
Introduction to Optimization

Derivative-Free Optimization II: Benchmarking

Dimo Brockhoff

Inria Saclay – Ile-de-France

December 16, 2016

École Centrale Paris, Châtenay-Malabry, France

2Introduction to Optimization @ ECP, Dec. 16, 2016© Dimo Brockhoff, Inria 2

Mastertitelformat bearbeiten

Date Topic

Fri, 7.10.2016 Introduction

Fri, 28.10.2016 D Introduction to Discrete Optimization + Greedy algorithms I

Fri, 4.11.2016 D Greedy algorithms II + Branch and bound

Fri, 18.11.2016 D Dynamic programming

Mon, 21.11.2016
in S103-S105

D Approximation algorithms and heuristics

Fri, 25.11.2016
in S103-S105

C Randomized Search Heuristics + Intro. to Continuous Opt. I

Mon, 28.11.2016
in S103-S105

C Introduction to Continuous Optimization II

Mon, 5.12.2016
in S103-S105

C Introduction to Continuous Optimization III

Fri, 9.12.2016 C Constrained Optimization + Descent Methods

Mon, 12.12.2016
in S103-S105

C Derivative Free Optimization I: CMA-ES

Fri, 16.12.2016 C Derivative Free Optimization II: Benchmarking Optimizers

with the COCO platform

Wed, 4.1.2017 Exam

Course Overview

if not indicated otherwise, classes take place in S115-S117

Experimental Considerations

around CMA-ES

4Introduction to Optimization @ ECP, Dec. 16, 2016© Dimo Brockhoff, Inria 4

Mastertitelformat bearbeitenExperimentum Crucis with CMA-ES

from [Hansen, p. 91]

with CMA-ES

5Introduction to Optimization @ ECP, Dec. 16, 2016© Dimo Brockhoff, Inria 5

Mastertitelformat bearbeitenExperimentum Crucis with CMA-ES

from [Hansen, p. 92]

6Introduction to Optimization @ ECP, Dec. 16, 2016© Dimo Brockhoff, Inria 6

Mastertitelformat bearbeitenExperimentum Crucis with CMA-ES

from [Hansen, p. 93]

7Introduction to Optimization @ ECP, Dec. 16, 2016© Dimo Brockhoff, Inria 7

Mastertitelformat bearbeitenInfluence of Condition Number + Invariance

8Introduction to Optimization @ ECP, Dec. 16, 2016© Dimo Brockhoff, Inria 8

Mastertitelformat bearbeitenInfluence of Condition Number + Invariance

9Introduction to Optimization @ ECP, Dec. 16, 2016© Dimo Brockhoff, Inria 9

Mastertitelformat bearbeitenInfluence of Condition Number + Invariance

10Introduction to Optimization @ ECP, Dec. 16, 2016© Dimo Brockhoff, Inria 10

Mastertitelformat bearbeitenPerformance on BBOB Testbed: Data Profile

11Introduction to Optimization @ ECP, Dec. 16, 2016© Dimo Brockhoff, Inria 11

Mastertitelformat bearbeitenSummary CMA-ES I

12Introduction to Optimization @ ECP, Dec. 16, 2016© Dimo Brockhoff, Inria 12

Mastertitelformat bearbeitenSummary CMA-ES II

13Introduction to Optimization @ ECP, Dec. 16, 2016© Dimo Brockhoff, Inria 13

Mastertitelformat bearbeiten

I hope it became clear...

...that CMA-ES samples according to multivariate normal distributions

...how CMA-ES updates its mean, stepsize, and covariance matrix

...what are the invariance properties of CMA-ES

...and how to read the output of CMA-ES

Conclusions

Numerical Benchmarking

of Blackbox Optimization Algorithms

challenging optimization problems

appear in many

scientific, technological and industrial domains

Optimize 𝑓: Ω ⊂ ℝ𝑛 ↦ ℝ𝑘

derivatives not available or not useful

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Numerical Blackbox Optimization

Given:

Not clear:

which of the many algorithms should I use on my
problem?

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Practical Blackbox Optimization

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]

Simplex downhill [Nelder & Mead 1965]

Pattern search [Hooke and Jeeves 1961]

Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)

• Differential Evolution [Storn & Price 1997]

• Particle Swarm Optimization [Kennedy & Eberhart 1995]

• Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen&Ostermeier 2001]

• Estimation of Distribution Algorithms (EDAs) [Larrañaga, Lozano, 2002]

• Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]

• Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]

Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

Numerical Blackbox Optimizers

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]

Simplex downhill [Nelder & Mead 1965]

Pattern search [Hooke and Jeeves 1961]

Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)

• Differential Evolution [Storn & Price 1997]

• Particle Swarm Optimization [Kennedy & Eberhart 1995]

• Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen&Ostermeier 2001]

• Estimation of Distribution Algorithms (EDAs) [Larrañaga, Lozano, 2002]

• Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]

• Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]

Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

• choice typically not immediately clear
• although practitioners have knowledge about problem

difficulties (e.g. multi-modality, non-separability, ...)

Numerical Blackbox Optimizers

• understanding of algorithms

• algorithm selection

• putting algorithms to a standardized test
• simplify judgement

• simplify comparison

• regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

• choosing (and implementing) problems, performance
measures, visualization, stat. tests, ...

• running a set of algorithms

Need: Benchmarking

that's where COCO comes into play

Comparing Continuous Optimizers Platform

https://github.com/numbbo/coco

automatized benchmarking

How to benchmark algorithms with
COCO?

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

requirements &

download

https://github.com/numbbo/coco

installation I & test

installation II

(post-processing)

https://github.com/numbbo/coco

example

experiment

example_experiment.c

/* Iterate over all problems in the suite */
while ((PROBLEM = coco_suite_get_next_problem(suite, observer)) != NULL)
{

size_t dimension = coco_problem_get_dimension(PROBLEM);

/* Run the algorithm at least once */
for (run = 1; run <= 1 + INDEPENDENT_RESTARTS; run++) {

size_t evaluations_done = coco_problem_get_evaluations(PROBLEM);
long evaluations_remaining =

(long)(dimension * BUDGET_MULTIPLIER) – (long)evaluations_done;

if (... || (evaluations_remaining <= 0))
break;

my_random_search(evaluate_function, dimension,
coco_problem_get_number_of_objectives(PROBLEM),
coco_problem_get_smallest_values_of_interest(PROBLEM),
coco_problem_get_largest_values_of_interest(PROBLEM),
(size_t) evaluations_remaining,
random_generator);

}

https://github.com/numbbo/coco

run:

! choose right test suite !
bbob or bbob-biobj

https://github.com/numbbo/coco

postprocess

tip:

start with small #funevals (until bugs fixed)

then increase budget to get a feeling

how long a "long run" will take

result folder

automatically generated results

automatically generated results

automatically generated results

so far:

data for about 165 algorithm variants

[in total on single- and multiobjective problems]

118 workshop papers

by 79 authors from 25 countries

42Introduction to Optimization @ ECP, Dec. 16, 2016© Dimo Brockhoff, Inria 42

Mastertitelformat bearbeiten

Exercise (Part 1): Comparing Numerical

Optimization Algorithms with COCO

https://github.com/numbbo/coco

Step 1:

download COCO

https://github.com/numbbo/coco

Step 2:

installation of post-processing

http://coco.gforge.inria.fr/doku.php?id=algorithms

Step 3:

downloading data

for the moment:

IPOP-CMA-ES

https://github.com/numbbo/coco

postprocess

python –m bbob_pproc IPOP-CMA-ES

On

• real world problems
• expensive

• comparison typically limited to certain domains

• experts have limited interest to publish

• "artificial" benchmark functions
• cheap

• controlled

• data acquisition is comparatively easy

• problem of representativeness

Measuring Performance

• define the "scientific question"

the relevance can hardly be overestimated

• should represent "reality"

• are often too simple?

remind separability

• a number of testbeds are around

• account for invariance properties

prediction of performance is based on “similarity”,
ideally equivalence classes of functions

Test Functions

Available Test Suites in COCO

bbob 24 noiseless fcts 140+ algo data sets

bbob-noisy 30 noisy fcts 40+ algo data sets

bbob-biobj 55 bi-objective fcts in 2016

15 algo data sets

new

Meaningful quantitative measure
• quantitative on the ratio scale (highest possible)

"algo A is two times better than algo B" is a meaningful
statement

• assume a wide range of values

• meaningful (interpretable) with regard to the real world

possible to transfer from benchmarking to real world

How Do We Measure Performance?

runtime or first hitting time is the prime candidate
(we don't have many choices anyway)

Two objectives:

• Find solution with small(est possible)
function/indicator value

• With the least possible search costs (number of
function evaluations)

For measuring performance: fix one and measure the
other

How Do We Measure Performance?

convergence graphs is all we have to start with...

Measuring Performance Empirically
fu

n
c
ti
o
n
 v

a
lu

e
 o

r

ECDF:

Empirical Cumulative Distribution Function of the
Runtime

[aka data profile]

A Convergence Graph
A Convergence Graph

First Hitting Time is Monotonous

15 Runs

target

15 Runs ≤ 15 Runtime Data Points

Empirical CDF
1

0.8

0.6

0.4

0.2

0

the ECDF of run
lengths to reach
the target

● has for each
data point a
vertical step of
constant size

● displays for
each x-value
(budget) the
count of
observations to
the left (first
hitting times)

Empirical Cumulative Distribution

Empirical CDF
1

0.8

0.6

0.4

0.2

0

interpretations
possible:

● 80% of the runs
reached the
target

● e.g. 60% of the
runs need
between 2000
and 4000
evaluations

Empirical Cumulative Distribution

Reconstructing A Single Run

50 equally
spaced targets

Reconstructing A Single Run

Reconstructing A Single Run

Reconstructing A Single Run

the empirical CDF
makes a step for
each star, is
monotonous and
displays for
each budget the
fraction of
targets achieved
within the
budget

1

0.8

0.6

0.4

0.2

0

Reconstructing A Single Run

the ECDF recovers
the monotonous
graph,
discretized and
flipped

1

0.8

0.6

0.4

0.2

0

Reconstructing A Single Run

1

0.8

0.6

0.4

0.2

0

Reconstructing A Single Run

the ECDF recovers
the monotonous
graph,
discretized and
flipped

Aggregation

15 runs

Aggregation

15 runs

50 targets

Aggregation

15 runs

50 targets

15 runs

50 targets

ECDF with 750
steps

Aggregation

50 targets from
15 runs

...integrated in a
single graph

Aggregation

area over the
ECDF curve

=
average log

runtime
(or geometric avg.
runtime) over all

targets (difficult and
easy) and all runs

50 targets from
15 runs
integrated in a
single graph

Interpretation

Fixed-target: Measuring Runtime

Fixed-target: Measuring Runtime

• Algo Restart A:

• Algo Restart B:

𝑹𝑻𝑨
𝒓

ps(Algo Restart A) = 1

𝑹𝑻𝑩
𝒓

ps(Algo Restart B) = 1

Fixed-target: Measuring Runtime

• Expected running time of the restarted algorithm:

𝐸 𝑅𝑇𝑟 =
1 − 𝑝𝑠
𝑝𝑠
𝐸 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 + 𝐸[𝑅𝑇𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙]

• Estimator average running time (aRT):

 𝑝𝑠 =
#successes

#runs

 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐 = Average evals of unsuccessful runs

 𝑅𝑇𝑠𝑢𝑐𝑐 = Average evals of successful runs

𝑎𝑅𝑇 =
total #evals

#successes

ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated
restarted algorithms:

Worth to Note: ECDFs in COCO

In COCO, ECDF graphs

• never aggregate over dimension

• but often over targets and functions

• can show data of more than 1 algorithm at a time

150 algorithms

from BBOB-2009

till BBOB-2015

...comparing aRT values over several algorithms

Another Interesting Plot...

...comparing aRT values over several algorithms

Another Interesting Plot...

aRT value

[if < ∞]
to reach

given target

precision

a star indicates statistically

significant results compared

to all other displayed algos

median runlength

of unsuccessful runs

...comparing aRT values over several algorithms

Another Interesting Plot...

artificial best

algorithm

from

BBOB-2016

scaling with

dimension
linear

...are scatter plots

Interesting for 2 Algorithms...

aRT for algorithm A

a
R

T
fo

r
a
lg

o
ri

th
m

 B

dimensions:

one marker

per target

...but they are probably less interesting for us here

There are more Plots...

84Introduction to Optimization @ ECP, Dec. 16, 2016© Dimo Brockhoff, Inria 84

Mastertitelformat bearbeiten

Exercise (Part 2): Comparing Numerical

Optimization Algorithms with COCO

85Introduction to Optimization @ ECP, Dec. 16, 2016© Dimo Brockhoff, Inria 85

Mastertitelformat bearbeiten

Objectives:

 investigate the performance of algorithms

 CMA-ES ("IPOP-CMA-ES" version)

 Nelder-Mead simplex (use "NelderDoerr" version here)

 BFGS quasi-Newton

 Genetic Algorithm: discretization of cont. variables ("GA")

 plus 1-2 algos of your choice from http://coco.gforge.inria.fr

 postprocess (now) and investigate the data (after a few more

slides)

Exercise (Part 2)

tip: use --omit-single option to save time

http://coco.gforge.inria.fr/

The single-objective BBOB functions

• 24 functions in 5 groups:

• 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

The bbob Testbed

• All COCO problems come in form of instances

• e.g. as translated/rotated versions of the same
function

• Prescribed instances typically change from year to
year

• avoid overfitting

• 5 instances are always kept the same

Plus:

• the bbob functions are locally perturbed by non-
linear transformations

Notion of Instances

• All COCO problems come in form of instances

• e.g. as translated/rotated versions of the same
function

• Prescribed instances typically change from year to
year

• avoid overfitting

• 5 instances are always kept the same

Plus:

• the bbob functions are locally perturbed by non-
linear transformations

Notion of Instances

f10 (Ellipsoid) f15 (Rastrigin)

90Introduction to Optimization @ ECP, Dec. 16, 2016© Dimo Brockhoff, Inria 90

Mastertitelformat bearbeiten

Exercise (Part 3): Comparing Numerical

Optimization Algorithms with COCO

91Introduction to Optimization @ ECP, Dec. 16, 2016© Dimo Brockhoff, Inria 91

Mastertitelformat bearbeiten

Objective:

investigate the data:

a) which algorithms are the best ones?

b) does this depend on the dimension?

c) look at single graphs: can we say something about the

algorithms' invariances, e.g. wrt. rotations of the search

space?

d) what do you think: are the displayed algorithms well-suited

for problems with larger dimension?

e) what can you say about the algorithm, you chose yourself?

Exercise (Part 3)

reminder: open thesis projects

one is related to this exercise

but automatized & for 150+ data sets ("data science")

92Introduction to Optimization @ ECP, Dec. 16, 2016© Dimo Brockhoff, Inria 92

Mastertitelformat bearbeiten

I hope it became clear...

...that the fixed-target approach is superior over the budget-based

approach (and why)

...that COCO is easy to use and provides a lot of data to explore

...and which algorithms to use/investigate when you have to solve a

numerical unconstrained blackbox problem yourself at some point

Conclusions

