Mid-term Exam 2015

Introduction to Optimization lecture
at Université Paris Sud

Anne Auger and Dimo Brockhoff

firstname.lastname@inria.fr

September/October, 2015

Abstract

This document details the exercises for the mid-term exam of the
Introduction to Optimization lecture at Université Paris Sud of 2015.
The mid-term exam is published in two parts where the first one on
discrete optimization is published on September 25, 2015 and needs to
be handed in on Friday, October 16 (before the lecture). The second
part on continuous optimization will follow soon.

In order to pass the final exam, 50% of the points of this mid-term
exam need to be reached. It furthermore counts 1/3 of the final grade
of the lecture.

Please hand in your solutions and in particular the source code
by sending an e-mail to one of the lecturers (e-mail above). Use the
keyword “mid-term exam” in the subject of the e-mail and do not
forget to mention your full name

1 Part 0: Dynamic Programming for the Knap-
sack Problem (0 Points)

If not yet finished, please implement the dynamic programming algorithm
as well as the brute-force approach of the first exercise and hand in your
(tested!) source code.



2

Part I: Branch and Bound for the Knap-
sack Problem (50 Points)

In the second lecture, we have learned about the branch and bound concept
but did not apply it in an exercise. Hence, we will develop a branch and
bound algorithm for the knapsack problem here and also implement it. Last,
we will compare it with the other approaches you implemented in the first
exercise (respectively in part 0 of the mid-term exam).

Questions and Tasks

a)

b)

Explain briefly (2-3 sentences) in your own words the idea behind
branch and bound. (3 Points)

Explain how branch and bound can outperform a brute-force approach.
(2 Points)

Formalize a first basic branch and bound algorithm for the knapsack
problem without specifying the subroutine to find upper bounds (i.e.
the basic algorithm structure with the definition of the branching rule
and how you would prune parts of the solution tree once the upper
bound technique is specified). Write down the algorithm in pseudocode.
(10 Points)

Implement this basic branch and bound algorithm for the knapsack
problem (which, for the moment, contains no pruning and thus is a
brute-force enumeration algorithm). (10 Points)

Choose one method to compute an upper bound for a sub-problem and
describe the idea behind it. (5 Points)

Implement the chosen idea for getting the upper bound in your al-
gorithm of task I.d). If you wish, you can use external code (e.g. a
scientific library) for this part. (10 Points)

Compare the two newly developed algorithms (the simple branch and
bound and the version with upper bounds) with the brute-force and dy-
namic programming algorithms you developed in the first exercise. To
this end, run all algorithms on the random instances from researchers.

2



lille.inria.fr/~brockhof/optimizationSaclay/knapsackinstances/
and plot the runtime to solve the problem over the problem dimension.

As to the runtime, please plot the median and at least the variance
(better are boxplots) and send the produced plots as well. Write a
few sentences about what you observe and explain why you see the
differences you observe. (10 Points)



