$
${ }^{15}$ Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA

Influence of Condition Number + Invariance

Comparison to BFGS, NEWUOA, PSO and DE

f non-convex, non-separable (rotated) with varying condition number α
Sqrt of sqrt of rotated ellipsoid dimension 20,21 trials, tolerance $1 \mathrm{e}-09$, eval max $1 \mathrm{e}+07$

BFGS (Broyden et al 1970) NEWUAO (Powell 2004)
DE (Storn \& Price 1996) PSO (Kennedy \& Eberhart 1995) CMA-ES (Hansen \& Ostermeier 2001)

$$
f(\boldsymbol{x})=g\left(\boldsymbol{x}^{\mathrm{T}} \mathbf{H} \boldsymbol{x}\right) \text { with }
$$

H full
$g: x \mapsto x^{1 / 4}$ (for BFGS and NEWUOA) g any order-preserving = strictly increasing function (for all other)

SP1 = average number of objective function evaluations ${ }^{16}$ to reach the target function value of $g^{-1}\left(10^{-9}\right)$

[^1]
Performance on BBOB Testbed: Data Profile

Comparison during BBOB at GECCO 2009

Summary CMA-ES I

Main Characteristics of (CMA) Evolution Strategies

(1) Multivariate normal distribution to generate new search points follows the maximum entropy principle
(2) Rank-based selection
implies invariance, same performance on $g(f(\boldsymbol{x}))$ for any increasing g more invariance properties are featured
(3) Step-size control facilitates fast (log-linear) convergence and possibly linear scaling with the dimension
in CMA-ES based on an evolution path (a non-local trajectory)
(9) Covariance matrix adaptation (CMA) increases the likelihood of previously successful steps and can improve performance by orders of magnitude
the update follows the natural gradient
$\mathrm{C} \propto \boldsymbol{H}^{-1} \Longleftrightarrow$ adapts a variable metric
\Longleftrightarrow new (rotated) problem representation
$\Longrightarrow f: \boldsymbol{x} \mapsto g\left(\boldsymbol{x}^{\mathrm{T}} \boldsymbol{H} \boldsymbol{x}\right)$ reduces to $\boldsymbol{x} \mapsto \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}$

Summary CMA-ES II

Limitations

of CMA Evolution Strategies

- internal CPU-time: $10^{-8} n^{2}$ seconds per function evaluation on a 2 GHz PC, tweaks are available
$1000000 f$-evaluations in 100-D take 100 seconds internal CPU-time
- better methods are presumably available in case of
- partly separable problems
- specific problems, for example with cheap gradients
specific methods
- small dimension ($n \ll 10$)
for example Nelder-Mead
- small running times (number of f-evaluations $<100 n$) model-based methods

Conclusions

I hope it became clear...
...that CMA-ES samples according to multivariate normal distributions ...how CMA-ES updates its mean, stepsize, and covariance matrix ...and what are the invariance properties of CMA-ES

[^0]: ${ }^{4}$ Salomon 1996. "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278
 ${ }^{5}$ Hansen 2000. Invariance, Self-Adaptation and Correlated Mutations in Evolution Strategies. Parallel Problem Solving from Nature PPSN VI

[^1]: ${ }^{16}$ Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA

