Introduction to Optimization
Derivative-Free Optimization Il: Benchmarking

December 16, 2016
Ecole Centrale Paris, Chatenay-Malabry, France

2 Dimo Brockhoff
A Inria Saclay — lle-de-France

TTTTTTTTTTTTTTTTTTTTTTTTTTT

Course Overview

Fri, 7.10.2016
Fri, 28.10.2016
Fri, 4.11.2016
Fri, 18.11.2016
Mon, 21.11.2016

in S103-S105

Fri, 25.11.2016

in S103-S105

Mon, 28.11.2016

in S103-S105

Mon, 5.12.2016

in S103-S105

Fri, 9.12.2016
Mon, 12.12.2016

in S103-S105

Fri, 16.12.2016

Wed, 4.1.2017

D
D
D
D

C
C
C
C
C
C

Date | |Topo

Introduction

Introduction to Discrete Optimization + Greedy algorithms |
Greedy algorithms Il + Branch and bound

Dynamic programming

Approximation algorithms and-heuristics

Randomized Search Heuristics + Intro. to Continuous Opt. |
Introduction to Continuous Optimization Il

Introduction to Continuous Optimization Il

Constrained Optimization + Descent Methods
Derivative Free Optimization I: CMA-ES

Derivative Free Optimization Il: Benchmarking Optimizers
with the COCO platform

Exam if not indicated otherwise, classes take place in S115-S117

© Dimo Brockhoff, Inria

Introduction to Optimization @

Experimental Considerations
around CMA-ES

Experimentum Crucis with CMA-ES

CMA-ES Summary

Experimentum Crucis (0)

What did t to achieve? .
at did we want to achieve with CMA-ES

@ reduce any convex-quadratic function

e.9.f(x) = Y, 107712
to the sphere model
without use of derivatives
@ lines of equal density align with lines of equal fitness
CoxH™'
in a stochastic sense

from fHansen; p-- 91]
- 60/81

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Experimentum Crucis with CMA-ES

CMA-ES Summary

Experimentum Crucis (1)
f convex quadratic, separable

bIHe -abs(f), cyanf-min{f), green:sigma, red:axis ratio Object Variables (9-D)
10 T . 15 . T or(1)=3.0931e

(2)=2.2083¢
1 (B)=5.6127e
| K(N=2714Te
o x(8)=4.5138e

f : // h@=2741e-
= : f be(5)=—1.0864
: ? ™ (4)=—3.8371

-5 i : he(3)=—6.9109
0 2000 4000 sooE]

Stgndard Deviations in Coordinates divided by sigma
10 T T

1
2
/)
“
r
. _,_/’_) 5
iy el
"'\-_,___‘__ ?
\\ .
107 : ' 107 ' : g
0 2000 4000 G000 0 2000 4000 6000
function evaluations function evaluations

Fla) = 3, 10%7 12, a = 6

o 7 from fl—ian%eﬁ.;--ﬁ' - 92]

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP, Dec. 16, 2016

Experimentum Crucis with CMA-ES

CMA-ES Summary

Experimentum Crucis (2)

f convex quadratic, as before but non-separable (rotated)

bl}ae:ahs(f}, cyan f—min(f), green:sigma, red:axis ratio Object Variables (9-0)

10 4 x(1)=2.0052e
_ K(5)=1.2552¢
10 B . f-!_—x(6}=1.24539
[k(8)=—T7.3812
10° (4)=—2 9981
be(7)=—8.3583
107* e e 3)=—2 0364
; ; (2)=—2.1131

10 [=7.910557281860426—10 |

60583}!:—2.5301

0 2000 4000 6000

CocH 'forall ¢g.H

Principle Axes Lengths Standard Deviations in Coordinates divided by sigma
T T TS, T T] 3

O N B I s A B - - B

g

i 2000 4000 6000 0 2000 4000
function evaluations function evaluations

f(x) = ¢ (x"Hx), ¢ : R — R stricly increasing

from fHansen; p.- 93]
- 62/81

© Dimo Brockhoff, Inria Introduction to Optimi

Influence of Condition Number + Invariance

Comparing Experimenis

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, separable with varying condition number «

Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

]

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

SP1

10 H diagonal
- NewuoA]l g identity (for BFGS and
1[]2 i i pare N EWUOA)

g any order-preserving = strictly
increasing function (for all other)

Condition number
SP1 = average number of objective function evaluations'® to reach the target function
value of ¢=1(1077)

14Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA

70/ 81

© Dimo Brockhoff, Inria Introduction to Optimization @

Influence of Condition Number + Invariance

Comparing Experimenis

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, non-separable (rotated) with varying condition number «

Rotated Ellipsoid dimension 20, 21 trials, tolerance 12-09, eval max 1e+07

]

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

SP1

ma H full
- - NewuoA]l g identity (for BFGS and
1[]2 25 i Dl N EWUOA)

g any order-preserving = strictly
increasing function (for all other)

Condition number
SP1 = average number of objective function evaluations'® to reach the target function
value of ¢=1(1077)

15Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA

71/81

© Dimo Brockhoff, Inria Introduction to Optimization @

Influence of Condition Number + Invariance

Comparing Experimenis

Comparison to BFGS, NEWUOA, PSO and DE

f non-convex, non-separable (rotated) with varying condition number «

Sqrt of sqrt of rotated ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)

DE (Storn & Price 1996)

PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier
2001)

f(x) = g(x"Hx) with

= H full
TNewuorll g :x — x'/* (for BFGS and
10 X E}ESS NEWUOA)
O A S et AN omes 1 g any order-preserving = strictly
100 ! I I f L Increasing function (for all other)

Condition number
SP1 = average number of objective function evaluations'® to reach the target function
value of ¢=1(1077)

16Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA

72/ 81

© Dimo Brockhoff, Inria Introduction to Optimization @

Performance on BBOB Testbed: Data Profile

Comparing Experiments

Comparison during BBOB at GECCO 2009

24 functiong and 31 | allnr;r.itll'lmg in ?Q-D _

o 1 [best200

: . AMaLGaMl IDEA
s _!iAMaLGaM IDEA
& ~ - JVNS (Garlcia)

- 'MA-LS-CHain

0.8

(1+1)-E

o
=)

'GLOBAL
- ALPS-GA

3 - = <full NEWJOA
[< ~NELDER {Han)
x: N—ELDER Doe)

~ “EDA-P50

o
~

Proportion of functions

8

73/ 81

© Dimo Brockhoff, Inria

Summary CMA-ES |

Summary and Final Remarks

Main Characteristics of (CMA) Evolution Strategies

@ Multivariate normal distribution to generate new search points
follows the maximum entropy principle

Q@ Rank-based selection
implies invariance, same performance on g(f(x)) for any increasing g
more invariance properties are featured

© Step-size control facilitates fast (log-linear) convergence and

possibly linear scaling with the dimension
in CMA-ES based on an evolution path (a non-local trajectory)

© Covariance matrix adaptation (CMA) increases the likelihood of
previously successful steps and can improve performance by

orders of magnitude
the update follows the natural gradient

C o< H™! «= adapts a variable metric
<= new (rotated) problem representation
— f:x > g(x"Hx) reduces tox — x'x

| 79/ 81

© Dimo Brockhoff, Inria Introduction to Optimization @

Summary CMA-ES Il

Summary and Final Remarks

Limitations
of CMA Evolution Strategies

@ internal CPU-time: 10~%n* seconds per function evaluation on a 2GHz

PC, tweaks are available
1000000 f-evaluations in 100-D take 100 seconds internal CPU-time

@ better methods are presumably available in case of

» partly separable problems

» specific problems, for example with cheap gradients
specific methods

» small dimension (n < 10)
for example Nelder-Mead

» small running times (number of f-evaluations < 100n)
model-based methods

80/ 81

© Dimo Brockhoff, Inria Introduction to Optimization @

Conclusions

| hope it became clear...

...that CMA-ES samples according to multivariate normal distributions
...how CMA-ES updates its mean, stepsize, and covariance matrix
...what are the invariance properties of CMA-ES

...and how to read the output of CMA-ES

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Numerical Benchmarking
of Blackbox Optimization Algorithms

challenging optimization problems
appear in many
scientific, technological and industrial domains

Numerical Blackbox Optimization

Optimize f: Q c R® » R¥

x € R"

f(x) € R" .

derivatives not available or not useful

Practical Blackbox Optimization

Given:

x € R" f(x)EI[PJ">

Not clear:

which of the many algorithms should | use on my
problem?

Numerical Blackbox Optimizers

Deterministic algorithms
uasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Implex downhill [Nelder & Mead 1965]
Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)
Differential volutlon [Storn & Price 1997]
Particle Swarm Optimization [Kennedy & Eberhart 1995]
Evolution Strategies, CMA-ES [rRechenberg 1965, Hansen&Ostermeier 2001]
Estimation of Distribution Algorithms (EDAS) [Larrafiaga, Lozano, 2002]
Cross Entropy I\/Iethod (same as EDA,) [Runbinstein, Kroese, 2004]
e Ger ClOFITrIfr1S [Holland 1975, Goldberg 1989]
Slmulated anneallng [Klrkpatrlck et al. 1983]
Simultaneous perturbation stochastic approx. (SPSA) [spall 2000]

Numerical Blackbox Optimizers

Deterministic algorithms _
uasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]
Implex downhill [Nelder & Mead 1965]
Pattern search [Hooke and Jeeves 1961]
Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary AI%orlthms (continuous domain)
Differential Evolution [storn & Price 1997]
Particle Swarm Optimization [Kennedy & Eberhart 1995]
Evolution Strategies, CMA-ES [rRechenberg 1965, Hansen&Ostermeier 2001]
Estimation of Distribution Algorithms (EDAS) [Larrafiaga, Lozano, 2002]
Cross Entropy Method (same as EDA,) [Runbinstein, Kroese, 2004]
. . [Holland 1975, Goldberg 1989]
Simulated annealing [kirkpatrick et al. 1983]
Simultaneous perturbation stochastic approx. (SPSA) [spall 2000]

 choice typically not immmediately clear

. a!thou%lh practitioners have knowledge about problem
difficulties (e.g. multi-modality, non-separability, ...)

Need: Benchmarking

 understanding of algorithms
» algorithm selection

* putting algorithms to a standardized test
« simplify judgement
 simplify comparison
* regression test under algorithm changes

Kind of everybody has to do it (and it Is tedious):

» choosing (and implementing) problems, performance
measures, visualization, stat. tests, ...

* running a set of algorithms

that's where COCO comes into play

\.

Comparing Continuous Optimizers Platform
https://github.com/numbbo/coco

automatized benchmarking

How to benchmark algorithms with
COCO?

https://github.com/numbbo/coco

O GitHub - numbbo/coco: M. ®

T .
[4) % | & GitHub, Inc. (US) | https://github.com/numbbo/coco c | | C2 5eqrch

Most Visited @ Getting Started & algorithms [COmparin... €) numbbo/numbbe - Gi...

O Personal Opensource Business Explore Pricing Blog Support This repository

L numbbo / coco © watch 12 16

<> Code (D Issues 113 11 Pull requests 2 4~ Pulse .1 Graphs
Numerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/

0 7,902 commits ¥ 12 branches > 25 releases 12 13 contributors

Branch: master = Mew pull request Find file Clone or download =

!.'1 brockho committed on GitHub Merge pull request #1075 from numbbo/development .. Latest commit @cbb7db on 10 Jun

BB code-experiments Merge pull request #1071 from ttusar/debug 2 months ago
BB code-postprocessing further clean up of postprocessing output, 2 months ago
B code-preprocessing/archive-update Added empty last lines. 2 months ago
B docs updated reference to biobjective perf-assessment paper on arXiv in ge... 3 months ago
i howtos Update documentation-howto.md 3 months ago
& .clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
& .hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago

[E AUTHORS small correction in AUTHORS 4 months ago

https://github.com/numbbo/coco

) GitHub - numbbo/coco: N... %

y -
[(' | % | (i) @ GitHub, Inc. (US] | https:;//github.com/numbbo/coco | ﬁ- | B 3 H# O

Most Visited @ Getting Started (& algorithms [COmparin... numbbo/numbbe - Gi...
g g pa
TTUTTIO ULy VL LE

<> Code (D) Issues 113 11 Pull requests 2 4~ Pulse 11 Graphs

Numerical Black-Box Optimization Benchmarking Framework http://coco.gforge.inria.fr/

0 7,902 commits I 12 branches T 25 releases 12 13 contributors

Branch: master « Mew pull request Find file Clone or download ~

!.'1 brockho committed on GitHub Merge pull request #1075 from numbbo/development ... Latest commit @cbb?db on 10 Jun

B code-experiments Merge pull request #1071 from ttusar/debug 2 months ago
BB code-postprocessing further clean up of postprocessing output, 2 months ago
B code-preprocessing/archive-update Added empty last lines. 2 months ago
m docs updated reference to biobjective perf-assessment paper on arXiv in ge... 3 months ago
B howtos Update documentation-howto.md 5 months ago
& .clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
[E .hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
[E AUTHORS small correction in AUTHORS 4 months ago
[& LICENSE Added acknowledgements to external collaborators... 3 months ago
E README.md Update README.md 2 months ago
[do.py Merge branch 'development’ of https://github.com/numbbo/coco into pp-... 3 months ago

& doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 9 months ago

https://github.com/numbbo/coco

O GitHub - numbbo/coco: M. ®

T .
[4) % | & GitHub, Inc. (US) | https://github.com/numbbo/coco c | | C2 5eqrch

[2) Most Visited @ Getting Started & algorithms [COmparin... €) numbbo/numbbe - Gi...

!.'1 brockho committed on GitHub Merge pull request #1075 from numbbo/development ... Latest commit 8cbb7db on 10 Jun

B code-experiments Merge pull request #1071 from ttusar/debug 2 months ago
BB code-postprocessing further clean up of postprocessing output, 2 months ago
B code-preprocessing/archive-update Added empty last lines. 2 months ago
m docs updated reference to biobjective perf-assessment paper on arXiv in ge... 3 months ago
B howtos Update documentation-howto.md 5 months ago
& .clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
[E .hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
E AUTHORS small correction in AUTHORS 4 months ago
[= LICENSE Added acknowledgements to external collaborators... 3 months ago
E README.md Update README.md 2 months ago
[do.py Merge branch 'development’ of https://github.com/numbbo/coco into pp-... 3 months ago

& doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 9 months ago

README.md

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in ans1 ¢ with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous

https://github.com/numbbo/coco

B code-preprocessing/archive-update Added empty last lines. 2 months ago
| docs updated reference to biobjective perf-assessment paper on arXiv in ge... 3 months ago
B howtos Update documentation-howto.md 53 months ago
[& .clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
& .hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
[AUTHORS small correction in AUTHORS 4 months ago
[E LICENSE Added acknowledgements to external collaborators... 5 months ago
E README.md Update README.md 2 months ago
[E do.py Merge branch "development’ of https://github.com/numbbo/coco into pp-... 3 months ago

E doxygen.ini moved all files into code-expeniments/ folder besides the do.py scrip... 9 months ago

README.md

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in ans1 ¢ with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous
optimizers, AKA non-linear solvers for numerical optimization. Languages currently available are

® C/C++

® Java

® MATLAB/Octave

https://github.com/numbbo/coco

) GitHub - numbbo/coco: N... %

i -
l:\(' | " (i) @ GitHub, Inc. (US) https://github.com/numbbo/coco (& | | c?SEﬂn:h

[8h Most Visited @ Getting Started (2 algorithms [COmparin... €) numbbo/numbbo - Gi..

& .clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
[E .hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s... a year ago
E AUTHORS small correction in AUTHORS 4 months ago
[& LICENSE Added acknowledgements to external collaborators... 5 months ago
E README.md Update README.md 2 months ago
[do.py Merge branch 'development’ of https://github.com/numbbo/coco into pp-... 3 months ago

[® doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip... 9 months ago

README.md

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in ans1 ¢ with other
languages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous
optimizers, AKA non-linear solvers for numerical optimization. Languages currently available are

® (C/Cs+
® Java
® MATLAB/Octave

® Python

Contributions to link further languages (including a better example in C++) are more than welcome.

For more information,

https://github.com/numbbo/coco

) GitHub - numbbo/coco: N... %

i -
l:\(' | " (i) @ GitHub, Inc. (US) https://github.com/numbbo/coco (& | | c?SEﬂn:h

Maost Visited @ Getting Started ' algorithms [COmparin... €) numbbo/numbbo - Gi...

[& LICENSE Added acknowledgements to external collaborators...
=] README.md Update README.md
& do.py Merge branch 'development’ of https://github.com/numbbo/coco into pp-...

& doxygen.ini moved all files into code-experiments/ folder besides the do.py scrip...

README.md

numbbo/coco: Comparing Continuous Optimizers

5 months ago
2 months ago
3 months ago

9 months ago

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in ans1 ¢ with other
languages calling the C code. As the name suggests, the code provides a platform to benchmark and compare continuous

optimizers, AKA non-linear solvers for numerical optimization. Languages currently available are

® (C/Cs+
® Java
® MATLAB/Octave

® Python
Contributions to link further languages (including a better example in C++) are more than welcome.
For more information,

® read our benchmarking guidelines introduction

® read the COCO experimental setup description

® see the bbob-biobj COCO multi-objective functions testbed documentation and the specificities of the performance

https://github.com/numbbo/coco

) GitHub - numbbo/coco: N...

l (' ' =2 | (i) @ GitHub, Inc. US] | https;//github.com/numbbo/coco (& | CO Search 'ﬁ i=] 3 @ O
L | |

Maost Visited @ Getting Started ' algorithms [COmparin... €) numbbo/numbbo - Gi...
=] aoxygen.ani MOVed all TNES TNTo COae-EXPENMENTS/ TOIOET DESIAES ThE dO0.py 5CTIp... Fmonmns ago

README.md

numbbo/coco: Comparing Continuous Optimizers

This code reimplements the original Comparing Continous Optimizer platform, now rewritten fully in aAns1 ¢ with other
Ianguages calling the ¢ code. As the name suggests, the code provides a platform to benchmark and compare continuous
n-linear solvers for numerical optimization. Languages currently available are

MATLAE /Octave

Python

er languages (including a better example in C++) are more than welcome.
For more information,

read our benchmarking guidelines introduction

read the COCO experimental setup description

see the bbob-biobj COCO multi-objective functions testbed documentation and the specificities of the performance
assessment for the bi-objective testbed.

consult the BBOB workshops series,

consider to register here for news,

see the previous COCO home page here and

https://github.com/numbbo/coco

) GitHub - numbbo/coco: N... %

[4) % | & GitHub, Inc. (US] | https://github.com/numbbo/coca

[2h Most Visited @ Getting Started rl..z! algorithms [COmparin... Q numbbo/numbbo - Gi...

1. Check out the Requirements above.

2. Download the COCO framework code from gith req u I re m e n tS &

o either by clicking the Download ZIP button d I d
o or (preferred) by typing git clone https://8 OW n O a' in up-to-date easily
(but needs git to be installed). After cloning, git pull keeps the code up-to-date with the latest release.

CAVEAT: this code is still under heavy development. The record of official releases can be found here. The latest release
corresponds to the master branch as linked above.

3.In a system shell, e¢d into the coco or coco-<version> folder (framework root), where the file do.py can be found. Type,
i.e. execute, one of the following commands once

python . run-c
python . run-java
python . run-matlab
python . run-octave
python . run-python

depending on which language shall be used to run the experiments. run-* will build the respective code and run the
example experiment once. The build result and the example experiment code can be found under
code-experiments/build/<language> (<language>=matlab for Octave). python do.py lists all available commands.

4. On the computer where experiment data shall be post-processed, run

https://github.com/numbbo/coco

) GitHub - numbbo/coco: N...

[4) % | & GitHub, Inc. (US] | https://github.com/numbbo/coca

[2h Most Visited @ Getting Started rl..::{! algorithms [COmparin... Q numbbo/numbbo - Gi...
corresponds to the master branch as linked above.

3.In a system shell, ¢d into the coco Or coco-<version> folder (framework root), where the file do.py can be found. Type,
i.e. execute, one of the following commands once

installation | & test

python do.py run-matlab
python do.py run-octave
python do.py run-python

depending on which language shall be used to run the experiments. run-* will build the respective code and run the
example experiment once. The build result and the example experiment code can be found under
code-experiments/build/<language> (<language>=matlab for Octave). python do.py lists all available commands.

4. On the computer where experiment data shall be post-processed, run

installation |

(post-processing)

to (user-locally) install the post-processing. From here 8
the builds to a new release.

5. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example experiment.py . Run the example experiment (it already is compiled, in case). As the
details vary, see the respective read-me's and/or example experiment files:

o ¢ read me and example experiment

© Java read me and example experiment

O Matlab/Octave read me and example experiment

https://github.com/numbbo/coco

) GitHub - numbbo/coco: N... %

' (' ' =2 | (i) @ GitHub, Inc. US] | https;//github.com/numbbo/coco (& CO Search ﬁ B J H S =

[2h Most Visited @ Getting Started rl..z! algorithms [COmparin... Q numbbo/numbbo - Gi...

to (user-locally) install the post-processing. From here on, do.py has done its job and is only needed again for updating
the builds to a new release.

. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example experiment.py . Run the example experiment (it already is compiled, in case). As the

details vary, see the respective read-me's and/o eX am p I e

experiment

© Java read mea
O Matlab/Octave read me and example experiment

O Python read me and example experiment’

If the example experiment runs, connect your favorite algorithm to Coco: replace the call to the random search optimizer
in the example experiment file by a call to your algorithm (see above). Update the output result_folder, the
algorithm_name and algorithm_info of the observer options in the example experiment file.

Another entry point for your own experiments can be the code-experiments/examples folder.

. Now you can run your favorite algorithm on the bbob-biobj (for multi-objective algorithms) or on the bbob suite (for
single-objective algorithms). Output is automatically generated in the specified data result folder .

. Postprocess the data from the results folder by typing

python -m bbob_pproc [-o OUTPUT_FOLDERNAME] YOURDATAFOLDER [MORE_DATAFOLDERS]

The name bbob_pproc will become cocopp in future. Any subfolder in the folder arguments will be searched for logged
data. That is, experiments from different batches can be in different folders collected under a single "root"
YOURDATAFOLDER folder. We can also compare more than one algorithm by specifying several data result folders
generated by different algorithms.

example experiment.c

: A e
)i%* Iterate over all problems in the suite */ ﬁ\L

while ((PROBLEM = coco_suite_get next_problem(suite, observer)) != NULL)
{

size t dimension = coco_problem get dimension(PROBLEM);

/* Run the algorithm at least once */
for (run = 1; run <= 1 + INDEPENDENT_RESTARTS; run++) {

size t evaluations_done = coco problem get evaluations(PROBLEM);
long evaluations_remaining =
(long)(dimension * BUDGET_MULTIPLIER) - (long)evaluations_done;

if (... || (evaluations_remaining <= 0))
break;

my _random_search(ivaluate_function, dimension,
cocu_piublem _get number_of objectives(PROBLEM),
coco_problem_get_smallest_values_of_interest(PROBLEM),
coco_problem_get_largest_values_of_interest(PROBLEM),
(size_t) evaluations_remaining,
random_generator);

generated by ditrerent algorithms.

https://github.com/numbbo/coco

) GitHub - numbbo/coco: N... %

[4) % | & GitHub, Inc. (US] | https://github.com/numbbo/coca

[2h Most Visited @ Getting Started rl..::{! algorithms [COmparin... Q numbbo/numbbo - Gi...

6 Now you sl | choose right test suite !
bbob 0r bbob-biobj

single-ob atically

. Postprocess the data from the results folder by typind

python -m bbob_pproc [-o OUTPUT FOLDERNAME] YOURDATAFOLDER [MORE_DATAFOLDERS]

The name bbob_pproc will become cocopp in future. Any subfolder in the folder arguments will be searched for logged
data. That is, experiments from different batches can be in different folders collected under a single "root"
YOURDATAFOLDER folder. We can also compare more than one algorithm by specifying several data result folders
generated by different algorithms.

A folder, ppdata by default, will be generated, which contains all output from the post-processing, including a
ppdata.html file, useful as main entry point to explore the result with a browser. Data might be overwritten, it is therefore
useful to change the output folder name with the -o OUTPUT_FOLDERNAME option.

For the single-objective bbob suite, a summary pdf can be produced via LaTeX. The corresponding templates in ACM
format can be found in the code-postprocessing/latex-templates folder. LaTeX templates for the multi-objective
bbob-biobj suite will follow in a later release. A basic html output is also available in the result folder of the
postprocessing (file templateBBOBarticle.html).

. Once your algorithm runs well, increase the budget in your experiment script, if necessary implement randomized
independent restarts, and follow the above steps successively until you are happy.

If you detect bugs or other issues, please let us know by opening an issue in our issue tracker at https://github.com/numbbo

Jcoco/issues.

Description by Folder

https://github.com/numbbo/coco

) GitHub - numbbo/coco: N...

é " i) @@ GitHub, Inc. (US) https://github.com/numbbo/coco

[2h Most Visited @ Getting Started .‘{ algorithms [COmparin... Q numbbo/numbbo - Gi...

6. Now you can run your favorite algorithm on the bbob-biobj (for multi-objective algorithms) or on the bbob suite (for

single-objective algorithms). Output is automatically generated in the specified data result_folder .

7. Postprocess the data from the results folder by typing

The name bbob_pproc will become cocopp in future. Any subfolder in the folder argu

data. That is, experiments from different batches can be in different folders collected

YOURDATAFOLDER folder. We can also compare more than one algorithm by specifying several data resu
generated by different algorithms.

A folder, ppdata by default, will be generated, which contains all output from the post-processing, including a
ppdata.html file, useful as main entry point to explore the result with a browser. Data might be overwritten, it is therefore
useful to change the output folder name with the -o OUTPUT_FOLDERNAME option.

start with small #funevals (until bugs fixed ©)
then increase budget to get a feeling
how long a "long run" will take

Description by Folder

Organize =

i Favorites
4t Downloads
%% Dropbox
=] Recent Places
Bl Desktop

il Libraries
@ Documents
e Git
J? Music
[Pictures
=l Subversion

E Videos

* Homegroup

‘M Computer

index.html

@ Open ~

result folder

Share with - E-mail Mew folder

-~
Mame

| R5_on_bbob-bichj-3edfunevals
oy bbob_pproc_commands.tex

Date modified

01,/08,/2016 14:58
01/08/2016 14:58

Type

File folder

LaTeX Document

01/08/2016 14:58

Firefox HTML Doc...

|&| index.html
L]

ppdata.html

State: B Shared

.v Firefox HTML Document Date modified: 01,/08/2016 14:58

01,/08,/2016 14:58

Size: 522 bytes

Firefox HTML Doc...

Shared with: root

Date created: 01,/08/2016 14:58

automatically generated results

Post processing results

é :|: file:///C:f Users/dimo/Desktop/numbbe-github/bbob-bicbj-data/data/ppdata/index.html

[8h Most Visited @ Getting Started (2 algorithms [COmparin... €) numbbo/numbbo - Gi..

Post processing results

Single algorithm data

RS on bbob-biobj-3edfunevals

automatically generated results

ppfigdim

' (' ' (6] file:///C:f Users/dimo/Desktop/numbbe-github/bbob-bicbj-data/data/ppdata/R5_on_bbob-bichj-3edfuneva
h -

Maost Visited @ Getting Started rl..z! algorithms [COmparin... 9 numbbeo/numbbo - Gi.,

Owerview paze

Average number of f~evaluations fo reach target

1 Sphere/Sphere

Blinstances
bsolute targets 1.1.2

2 Sphere/sep. Ellipsoid

5 instances

bsolute target L

5 instances)
bsnlute target 112

2 3% 10 20

2 3% 10 20

2 3.5 10 20

4 Sphere/R@senbrock

w

5 instances
hsalute targets

5 Sphere/Sharp ridge
XX

5 instances

hsalute targets

6 Sphere/Different Powers

I

B instances

Bbealute tapgate LA e

R R

2 3

3

(€) &

%

file:///C:f Users/dimo/Desktop/numbbe-github/bbob-bicbj-data/data/ppdata/R5_on_bbob-bichj-3edfuneva

automatically generated results

c || Q Search

Maost Visited @ Getting Started rl..z! algorithms [COmparin... 9 numbbeo/numbbo - Gi.,

Owerview page

Runtime distributions (ECDFs) per function

1.0

0.6

w
=
[
(=3
=
[
g
m
o
4+
c
=
=
9]
c
3
=
-
Q
c
=
t
o
a
o
L
o

Proportion of function+target pairs

0.8¢

0.41

| bbob-biobj - f4

1 Sphere/Sphere

'bbob-biobj - f1
5 instances

log10 of (# f-evals / dimension)

4 Sphere/Rosenbrock

5 instances

||II

-
-

>“‘~<=>4o-|:s

5.
1

o
0-

2 3 4 5 & 7
log10 of (# f-evals / dimension)

7 Sphere/Rastrigin

8

bbob-biobj - 7
5 instances

BlProportion of function+target pairs

e
(S

roportion of function+target pairs

3

o
)

<
o

o
=

2 Sphere/sep. Ellipsoid

|bbob-biobj - 12
5 instances

-

5
logl0 of (# f-evals / dimension)

5 Sphere/Sharp ridge

8

| bbob-biobj - f5
5 instances

3 Sphere/Attractive sector

" bbob-biobj - f3
5 instances

Proportion of function+target pairs

logl0 of (# f-evals / dimension)

6 Sphere/Different Powers

|bbob-biobj - 16
5 instances

roportion of function+target pairs

logl0 of (# f-evals [dimension)

8 Sphere/Schaffer F7

bbob-biobj - 78
5 instances

%P
QC

logl0 of (# f-evals / dimension)

9 Sphere/Schwefel

bbob-biobj - f2
5 instances

so far:

data for about 165 algorithm variants
[in total on single- and multiobjective problems]
118 workshop papers
by 79 authors from 25 countries

Exercise (Part 1): Comparing Numerical
Optimization Algorithms with COCO

© Dimo Brockhoff, Inria Introduction to Optimization @

https://github.com/numbbo/coco

0 GitHub - numbbo/coco: M. ®

': (' :' % | (i) @ GitHub, Inc. (US) | https://github.com/numbbo/coco G || C®search

Most Visited @ Getting Started rlq{ algorithms [COmparin... 0 numbbo/numbbo - Gi..

O Personal Opensource Business Explore Pricing Blog Support | This repository

numbbo / coco © Watch

<> Code Issues 113 Pull requests 2 Ste p 1 .
Numerical Black-Box Optimization Benchmarking d OW n I O ad COCO

0 7,902 commits ¥ 12 branches > 25 releases

Branch: master = MNew pull request

!,'.! brockho committed on GitHub Merge pull request #1075 from numbbo/development

BB code-experiments Merge pull request #1071 from ttusar/debug

BB code-postprocessing further clean up of postprocessing output,

B code-preprocessing/archive-update Added empty last lines.

B docs updated reference to biobjective perf-assessment paper on arXiv in ge...
B howtos Update documentation-howto.md

& .clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s...
& .hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s...

[E AUTHORS small correction in AUTHORS

12

* Star

16

2 months ago
2 months ago
2 months ago
3 months ago
5 months ago

a year ago

a year ago

4 months ago

https://github.com/numbbo/coco

) GitHub - numbbo/coco: N... %

[4) % | & GitHub, Inc. (US] | https://github.com/numbbo/coca

[2h Most Visited @ Getting Started rl..::{! algorithms [COmparin... Q numbbo/numbbo - Gi...
corresponds to the master branch as linked above.

3.In a system shell, ¢d into the coco Or coco-<version> folder (framework root), where the file do.py can be found. Type,
i.e. execute, one of the following commands once

python . run-c
python . run-java
python . run-matlab
python . run-octave
python . run-python

depending on which language shall be used to run the experiments. run-* will build the respective code and run the
example experiment once. The build result and the example experiment code can be found under
code-experiments/build/<language> (<language>=matlab for Octave). python do.py lists all available commands.

4. On the computer where experiment data shall be post-processed, run

python do.py install-postprocessing Step 2.

Installation of post-processing

to (user-locally) install the post-processing. From
the builds to a new release.

5. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example experiment.py . Run the example experiment (it already is compiled, in case). As the
details vary, see the respective read-me's and/or example experiment files:

o ¢ read me and example experiment

© Java read me and example experiment

O Matlab/Octave read me and example experiment

http://coco.gforge.inria.fr/doku.php?id=algorithms

Step 3.
downloading data

[[algorithms]] COMPARING CONTINUOUS OPTIMISERS: COCO

[@, show pagesource [=] Old revisions Recent changes @, sitemap g Login

Search
The following table lists all algorithms related to the BBOB workshops and special sessions in the years 2009 ftill 2015 together with links to

their data. In order to sort the table according to some columns, please click on the corresponding table header. If available, the source ey

codes of the algorithms can be downloaded by clicking on the link with the corresponding algorithm name in the second column. ® Home
= @ Documentation
Data Noiseless Data Nois ® download latest old code
No Algorithm Year Author(s) s related PDFs and Remarks
(Raw) (Raw) = @ new code homepage
1 ALPS 2009 Hornby @ noiselessData @ noisyData @ PDF = @ download new code directly
= @BBOB 2016
2 | AMALGAM 2009 Bosman et al. @ noiselessData @ noisyData |@ PDFnoiseless @ PDFnoisy ® BBOB 2015 @ GECCO
3 | BAYEDA 2009 Gallagher @ noiselessData @ noisyData @ PDFnoiseless @ PDFrgi grith
4 BFGS 2009 Ros @ noiselessData @ noisyData @ PDFnoiseless @ PDA f h .
5 BIPOP-CMA-ES 2009 Hansen @ noiselessData @ noisyData | @ PDFnoiseless @ PDA O r t e l I I O l I I e n t .
5] Cauchy-EDA 2009 Posdik @ noiselessData n/a @ POF
Auger and . . . I I _CM _ES
7 | CMA-ESPLUSSEL 2009 g @ noiselessData | @ noisyData | @ PDFnoiseless @ PDR
ansen

Korofec and = BBOB 2013
& | DASA 2009 .. @ noiselessbata | @ noisyData @ PDFnoiseless @ PDFnoisy ,
Silc = Algorithms
Garcia-Nieto) .)) = Results
9 | DE-PSO 2009 @ noiselessData | @ noisyData |@ PDFnoiseless @ PDFnoisy = Schedule
et al. -
= Downloads
_ @eor o ® BBOB 2012
10 DIRECT 2009 Posik @ noiselessData nfa algorithm is deterministic and thus, only run on each m Algorithms
instance once ® Results
11 EDA-PSO 2009 EIAPD and g icelessDat @ noisyData | @ PDF = Downloads
Kamel noiselessData noisyData w BEOR 5010

https://github.com/numbbo/coco

) GitHub - numbbo/coco: N...

(' =2 | (i @ GitHub, Inc, (US] https://github.com/numbbo/coco

[2h Most Visited @ Getting Started .‘{ algorithms [COmparin... Q numbbo/numbbo - Gi...

6. Now you can run your favorite algorithm on the bbob-biobj (for multi-objective algorithms) or on the bbob suite (for

single-objective algorithms). Output is automatically generated in the specified data result_folder .

7. Postprocess the data from the results folder by typing

The name bbob_pproc will become cocopp in future. Any subfolder in the folder argu

data. That is, experiments from different batches can be in different folders collected

YOURDATAFOLDER folder. We can also compare more than one algorithm by specifying several data resu
generated by different algorithms.

bbob-biobj suite will follow in a later release. A basic html output is also available in the result folder of the

postprocessing (file templateBBOBarticle.html).

8. Once your algorithm runs well, increase the budget in your experiment script, if necessary implement randomized
independent restarts, and follow the above steps successively until you are happy.

If you detect bugs or other issues, please let us know by opening an issue in our issue tracker at https://github.com/numbbo

Jcoco/issues.

Description by Folder

Measuring Performance

On

* real world problems
* expensive
« comparison typically limited to certain domains
« experts have limited interest to publish

 "artificial" benchmark functions

* cheap

« controlled

 data acquisition is comparatively easy
* problem of representativeness

Test Functions

» define the "scientific question”
the relevance can hardly be overestimated
 should represent "reality"
e are often too simple?
remind separability
* a number of testbeds are around

e account for invariance properties

prediction of performance is based on “similarity”,
ideally equivalence classes of functions

Avalillable Test Suites in COCO

nbob 24 noiseless fcts 140+ algo data sets
Dbob-noisy 30 noisy fcts 40+ algo data sets
nbob-biobj 55 bi-objective fcts <=Uhew= in 2016

15 algo data sets

How Do We Measure Performance?

Meaningful quantitative measure
 quantitative on the ratio scale (highest possible)

"algo A Is two times better than algo B" is a meaningful
statement

e assume a wide range of values
« meaningful (interpretable) with regard to the real world

possible to transfer from benchmarking to real world

runtime or first hitting time 1s the prime candidate
(we don't have many choices anyway)

How Do We Measure Performance?

Two objectives:

* Find solution with small(est possible)
function/indicator value

* With the least possible search costs (number of
function evaluations)

For measuring performance: fix one and measure the
other

Measuring Performance Empirically
convergence graphs is all we have to start with...

I

E |
ﬂ Q|
£ S
c al
= i
5 E 5|
L @ X
S O il
S .-
> £ i
S = .
g S é é : 5 5
S ® [fixedtarget | NG YNy
D ok ke e e e e o o TR o o - - S S .) _— . i e e e e = = e o
= T ; : I
=
> i
= -
© !
3 |'
o |
'_
i
i
|

number of function evaluations

ECDF:

Empirical Cumulative Distribution Function of the
Runtime

[aka data profile]

A Convergence Graph

110
100f W S— S SRR S— -

oo M

function value

o R N — .

7 - — — S N — — -

60

log,,(function evaluations)

First Hitting Time Is Monotonous

110

100f M

o0 M

function value

o R N — .

7 - — — S N — — -

60

log,,(function evaluations)

15 Runs

3
log,,(function evaluations)

2

anjeA uollduny

15 Runs £ 15 Runtime Data Points

100

90

80

function value

70

60

1 2 5 4
log,,(function evaluations)

Empirical Cumulative Distribution

I I 0 ST A T
TR
»
o \ AV

100+

function value

70t

60

90+

801

NYAY ’ .‘. "'.': o T :

) d V. AA
TR A
PRI IR R WA

N

log,,(function evaluations)

the of run

lengths to reach
the target

has for each
data point a
vertical step of
constant size

displays for
each x-value
(budget) the
count of
observations to
the left (first
hitting times)

Empirical Cumulative Distribution

110 gy
»
\ \ AV

100+

function value

70t

60

90+

801

-y A ..
IR ,r

T VTINARN W
A A AR

log,,(function evaluations)

Interpretations
possible:

. 80% of the runs

reached the
target

. €.g.60% of the

runs need
between 2000

and 4000
evaluations

Reconstructing A Single Run

110 pg——yy—

100+

90+

80+

function value

70¢F

60

T 2 3 4
log,,(function evaluations)

Reconstructing A Single Run

50 equally
spaced targets

function value

log,,(function evaluations)

Reconstructing A Single Run

110 pv—gg—

oo} o

YA k" T

function value

o 3 N — .

7 - — — S 3 — — -

60

T 2 3 4
log,,(function evaluations)

function value

Reconstructing A Single Run

110 pv—r—

w0
o

0
o

~]
o

601—*'%0\'—?""—*‘—#'5—**

log,,(function evaluations)

Reconstructing A Single Run

110 pv—

ol _— —_— - ™

function value

sol S— T— - S S

log,o(function evaluations)

the
makes a step for
each star, is
monotonous and
displays for
each budget the
fraction of
targets achieved
within the
budget

Reconstructing A Single Run

110

the ECDF recovers
the monotonous
graph,
discretized and
flipped

function value

o) NS - SO S SN N SRS RN S

) R e—"

log,o(function evaluations)

Reconstructing A Single Run

110py—

the ECDF recovers
the monotonous
graph,
discretized and
flipped

function value

sob]

) R

log,o(function evaluations)

Aggregation

110 pym

100

90

80

function value

70

60

15 runs

log,,(function evaluations)

Aggregation

[[Jr—

100

S I ql’nﬂ&u..mu.- -
T AL YAy

. T.t--l--u_.'t it
90 : AN Y, W W . Y .
- LS iAW e
ke Viaded Lo 7. L" oy LA
; %

- t‘_t il-|||r_- v ,1—---.

L NLEe T -'r...‘_'_
UL N 13
i, " S

80

function value

70

e -, '\“ o ‘ “'I'
's“' ¥ l"t . W, hY
= Wl W T Y YR M
e -.—H\.‘!u-ﬂ..-.l'
e "'!'"‘L_ N « -
. . . . ! e \"‘""""ﬂ“l‘- =
60 | 3 Yl T - A.ll- 71' Py A T aM

1 2 3 4
log,,(function evaluations)

15 runs
50 targets

Aggregation

110 g

100

90

80

function value

70

60

log,o(function evaluations)

15 runs
50 targets

Aggregation

110 g

100

90

80

function value

70

60

log,o(function evaluations)

15 runs
50 targets

Aggregation

110

50 targets from

100/ W foooo | 1oTuns

NI ...Integrated in a
90} < | Sing|e graph

10 TR FRRUORR SR =, ' N SO . W

function value

70_ I

o

N T BN NS N . . -
1 2 3 4

log,,(function evaluations)

Interpretation

100 ..
Q
-
(_U OO - AN A - 8 RN 28 S
>
C
2
[®
= 80_ ..
=

70 WRTIOIIIIMEY. . . -.-s- oo st savasswisvvssm e v WIRENEIRE =+ 0 s e e b i)

1 2 3 4

log,o(function evaluations)

50 targets from
15 runs
Integrated in a
single graph

average log

runtime
(or geometric avg.
runtime) over all
targets (difficult and
easy) and all runs

Fixed-target: Measuring Runtime

ps(Algo A) << 1, fast convergence

ps(Algo B) ~ 1, slow convergence

Fixed-target: Measuring Runtime

 Algo Restart A:

ps(Algo Restart A) =1

 Algo Restart B:

ps(Algo Restart B) = 1

Fixed-target: Measuring Runtime

» Expected running time of the restarted algorithm:

1-p
E[RTT] = D - E[RTunsuccessful] + E[RTsuccessful]
S

« Estimator average running time (aRT):

__ #successes
Ps =

#runs

RT,,,succ = Average evals of unsuccessful runs

RT, .. = Average evals of successful runs

total #evals

aRT =
#successes

ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated
restarted algorithms:

.. 15phere/Sphere
bbob:biobj + f1 | | | 375
10 instances | | | i i

=
o

O
0o

b ooy

O
)

o
N

o
N

Proportion of function+target pairs

B 1 2 3 4 s e T
loal0 of (# f-evals / dimension)

Worth to Note: ECDFs in COCO

In COCO, ECDF graphs

* never aggregate over dimension
* but often over targets and functions

« can show data of more than 1 algorithm at a time

2 L9 f12420|::) ___________ |44§(;__-_—-*
o - : i o AP '
Sl § E G

150 algorithms '
from BBOB-2009
till BBOB- 2015

| Proportii

4 5 6 7 8
loal0 of (# f-evals / dimension)

Another Interesting Plot...

...comparing aRT values over several algorithms

7 1 Sphere/Sphere

o) SR OO OO 1 <SOSR -
55; 'ﬁ;;”“ﬁg ..
A e
T e e
g S S e

-&= DEMO :
1} == GA- MULTIOB}(NSGA-—II-}-------—-------—--------—-------—--;
oga?rlgmlnl_r@:a%ecsMAES _____

2 3 5 10 20 40

Another Interesting Plot...

...comparing aRT values over several algorithms
1 Sphere/Sphere median runlength

7 — S / of unsuccessful runs
6

S — a'star-indicates statistically

aRT value 2l significant results compared
[if < oo] -.-DEMO """" T o all other displayed algos
t0 reach 1F=#= GA-MULTIOBJ(NSGA-II) -]

glvemﬂwoﬁggachﬂéﬁ-? _____ _

precision 2 3 5 10 20 40

Another Interesting Plot...

...comparing aRT values over several algorithms

_1 Sphere/Sphere

7
o RO o SNSRI 4 S d ST
] A v e I AV
<A . R, .
/ quadraliC ¢
I J SO
linear

artificial best o]
algorithm -@- DEMO . - _
from 1} == GA- MULTIOB}{NSGA-—II-}------------------------—-------—--;
BBOB-2016 (,o § i HMO:CMAES

2 3 5 20 40

=== scaling with
I dimension

Interesting for 2 Algorithms...

dimensions:
...are scatter plots 2:+, 3:7, 5:%, 10:0, 20:0, 40:0.

9 L1 eTy | Rt e T N AL 7
— - R
' ; ; ; ; Do ;

(o8]
e

T O é é]
-------- AT - ------ o ek o —]

Oy~ & "~ orie marker
27 T perfarget

aRT for algorithm B
7 Sphere/Rastrigin

17273 4576 7 80
aRT for algorithm A

There are more Plots...

...but they are probably less interesting for us here

Exercise (Part 2): Comparing Numerical
Optimization Algorithms with COCO

© Dimo Brockhoff, Inria Introduction to Optimization @

Exercise (Part 2)

Objectives:
» |nvestigate the performance of algorithms
= CMA-ES ("IPOP-CMA-ES" version)
*» Nelder-Mead simplex (use "NelderDoerr" version here)
= BFGS quasi-Newton
= Genetic Algorithm: discretization of cont. variables ("GA")
= plus 1-2 algos of your choice from http://coco.gforge.inria.fr

= postprocess (now) and investigate the data (after a few more
slides)

tip: use --omit-single option to save time

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

http://coco.gforge.inria.fr/

The single-objective BBOB functions

The bbob Testbed

24 functions in 5 groups:

1 Separable Functions

f1
f2
f3
f4
f5

@ Sphere Function

@ Ellipscidal Function

) Rastrigin Function

& Bliche-Rastrigin Function
@ Linear Slope

2 Functions with low or moderate conditioning

fo
f7
fa
fa

) Attractive Sector Function

@ Step Ellipsoidal Function

@ Rosenbrock Function, original
@ Rosenbrock Function, rotated

3 Functions with high conditioning and unimodal
f10 |@Ellipsoidal Function

f11 | @Discus Function

f12 @ EBent Cigar Function

f13 |@ 5Sharp Ridge Function

f14 @ Different Powers Function

6 dimensions: 2, 3, 5,

4 Multi-modal functions with adequate global structure
f15 @ Rastrigin Function

f16 @ Weierstrass Function

f17 @ Schaffers F7 Function

f18 |@ 5chaffers F7 Functions, moderately ill-conditioned
f19 @@ Composite Griewank-Rosenbrock Function FEBF2
5 Multi-modal functions with weak global structure
f20 @ Schwefel Function

f21 @ Gallagher's Gaussian 101-me Peaks Function

f22 @ Gallagher's Gaussian 21-hi Peaks Function

f23 @Katsuura Function

f24 @ Lunacek bi-Rastrigin Function

20, (40 optional)

Notion of Instances

* All COCO problems come in form of instances

* e.g. as translated/rotated versions of the same
function

* Prescribed instances typically change from year to
year

 avoid overfitting
5 Instances are always kept the same

Plus:

* the bbob functions are locally perturbed by non-
linear transformations

Notion of Instances

T 5 q

X
5
< EN @ [\ - o - S w » n
I T T T 1 -

(4, 8

linear transformations

Exercise (Part 3): Comparing Numerical
Optimization Algorithms with COCO

© Dimo Brockhoff, Inria Introduction to Optimization @

Exercise (Part 3)

Objective:

Investigate the data:
a) which algorithms are the best ones?
b) does this depend on the dimension?

c) look at single graphs: can we say something about the
algorithms' invariances, e.g. wrt. rotations of the search
space?

d) what do you think: are the displayed algorithms well-suited
for problems with larger dimension?

e) what can you say about the algorithm, you chose yourself?

reminder: open thesis projects

one is related to this exercise
but automatized & for 150+ data sets ("data science")

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

Conclusions

| hope it became clear...

...that the fixed-target approach is superior over the budget-based
approach (and why)

...that COCO is easy to use and provides a lot of data to explore

...and which algorithms to use/investigate when you have to solve a
numerical unconstrained blackbox problem yourself at some point

© Dimo Brockhoff, Inria Introduction to Optimization @ ECP

