
Introduction to Optimization

Dimo Brockhoff

INRIA Lille – Nord Europe

September 18, 2015

TC2 - Optimisation

Université Paris-Saclay, Orsay, France

Anne Auger

INRIA Saclay – Ile-de-France

2 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 2

Mastertitelformat bearbeiten What is Optimization?

© H.-P. Schwefel

Maly LOLek

3 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 3

Mastertitelformat bearbeiten

 find solutions x which minimize f(x) in the shortest time possible

(maximization is reformulated as minimization)

 find solutions x with as small f(x) in the shortest time possible

Optimization problem: find the best solution among all feasible ones!

 “minimize the function f!”

Search problem: output a solution with a given structure!

 “find a clique of size 5 in a graph!”

Decision problem: is there a solution with a certain property?

 “is n prime?”

 “is there a clique in the graph of size at least 5?”

What is Optimization?

or

4 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 4

Mastertitelformat bearbeiten

 Aim: Sort a set of cards/words/data

 Re-formulation: minimize the “unsortedness”

 E F C A D B

 B A C F D E

 A B C D E F

Example: Sorting

sortedness increases

5 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 5

Mastertitelformat bearbeiten

Classical Questions:

 What was the underlying algorithm?

 (How do I solve a problem?)

 How long did it take to optimize?

 (How long does it take in general? Which guarantees can I give?)

 Is there a better algorithm or did I find the optimal one?

Example: Sorting

6 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 6

Mastertitelformat bearbeiten

Date Topic

Fri, 18.9.2015 DB Introduction and Greedy Algorithms

Fri, 25.9.2015 DB Dynamic programming and Branch and Bound

Fri, 2.10.2015 DB Approximation Algorithms and Heuristics

Fri, 9.10.2015 AA Introduction to Continuous Optimization

Fri, 16.10.2015 AA End of Intro to Cont. Opt. + Gradient-Based Algorithms I

Fri, 30.10.2015 AA Gradient-Based Algorithms II

Fri, 6.11.2015 AA Stochastic Algorithms and Derivative-free Optimization

16 - 20.11.2015 Exam (exact date to be confirmed)

Course Overview

all classes + exam are from 14h till 17h15 (incl. a 15min break)

here in PUIO-D101/D103

7 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 7

Mastertitelformat bearbeiten

 possibly not clear yet what the lecture is about in detail

 but there will be always examples and exercises to learn “on-

the-fly” the concepts and fundamentals

Overall goals:

 give a broad overview of where and how optimization is used

 understand the fundamental concepts of optimization algorithms

 be able to apply common optimization algorithms on real-life

(engineering) problems

Remarks

there will be also an optional class “Blackbox Optimization”

which we will present briefly in next week’s class

8 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 8

Mastertitelformat bearbeiten

 open book: take as much material as you want

 (most likely) combination of

 questions on paper (to be handed in)

 practical exercises (send source code and results by e-mail)

 date to be confirmed soon, but within November 16–20, 2015

 counts 2/3 of overall grade

The Exam

9 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 9

Mastertitelformat bearbeiten

 we will have one larger home exercise

 hand-out ready by next Friday

 to be solved at home in addition to the lecture

 hand-in by e-mail at a specific deadline (to be announced next

week, most likely in mid October)

 graded: need 50% to pass, counts as 1/3 of overall grade

Mid-term Exam (aka “contrôle continu”)

All information also available at

http://researchers.lille.inria.fr/~brockhof/optimizationSaclay/

(exercise sheets, lecture slides, additional information, links, ...)

10 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 10

Mastertitelformat bearbeiten

 More examples of optimization problems

 introduce some basic concepts of optimization problems

such as domain, constraint, ...

 Basic notations such as the O-notation

 Beginning of discrete optimization part

 a brief introduction to graphs

 concrete examples of problems used later on in the lecture

 greedy algorithms applied to the money change and the

minimum spanning tree problem

Overview of Today’s Lecture

11 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 11

Mastertitelformat bearbeiten

Given:

set of possible solutions

quality criterion

Objective:

 Find the best possible solution for the given criterion

Formally:

Maximize or minimize

General Context Optimization

Search space

Objective function

12 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 12

Mastertitelformat bearbeiten

Maximize or minimize

Constraints explicitely or implicitely define the feasible solution set

[e.g. ||x|| - 7 ≤ 0 vs. every solution should have at least 5 zero entries]

Hard constraints must be satisfied while soft constraints are preferred

to hold but are not required to be satisfied

[e.g. constraints related to manufactoring precisions vs. cost constraints]

Constraints

Maximize or minimize

unconstrained example of a

constrained O

13 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 13

Mastertitelformat bearbeiten

Knapsack Problem

 Given a set of objects with

 a given weight and value (profit)

 Find a subset of objects whose

 overall mass is below a certain

 limit and maximizing the

 total value of the objects

 [Problem of ressource allocation

 with financial constraints]

Example 1: Combinatorial Optimization

Dake

14 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 14

Mastertitelformat bearbeiten

Traveling Salesperson Problem (TSP)

 Given a set of cities and their

 distances

 Find the shortest path going

through all cities

Example 2: Combinatorial Optimization

15 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 15

Mastertitelformat bearbeiten

A farmer has 500m of fence to fence off a rectangular field that is

adjacent to a river. What is the maximal area he can fence off?

solution can be found analytically:

 exercise for the weekend ;-)

Example 3: Continuous Optimization

16 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 16

Mastertitelformat bearbeiten Example 4: A “Manual” Engineering Problem

Optimizing a Two-Phase Nozzle [Schwefel 1968+]

 maximize thrust under constant starting conditions

 one of the first examples of Evolution Strategies

copyright Hans-Paul Schwefel

[http://ls11-www.cs.uni-dortmund.de/people/schwefel/EADemos/]

all possible nozzles of given number of slices

initial design:

final design:

17 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 17

Mastertitelformat bearbeiten

Design of a Launcher

 Scenario: multi-stage launcher brings a

satellite into orbit

 Minimize the overall cost of a launch

 Parameters: propellant mass of each stage /

diameter of each stage / flux of each engine /

parameters of the command law

 23 continuous parameters to optimize

 + constraints

Example 5: Constrained Continuous Optimization

Vol atmosphérique
- efforts généraux

- pilotage

retombée d’étage

visibilité

120km

fragmentation

flux thermique largage coiffe
(flux thermique)

station 1
station 2

Injection en
orbite

- position
- vitesse

pas de tir

Séparations
(pression

dynamique)

Poppy

copyright by Astrium

18 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 18

Mastertitelformat bearbeiten

One wide class of problems:

 matching existing (historical) data and the output of a simulation

 why? using the (calibrated) model to predict the future

 Most simplest form: minimize mean square error between

observed data points and simulated data points

Example 6: History Matching/Parameter Calibration

19 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 19

Mastertitelformat bearbeiten

Coffee Tasting Problem

 Find a mixture of coffee in order to keep the coffee taste from

one year to another

 Objective function = opinion of one expert

Example 7: Interactive Optimization

M. Herdy: “Evolution Strategies with subjective

selection”, 1996

1
3

2

Quasipalm

4

20 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 20

Mastertitelformat bearbeiten

Observation:

 Many problems with different properties

 For each, it seems a different algorithm?

In Practice:

 often most important to categorize your problem first in order

to find / develop the right method

 problem types

Many Problems, Many Algorithms?

Algorithm design is an art,

what is needed is skill, intuition, luck, experience,

special knowledge and craft

freely translated and adapted from Ingo Wegener (1950-2008)

21 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 21

Mastertitelformat bearbeiten

 discrete vs. continuous

 discrete: integer (linear) programming vs. combinatorial

problems

 continuous: linear, quadratic, smooth/nonsmooth,

blackbox/DFO, ...

 both discrete&continuous variables: mixed integer problem

 constrained vs. unconstrained

Not covered in this introductory lecture:

 deterministic vs. stochastic

 one or multiple objective functions

Problem Types

22 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 22

Mastertitelformat bearbeiten

 search domain

 discrete vs. continuous variables vs. mixed integer

 finite vs. infinite dimension

 constraints

 bounds

 linear/quadratic/non-linear constraint

 blackbox constraint

Further important aspects (in practice):

 deterministic vs. stochastic algorithms

 exact vs. approximation algorithms vs. heuristics

 anytime algorithms

 simulation-based optimization problem / expensive problem

General Concepts in Optimization

23 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 23

Mastertitelformat bearbeiten

Excursion: The O-Notation

24 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 24

Mastertitelformat bearbeiten

Motivation:

 we often want to characterize how quickly a function f(x) grows

asymptotically

 e.g. when we say an algorithm takes quadratically many steps

(in the input size) to find the optimum of a problem with n

(binary) variables, it is most likely not exactly n2, but maybe n2+1

or (n+1)2

Big-O Notation

 should be known, here mainly restating the definition:

 we also view O(g(x)) as a set of functions growing at most as

quick as g(x) and write f(x)O(g(x))

Excursion: The O-Notation

25 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 25

Mastertitelformat bearbeiten

 f(x) + c = O(f(x)) [if f(x) does not go to zero for x to infinity]

 c·f(x) = O(f(x))

 f(x) · g(x) = O(f(x) · g(x))

 3n4 + n2 – 7 = O(n4)

Intuition of the Big-O:

 if f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically)

for f

 With Big-O, you should have ‘≤’ in mind

Big-O: Examples

26 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 26

Mastertitelformat bearbeiten

Further definitions to generalize from ‘≤’ to ‘≥‘, ‘=‘, ‘<‘, and ‘>’:

 f(x) = Ω(g(x)) if g(x) = O(f(x))

 f(x) = Θ(g(x)) if f(x) = O(g(x)) and g(x) = O(f(x))

 Note that “f(x) = o(g(x))” is equivalent to “limx→∞ f(x)/g(x) = 0” as

long as g(x) is nonzero after an x0

 f(x) = ω(g(x)) if g(x) = o(f(x))

Excursion: The O-Notation

only proving upper

bounds to compare

algorithms is not sufficient!

27 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 27

Mastertitelformat bearbeiten

Introduction to Discrete Optimization

28 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 28

Mastertitelformat bearbeiten

Discrete optimization:

 discrete variables

 or optimization over discrete structures (e.g. graphs)

 search space often finite, but typically too large for enumeration

 need for smart algorithms

Algorithms for discrete problems:

 typically problem-specific

 but some general concepts repeatably used:

 greedy algorithms (today)

 dynamic programming (next week)

 branch&bound (next week)

 heuristics (lecture 3)

Discrete Optimization

29 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 29

Mastertitelformat bearbeiten

Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]

30 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 30

Mastertitelformat bearbeiten

 vertices = nodes

 edges = lines

 Note: edges cover two unordered vertices (undirected graph)

 if they are ordered, we call G a directed graph

Graphs

31 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 31

Mastertitelformat bearbeiten

 G is called empty if E empty

 u and v are end vertices of an edge {u,v}

 Edges are adjacent if they share an end vertex

 Vertices u and v are adjacent if {u,v} is in E

 The degree of a vertex is the number of times it is an end vertex

 A complete graph contains all possible edges (once):

Graphs: Basic Definitions

a loop

K1 K2 K3 K4

32 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 32

Mastertitelformat bearbeiten

A walk is

 closed if first and last node coincide

 a trail if each edge traversed at most once

 a path if each vertex is visited at most once

 a closed path is a circuit or cycle

 a closed path involving all vertices of G is a Hamiltonian cycle

Walks, Paths, and Circuits

33 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 33

Mastertitelformat bearbeiten

 Two vertices are called connected if there is a walk between

them in G

 If all vertex pairs in G are connected, G is called connected

 The connected components of G are the (maximal) subgraphs

which are connected.

Graphs: Connectedness

34 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 34

Mastertitelformat bearbeiten

 A forest is a cycle-free graph

 A tree is a connected forest

A spanning tree of a connected graph G is a tree in G which

contains all vertices of G

Trees and Forests

35 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 35

Mastertitelformat bearbeiten

Sometimes, we need to traverse a graph, e.g. to find certain vertices

Depth-first search and breadth-first search are two algorithms to do so

(here only BFS):

Breadth-first Search (for undirected, acyclic, and connected graphs)

 start at any node x, set i=0, and label x with value i

 as long as there are unvisited edges {x,y} which are adjacent to a

vertex x that is labeled with value i:

 label all vertices y with value i+1

 set i=i+1 and go to step 2

Breadth-First Search (BFS)

0

1

1

1

1

2

2

2

2

3

36 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 36

Mastertitelformat bearbeiten

Definition of Some Combinatorial Problems

Used Later on in the Lecture

37 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 37

Mastertitelformat bearbeiten

Shortest Path problem:

 Given a graph G=(V,E) with edge weights wi for each edge ei.

Find the shortest path from a vertex v to a vertex u, i.e., the path

(v, e1={v, v1}, v1, ..., vk, ek={vk,u}, u) such that w1 + ... + wk is

minimized.

Obvious Applications

 Google maps

 Finding routes for packages in a computer network

 ...

Shortest Paths (SP)

u v

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1

38 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 38

Mastertitelformat bearbeiten

Minimum Spanning Tree problem:

 Given a graph G=(V,E) with edge weights wi for each edge ei.

Find the spanning tree with the smallest weight among all

spanning trees.

Applications

Setting up a new wired telecommunication/water

supply/electricity network

Constructing minimal delay trees for broadcasting in networks

Minimum Spanning Trees (MST)

7

7

4

1

2

9
4

1

1

2

3
1

7
7

3

5

3 1 1

39 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 39

Mastertitelformat bearbeiten

Bin Packing Problem

 Given a set of n items with sizes a1, a2, ..., an. Find an

assignment of the ai’s to bins of size V such that the number of

bins is minimal and the sum of the sizes of all items assigned to

each bin is ≤ V.

Applications

 similar to multiprocessor scheduling of n jobs to m processors

Bin Packing (BP)

40 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 40

Mastertitelformat bearbeiten

Integer Linear Programming (ILP)

 rather a problem class

 can be written as ILP: SAT, TSP, Vertex Cover, Set Packing, ...

 interesting relation between the algorithm for the continuous

case and integer solutions: if A is totally unimodular and b

integer, the ILP has an integer solution

41 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 41

Mastertitelformat bearbeiten

 many, many more problems out there

 typically in practice: need to solve very specific instances

 here only possible to provide you

 the basic algorithm design ideas

 applied to a few standard problem classes

 regular training (i.e. exercises) to gain intuition and experience

 a broad overview on optimization topics to potentially draw

your interest (e.g. towards a PhD on that topic)

Preliminary Conclusions I

42 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 42

Mastertitelformat bearbeiten

I hope that, so far, it became clear...

 ...what optimization is about

 ...what is a graph, a node/vertex, an edge, ...

 ...and that designing a good algorithm is an important task

Preliminary Conclusions II

43 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 43

Mastertitelformat bearbeiten

From Wikipedia:

 “A greedy algorithm is an algorithm that follows the problem

solving heuristic of making the locally optimal choice at each

stage with the hope of finding a global optimum.”

 Note: typically greedy algorithms do not find the global optimum

 We will see later when this is the case

Greedy Algorithms

44 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 44

Mastertitelformat bearbeiten

 Example 1: Money Change

 Example 2: Minimal Spanning Trees (MST) and the algorithm of

Kruskal

Greedy Algorithms: Overview

45 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 45

Mastertitelformat bearbeiten

Change-making problem

 Given n coins of distinct values w1=1, w2, ..., wn and a total

change W (where w1, ..., wn, and W are integers).

 Minimize the total amount of coins Σxi such that Σwixi = W and

where xi is the number of times, coin i is given back as change.

Greedy Algorithm

 Unless total change not reached:

 add the largest coin which is not larger than the remaining

amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:

finishing darts (from 501 to 0 with 9 darts)

Example 1: Money Change

46 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 46

Mastertitelformat bearbeiten

Outline:

 reminder of problem definition

 Kruskal’s algorithm

 analysis of its running time

 proof of its correctness

Example 2: Minimal Spanning Trees (MST)

47 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 47

Mastertitelformat bearbeiten

A spanning tree of a connected graph G is a tree in G which

contains all vertices of G

Minimum Spanning Tree Problem (MST):

 Given a (connected) graph G=(V,E) with edge weights wi for

each edge ei. Find a spanning tree T that minimizes the weights

of the contained edges, i.e. where

 Σ wi

ei in T

is minimized.

MST: Reminder of Problem Definition

48 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 48

Mastertitelformat bearbeiten

Algorithm, see [1]

 Create forest F = (V,{}) with n components and no edge

 Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

 While S non-empty and F not spanning:

 delete cheapest edge from S

 add it to F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the

traveling salesman problem". Proceedings of the American Mathematical

Society 7: 48–50. doi:10.1090/S0002-9939-1956-0078686-7

Kruskal’s Algorithm: Idea

49 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 49

Mastertitelformat bearbeiten Kruskal’s Algorithm: Example

E

B

G

L

F H

C

K

D

I M J

A
4 12

7

22
2

21
17

16

3 6

11

20 8

10 19

9

1

18

13

15 14 5

50 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 50

Mastertitelformat bearbeiten Kruskal’s Algorithm: Example

E

B

G

L

F H

C

K

D

I M J

A
4 12

7

22
2

21
17

16

3 6

11

20 8

10 19

9

1

18

13

15 14 5

51 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 51

Mastertitelformat bearbeiten

First question: how to implement the algorithm?

 sorting of edges needs O(|E| log |E|)

Kruskal’s Algorithm: Runtime Considerations

Algorithm

Create forest F = (V,{}) with n components and no edge

Put sorted edges (such that w.l.o.g. w1 < w2 < ... < w|E|) into set S

While S non-empty and F not spanning:

delete cheapest edge from S

add it to F if no cycle is introduced

simple ?
forest implementation:

Disjoint-set

data structure

52 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 52

Mastertitelformat bearbeiten

Data structure: ground set 1...N grouped to disjoint sets

Operations:

 FIND(i): to which set does i belong?

 UNION(i,j): union the sets of i and j!

Implemented as trees:

 UNION(T1, T2): hang root node of smaller tree under root

node of larger tree (constant time), thus

 FIND(u): traverse tree from u to root (to return a representative

of u’s set) takes logarithmic time in total number of nodes

Disjoint-set Data Structure (“Union&Find”)

1 2 3 4

1 2 3 4

1

2

3

4

5

6

53 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 53

Mastertitelformat bearbeiten

Algorithm, rewritten with UNION-FIND:

 Create initial disjoint-set data structure, i.e. for each vertex vi,

store vi as representative of its set

 Create empty forest F = {}

 Sort edges such that w.l.o.g. w1 < w2 < ... < w|E|

 for each edge ei={u,v} starting from i=1:

 if FIND(u) ≠ FIND(v): # no cycle introduced?

 F = F È {{u,v}}

 UNION(u,v)

 return F

Implementation of Kruskal’s Algorithm

54 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 54

Mastertitelformat bearbeiten

 Sorting of edges needs O(|E| log |E|)

 forest: Disjoint-set data structure

 initialization: O(|V|)

 log |V| to find out whether the minimum-cost edge {u,v}

connects two sets (no cycle induced) or is within a set (cycle

would be induced)

 2x FIND + potential UNION needs to be done O(|E|) times

 total O(|E| log |V|)

 Overall: O(|E| log |E|)

Back to Runtime Considerations

55 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 55

Mastertitelformat bearbeiten

Two parts needed:

 Algo always produces a spanning tree

 final F contains no cycle and is connected by definition

 Algo always produces a minimum spanning tree

 argument by induction

 P: If F is forest at a given stage of the algorithm, then there

is some minimum spanning tree that contains F.

 clearly true for F = (V, {})

 assume that P holds when new edge e is added to F and

be T a MST that contains F

 if e in T, fine

 if e not in T: T + e has cycle C with edge f in C but not

in F (otherwise e would have introduced a cycle in F)

 now T – f + e is a tree with same weight as T (since

T is a MST and f was not chosen to F)

 hence T – f + e is MST including T + e (i.e. P holds)

Kruskal’s Algorithm: Proof of Correctness

56 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 56

Mastertitelformat bearbeiten

What we have seen so far:

 two problems where a greedy algorithm was optimal

 money change

 minimum spanning tree (Kruskal’s algorithm)

 but also: greedy not always optimal

 in particular for NP-hard problems

Obvious Question: when is greedy good?

Answer: if the problem is a matroid (not covered here)

From Wikipedia: [...] a matroid is a structure that captures and

generalizes the notion of linear independence in vector

spaces. There are many equivalent ways to define a matroid,

the most significant being in terms of independent sets,

bases, circuits, closed sets or flats, closure operators, and

rank functions.

Conclusion Greedy Algorithms I

57 TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2015 © Anne Auger and Dimo Brockhoff, INRIA 57

Mastertitelformat bearbeiten

I hope it became clear...

 ...what a greedy algorithm is

 ...that it not always results in the optimal solution

 ...but that it does if and only if the problem is a matroid

Conclusions Greedy Algorithms II

