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 find solutions x which minimize f(x) in the shortest time possible 

(maximization is reformulated as minimization) 

 find solutions x with as small f(x) in the shortest time possible 

 

Optimization problem: find the best solution among all feasible ones! 

 “minimize the function f!” 
 

Search problem: output a solution with a given structure! 

 “find a clique of size 5 in a graph!” 
 

Decision problem: is there a solution with a certain property? 

 “is n prime?” 

 “is there a clique in the graph of size at least 5?” 

 

What is Optimization? 

or 
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 Aim: Sort a set of cards/words/data 

 Re-formulation: minimize the “unsortedness” 

 

 

 E F C A D B 

 B A C F D E 

 A B C D E F 

 

 

 

 

Example: Sorting 

sortedness increases 
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Classical Questions: 

 What was the underlying algorithm? 

 (How do I solve a problem?) 

 How long did it take to optimize? 

 (How long does it take in general? Which guarantees can I give?) 

 Is there a better algorithm or did I find the optimal one? 

 

Example: Sorting 
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Date Topic 

Fri, 18.9.2015 DB Introduction and Greedy Algorithms 

Fri, 25.9.2015  DB Dynamic programming and Branch and Bound 

Fri, 2.10.2015 DB Approximation Algorithms and Heuristics 

Fri, 9.10.2015 AA Introduction to Continuous Optimization 

Fri, 16.10.2015 AA End of Intro to Cont. Opt. + Gradient-Based Algorithms I 

Fri, 30.10.2015 AA Gradient-Based Algorithms II 

Fri, 6.11.2015 AA Stochastic Algorithms and Derivative-free Optimization 

16 - 20.11.2015 Exam (exact date to be confirmed) 

Course Overview 

all classes + exam are from 14h till 17h15 (incl. a 15min break) 

here in PUIO-D101/D103  
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 possibly not clear yet what the lecture is about in detail 

 

 but there will be always examples and exercises to learn “on-

the-fly” the concepts and fundamentals 

 

Overall goals: 

 give a broad overview of where and how optimization is used 

 understand the fundamental concepts of optimization algorithms 

 be able to apply common optimization algorithms on real-life 

(engineering) problems 

Remarks 

there will be also an optional class “Blackbox Optimization” 

which we will present briefly in next week’s class 
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 open book: take as much material as you want 

 (most likely) combination of 

 questions on paper (to be handed in) 

 practical exercises (send source code and results by e-mail) 

 date to be confirmed soon, but within November 16–20, 2015 

 

 counts 2/3 of overall grade 

 

 

 

 

 

The Exam 
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 we will have one larger home exercise 

 hand-out ready by next Friday 

 to be solved at home in addition to the lecture 

 hand-in by e-mail at a specific deadline (to be announced next 

week, most likely in mid October) 

 graded: need 50% to pass, counts as 1/3 of overall grade  

 

 

 

 

 

Mid-term Exam (aka “contrôle continu”) 

All information also available at  

 
http://researchers.lille.inria.fr/~brockhof/optimizationSaclay/ 

 

(exercise sheets, lecture slides, additional information, links, ...) 
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 More examples of optimization problems 

 introduce some basic concepts of optimization problems 

such as domain, constraint, ... 

 Basic notations such as the O-notation 

 Beginning of discrete optimization part 

 a brief introduction to graphs 

 concrete examples of problems used later on in the lecture 

 greedy algorithms applied to the money change and the 

minimum spanning tree problem 

Overview of Today’s Lecture 
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Given: 

set of possible solutions 

 

quality criterion 

 

Objective: 

 Find the best possible solution for the given criterion 

 

 

Formally: 

Maximize or minimize 

 

 

 

General Context Optimization 

Search space 

Objective function 
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Maximize or minimize 

 

 

 

Constraints explicitely or implicitely define the feasible solution set 

[e.g. ||x|| - 7 ≤ 0 vs. every solution should have at least 5 zero entries] 
 

Hard constraints must be satisfied while soft constraints are preferred 

to hold but are not required to be satisfied 

[e.g. constraints related to manufactoring precisions vs. cost constraints] 

Constraints 
 

Maximize or minimize 

 

 

 

unconstrained example of a 

constrained O   
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Knapsack Problem 

 Given a set of objects  with 

 a given weight and value (profit) 

 Find a subset of objects whose 

 overall mass is below a certain 

 limit and maximizing the 

 total value of the objects 
 

 [Problem of ressource allocation 

 with financial constraints] 

 

 

Example 1: Combinatorial Optimization 

Dake 
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Traveling Salesperson Problem (TSP) 

 Given a set of cities and their 

 distances 

 Find the shortest path going 

through all cities 
 

  

 

Example 2: Combinatorial Optimization 
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A farmer has 500m of fence to fence off a rectangular field that is 

adjacent to a river. What is the maximal area he can fence off? 

 

 

 

 

 

 

 

solution can be found analytically: 

 exercise for the weekend ;-) 

Example 3: Continuous Optimization 
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Optimizing a Two-Phase Nozzle [Schwefel 1968+] 

 maximize thrust under constant starting conditions 

 one of the first examples of Evolution Strategies 

 

 

 

 

 

 

 

 

 

 

copyright Hans-Paul Schwefel 

[http://ls11-www.cs.uni-dortmund.de/people/schwefel/EADemos/] 

all possible nozzles of given number of slices 

initial design: 

final design: 
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Design of a Launcher 

 

 

 

 

 

 

 Scenario: multi-stage launcher brings a 

satellite into orbit 

 Minimize the overall cost of a launch 

 Parameters: propellant mass of each stage / 

diameter of each stage / flux of each engine / 

parameters of the command law 

    23 continuous parameters to optimize 

    + constraints 

 

Example 5: Constrained Continuous Optimization 

Vol atmosphérique 
- efforts généraux 

- pilotage 

retombée d’étage 

visibilité 

120km 

fragmentation 

flux thermique largage coiffe 
(flux thermique) 

station 1 
station 2 

Injection en 
orbite 

- position 
- vitesse 

pas de tir 

Séparations 
(pression 

dynamique) 

Poppy 

copyright by Astrium 
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One wide class of problems: 

 matching existing (historical) data and the output of a simulation 

 why? using the (calibrated) model to predict the future 

 

 

 Most simplest form: minimize mean square error between 

observed data points and simulated data points 

Example 6: History Matching/Parameter Calibration 



19 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 19 

Mastertitelformat bearbeiten 

Coffee Tasting Problem 

 Find a mixture of coffee in order to keep the coffee taste from 

one year to another 

 Objective function = opinion of one expert 

 

 

Example 7: Interactive Optimization 

M. Herdy: “Evolution Strategies with subjective 

selection”, 1996 

1 
3 

2 

Quasipalm 

4 
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Observation: 

 Many problems with different properties 

 For each, it seems a different algorithm? 

 

In Practice: 

 often most important to categorize your problem first in order 

to find / develop the right method 

  problem types 

 

Many Problems, Many Algorithms? 

Algorithm design is an art,  

what is needed is skill, intuition, luck, experience, 

special knowledge and craft 
 

freely translated and adapted from Ingo Wegener (1950-2008) 
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 discrete vs. continuous 

 discrete: integer (linear) programming vs. combinatorial 

problems 

 continuous: linear, quadratic, smooth/nonsmooth, 

blackbox/DFO, ... 

 both discrete&continuous variables: mixed integer problem 

 constrained vs. unconstrained 

 

 

Not covered in this introductory lecture: 

 deterministic vs. stochastic 

 one or multiple objective functions 

Problem Types 
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 search domain 

 discrete vs. continuous variables vs. mixed integer 

 finite vs. infinite dimension 

 constraints 

 bounds 

 linear/quadratic/non-linear constraint 

 blackbox constraint 

 

Further important aspects (in practice): 

 deterministic vs. stochastic algorithms 

 exact vs. approximation algorithms vs. heuristics 

 anytime algorithms 

 simulation-based optimization problem / expensive problem 

General Concepts in Optimization 
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Excursion: The O-Notation 
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Motivation: 

 we often want to characterize how quickly a function f(x) grows 

asymptotically 

 e.g. when we say an algorithm takes quadratically many steps 

(in the input size) to find the optimum of a problem with n 

(binary) variables, it is most likely not exactly n2, but maybe n2+1 

or (n+1)2 

 

Big-O Notation 

 should be known, here mainly restating the definition: 

 

 

 

 we also view O(g(x)) as a set of functions growing at most as 

quick as g(x) and write f(x)O(g(x)) 

 

Excursion: The O-Notation 
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 f(x) + c = O(f(x))    [if f(x) does not go to zero for x to infinity] 

 c·f(x) = O(f(x)) 

 f(x) · g(x) = O(f(x) · g(x))  

 3n4 + n2 – 7 = O(n4) 

 

Intuition of the Big-O: 

 if f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically) 

for f 

 With Big-O, you should have ‘≤’ in mind 

Big-O: Examples 
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Further definitions to generalize from ‘≤’ to  ‘≥‘, ‘=‘, ‘<‘, and ‘>’: 

 

 f(x) = Ω(g(x)) if g(x) = O(f(x)) 

 f(x) = Θ(g(x)) if f(x) = O(g(x)) and g(x) = O(f(x)) 

 

 

 

  

 Note that “f(x) = o(g(x))” is equivalent to “limx→∞ f(x)/g(x) = 0” as 

long as g(x) is nonzero after an x0 

 

 f(x) = ω(g(x)) if g(x) = o(f(x)) 

 

 

 

 

Excursion: The O-Notation 

only proving upper 

bounds to compare 

algorithms is not sufficient! 
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Introduction to Discrete Optimization 
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Discrete optimization: 

 discrete variables 

 or optimization over discrete structures (e.g. graphs) 

 search space often finite, but typically too large for enumeration 

  need for smart algorithms 

 

Algorithms for discrete problems: 

 typically problem-specific 

 but some general concepts repeatably used: 

 greedy algorithms (today) 

 dynamic programming (next week) 

 branch&bound (next week) 

 heuristics (lecture 3) 

Discrete Optimization 
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Basic Concepts of Graph Theory 

 

 
[following for example http://math.tut.fi/~ruohonen/GT_English.pdf] 
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 vertices = nodes 

 edges = lines 

 Note: edges cover two unordered vertices (undirected graph) 

 if they are ordered, we call G a directed graph 

 

 

Graphs 



31 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 31 

Mastertitelformat bearbeiten 

 G is called empty if E empty 

 u and v are end vertices of an edge {u,v} 

 Edges are adjacent if they share an end vertex 

 Vertices u and v are adjacent if {u,v} is in E 

 The degree of a vertex is the number of times it is an end vertex 

 A complete graph contains all possible edges (once): 

 

 

 

 

 

 

 

Graphs: Basic Definitions 

a loop 

K1 K2 K3 K4 
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A walk is 

 closed if first and last node coincide 

 a trail if each edge traversed at most once 

 a path if each vertex is visited at most once 

 

 a closed path is a circuit or cycle 

 a closed path involving all vertices of G is a Hamiltonian cycle 

 

Walks, Paths, and Circuits 
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 Two vertices are called connected  if there is a walk between 

them in G 

 If all vertex pairs in G are connected, G is called connected 

 

 The connected components of G are the (maximal) subgraphs 

which are connected. 

Graphs: Connectedness 



34 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 34 

Mastertitelformat bearbeiten 

 A forest is a cycle-free graph 

 A tree is a connected forest 

 

 

 

A spanning tree of a connected graph G is a tree in G which 

contains all vertices of G 

Trees and Forests 
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Sometimes, we need to traverse a graph, e.g. to find certain vertices 
 

Depth-first search and breadth-first search are two algorithms to do so 

(here only BFS): 
 

Breadth-first Search (for undirected, acyclic, and connected graphs) 

 start at any node x, set i=0, and label x with value i 

 as long as there are unvisited edges {x,y} which are adjacent to a 

vertex x that is labeled with value i: 

 label all vertices y with value i+1 

 set i=i+1 and go to step 2 

 

Breadth-First Search (BFS) 

0 

1 

1 

1 

1 

2 

2 

2 

2 

3 



36 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 36 

Mastertitelformat bearbeiten 

Definition of Some Combinatorial Problems 

Used Later on in the Lecture 
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Shortest Path problem:  

 Given a graph G=(V,E) with edge weights wi for each edge ei. 

Find the shortest path from a vertex v to a vertex u, i.e., the path 

(v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) such that w1 + ... + wk is 

minimized. 

 

 

 

 

Obvious Applications 

 Google maps 

 Finding routes for packages in a computer network 

 ... 

Shortest Paths (SP) 

u v 

7 

7 

4 

1 

2 

9 
4 

1 

1 

2 

3 
1 

7 
7 

3 

5 

3 1 1 
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Minimum Spanning Tree problem:  

 Given a graph G=(V,E) with edge weights wi for each edge ei. 

Find the spanning tree with the smallest weight among all 

spanning trees. 

 

 

 

 

Applications 

Setting up a new wired telecommunication/water 

supply/electricity network 

Constructing minimal delay trees for broadcasting in networks 

Minimum Spanning Trees (MST) 

 

7 

7 

4 

1 

2 

9 
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1 
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1 

7 
7 

3 

5 
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Bin Packing Problem 

 Given a set of n items with sizes a1, a2, ..., an. Find an 

assignment of the ai’s to bins of size V such that the number of 

bins is minimal and the sum of the sizes of all items assigned to 

each bin is  ≤ V. 

 

 

 

 

 

Applications 

 similar to multiprocessor scheduling of n jobs to m processors 

Bin Packing (BP) 
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Integer Linear Programming (ILP) 

 rather a problem class 

 can be written as ILP: SAT, TSP, Vertex Cover, Set Packing, ... 

 interesting relation between the algorithm for the continuous 

case and integer solutions: if A is totally unimodular and b 

integer, the ILP has an integer solution 
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 many, many more problems out there 

 typically in practice: need to solve very specific instances 

 here only possible to provide you 

 the basic algorithm design ideas 

 applied to a few standard problem classes 

 regular training (i.e. exercises) to gain intuition and experience 

 a broad overview on optimization topics to potentially draw 

your interest (e.g. towards a PhD on that topic) 

Preliminary Conclusions I 
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I hope that, so far, it became clear... 

 

 ...what optimization is about 

 ...what is a graph, a node/vertex, an edge, ... 

 ...and that designing a good algorithm is an important task 

Preliminary Conclusions II 
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From Wikipedia: 

 “A greedy algorithm is an algorithm that follows the problem 

solving heuristic of making the locally optimal choice at each 

stage with the hope of finding a global optimum.” 

 

 

 

 Note: typically greedy algorithms do not find the global optimum 

 

 We will see later when this is the case 

Greedy Algorithms 
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 Example 1: Money Change 

 Example 2: Minimal Spanning Trees (MST) and the algorithm of 

Kruskal 

 

Greedy Algorithms: Overview 
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Change-making problem 

 Given n coins of distinct values w1=1, w2, ..., wn and a total 

change W (where w1, ..., wn, and W are integers).  

 Minimize the total amount of coins Σxi such that Σwixi = W and 

where xi is the number of times, coin i is given back as change.  

 

Greedy Algorithm 

 Unless total change not reached: 

 add the largest coin which is not larger than the remaining 

amount to the change 

 

Note: only optimal for standard coin sets, not for arbitrary ones! 

 

Related Problem: 

finishing darts (from 501 to 0 with 9 darts) 

Example 1: Money Change 
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Outline: 

 reminder of problem definition 

 Kruskal’s algorithm 

 analysis of its running time 

 proof of its correctness 

 

Example 2: Minimal Spanning Trees (MST) 
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A spanning tree of a connected graph G is a tree in G which 

contains all vertices of G 

 

Minimum Spanning Tree Problem (MST): 

 Given a (connected) graph G=(V,E) with edge weights wi for 

each edge ei. Find a spanning tree T that minimizes the weights 

of the contained edges, i.e. where 

  Σ   wi 

ei in T 

is minimized. 

 

 

MST: Reminder of Problem Definition 
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Algorithm, see [1] 

 Create forest F = (V,{}) with n components and no edge 

 Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S 

 While S non-empty and F not spanning: 

 delete cheapest edge from S 

 add it to F if no cycle is introduced 

 

 

 

 

 

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the 

traveling salesman problem". Proceedings of the American Mathematical 

Society 7: 48–50. doi:10.1090/S0002-9939-1956-0078686-7 

Kruskal’s Algorithm: Idea 
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First question: how to implement the algorithm? 

 sorting of edges needs O(|E| log |E|) 

Kruskal’s Algorithm: Runtime Considerations 

Algorithm 

Create forest F = (V,{}) with n components and no edge 

Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S 

While S non-empty and F not spanning: 

delete cheapest edge from S 

add it to F if no cycle is introduced 

 

simple ? 
forest implementation: 

Disjoint-set 

data structure 
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Data structure: ground set 1...N grouped to disjoint sets 

Operations: 

 FIND(i): to which set does i belong? 

 UNION(i,j): union the sets of i and j! 

 
 

Implemented as trees: 

 UNION(T1, T2): hang root node of smaller tree under root 

node of larger tree (constant time), thus 

 FIND(u): traverse tree from u to root (to return a representative 

of u’s set) takes logarithmic time in total number of nodes 

 

 

 

 

Disjoint-set Data Structure (“Union&Find”) 

1 2 3 4 

1      2 3 4 

1 

2 

3 

4 

5 

6 
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Algorithm, rewritten with UNION-FIND: 

 Create initial disjoint-set data structure, i.e. for each vertex vi, 

store vi as representative of its set 

 Create empty forest F = {} 

 Sort edges such that w.l.o.g. w1 < w2 < ... < w|E| 

 for each edge ei={u,v} starting from i=1: 

 if FIND(u) ≠ FIND(v): # no cycle introduced? 

 F = F È {{u,v}} 

 UNION(u,v) 

 return F 

Implementation of Kruskal’s Algorithm 
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 Sorting of edges needs O(|E| log |E|) 

 forest: Disjoint-set data structure 

 initialization: O(|V|) 

 log |V| to find out whether the minimum-cost edge {u,v} 

connects two sets (no cycle induced) or is within a set (cycle 

would be induced) 

 2x FIND + potential UNION needs to be done O(|E|) times 

 total O(|E| log |V|) 

 Overall: O(|E| log |E|) 

 

 

Back to Runtime Considerations 



55 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 55 

Mastertitelformat bearbeiten 

Two parts needed: 

 Algo always produces a spanning tree 

 final F contains no cycle and is connected by definition  

 Algo always produces a minimum spanning tree 

 argument by induction 

 P: If F is forest at a given stage of the algorithm, then there 

is some minimum spanning tree that contains F. 

 clearly true for F = (V, {}) 

 assume that P holds when new edge e is added to F and 

be T a MST that contains F 

 if e in T, fine 

 if e not in T: T + e has cycle C with edge f in C but not 

in F (otherwise e would have introduced a cycle in F) 

 now T – f + e is a tree with same weight as T (since 

T is a MST and f was not chosen to F) 

 hence T – f + e is MST including T + e (i.e. P holds) 

        

Kruskal’s Algorithm: Proof of Correctness 
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What we have seen so far: 

 two problems where a greedy algorithm was optimal 

 money change 

 minimum spanning tree (Kruskal’s algorithm) 

 but also: greedy not always optimal 

 in particular for NP-hard problems 
 

Obvious Question: when is greedy good? 

Answer: if the problem is a matroid (not covered here) 

 

From Wikipedia: [...] a matroid is a structure that captures and 

generalizes the notion of linear independence in vector 

spaces. There are many equivalent ways to define a matroid, 

the most significant being in terms of independent sets, 

bases, circuits, closed sets or flats, closure operators, and 

rank functions. 

Conclusion Greedy Algorithms I 
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I hope it became clear... 

 

 ...what a greedy algorithm is 

 ...that it not always results in the optimal solution 

 ...but that it does if and only if the problem is a matroid 

Conclusions Greedy Algorithms II 




