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What is Optimization?
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What is Optimization?

» find solutions x which minimize f(x) in the shortest time possible
(maximization is reformulated as minimization) or
= find solutions x with as small f(x) in the shortest time possible

Optimization problem: find the best solution among all feasible ones!
=  “minimize the function f!”

Search problem: output a solution with a given structure!
*» “find a clique of size 5 in a graph!”

Decision problem: is there a solution with a certain property?
* “isnprime?”
= “is there a clique in the graph of size at least 57"
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Example: Sorting

=  Aim: Sort a set of cards/words/data
=  Re-formulation: minimize the “unsortedness’

= EFCADB
= BACEDE sortedness increases
= ABCDEF
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Example: Sorting

Classical Questions:

» What was the underlying algorithm?
(How do | solve a problem?)

= How long did it take to optimize?

(How long does it take in general? Which guarantees can | give?)
» |sthere a better algorithm or did | find the optimal one?
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Course Overview

Fri, 18.9.2015 DB
Fri, 25.9.2015 DB
Fri, 2.10.2015 DB
Fri, 9.10.2015 AA
Fri, 16.10.2015 AA

Fri, 30.10.2015 AA
Fri, 6.11.2015 AA

16 - 20.11.2015

Date | JTopo

Introduction and Greedy Algorithms

Dynamic programming and Branch and Bound
Approximation Algorithms and Heuristics

Introduction to Continuous Optimization

End of Intro to Cont. Opt. + Gradient-Based Algorithms |

Gradient-Based Algorithms |l
Stochastic Algorithms and Derivative-free Optimization

Exam (exact date to be confirmed)

all classes + exam are from 14h till 17h15 (incl. a 15min break)

here in PUIO-D101/D103
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= possibly not clear yet what the lecture is about in detall

= but there will be always examples and exercises to learn “on-
the-fly” the concepts and fundamentals

Overall goals:
© (give a broad overview of where and how optimization is used
® understand the fundamental concepts of optimization algorithms

© be able to apply common optimization algorithms on real-life
(engineering) problems

there will be also an optional class “Blackbox Optimization”
which we will present briefly in next week’s class
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= open book: take as much material as you want
= (most likely) combination of

= guestions on paper (to be handed in)

= practical exercises (send source code and results by e-mail)
= date to be confirmed soon, but within November 16-20, 2015

= counts 2/3 of overall grade
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Mid-term Exam (aka “contréle continu™)

= we will have one larger home exercise
= hand-out ready by next Friday
= to be solved at home in addition to the lecture

= hand-in by e-mail at a specific deadline (to be announced next
week, most likely in mid October)

= graded: need 50% to pass, counts as 1/3 of overall grade

All information also available at

http://researchers.lille.inria.fr/~brockhof/optimizationSaclay/

(exercise sheets, lecture slides, additional information, links, ...)

© Anne Auger and Dimo Brockhoff, INRIA



Overview of Today’s Lecture

» More examples of optimization problems

» Introduce some basic concepts of optimization problems
such as domain, constraint, ...

» Basic notations such as the O-notation
= Beginning of discrete optimization part
= a brief introduction to graphs
= concrete examples of problems used later on in the lecture

» greedy algorithms applied to the money change and the
minimum spanning tree problem

© Anne Auger and Dimo Brockhoff, INRIA TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 20



General Context Optimization

Given:

set of possible solutions Search space

quality criterion Objective function
Objective:

Find the best possible solution for the given criterion
Formally: nl

Maximize or minimize ’ \/ e
F . Q — R’ Nl local minimum

global minimum

xr — F(x) T

0 0.2 04 0.6 0.8 1
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Maximize or minimize Maximize or minimize
F: Q= R, F:Q— R,
r — F(x) r — F(x)
where  g;(z) <0
hj(x) =0
unconstrained example of a
0O constrained ()

Constraints explicitely or implicitely define the feasible solution set
[e.g. ||X]| - 7 < 0 vs. every solution should have at least 5 zero entries]

Hard constraints must be satisfied while soft constraints are preferred
to hold but are not required to be satisfied

[e.g. constraints related to manufactoring precisions vs. cost constraints]
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Example 1. Combinatorial Optimization

Knapsack Problem
= Given a set of objects with
a given weight and value (profit)
* Find a subset of objects whose
overall mass is below a certain
limit and maximizing the
total value of the objects

n
max. ijxj with S {0, 1}
j=1

n
s.t. Z wix; < W
j=1

Dake

Q = {0, 1}“J
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Example 2: Combinatorial Optimization

Traveling Salesperson Problem (TSP)
= Given a set of cities and their
distances
* Find the shortest path going
through all cities
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Example 3. Continuous Optimization

A farmer has 500m of fence to fence off a rectangular field that is
adjacent to a river. What is the maximal area he can fence off?

X

Y

solution can be found analytically:
exercise for the weekend ;-)

Q0 =R?:
max Ty
where x + 2y < 500/
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Example 4: A “Manual” Engineering Problem

Optimizing a Two-Phase Nozzle [Schwefel 1968+]
= maximize thrust under constant starting conditions
= one of the first examples of Evolution Strategies

initial design: &= .

() = all possible nozzles of given number of slices

copyright Hans-Paul Schwefel
[http://Is11-www.cs.uni-dortmund.de/people/schwefel/EADemos/]
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Example 5: Constrained Continuous Optimiz

Injection en
. orb_it_e ~
Design of a Launcher R
largage coiffe flux thermique
4 (flux thermique)

11111

Séparations
(pression -
dynamique) —

— fragmentati
Vol atmosphérique viallA
- efforts généraux -5
- pilotage st B}

«> < >
copyright by Astrium

= Scenario: multi-stage launcher brings a
satellite into orbit

= Minimize the overall cost of a launch

= Parameters: propellant mass of each stage /
diameter of each stage / flux of each engine /
parameters of the command law

O = Rz3 23 continuous parameters to optimize
+ constraints
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Example 6: History Matching/Parameter Cali

One wide class of problems:

= matching existing (historical) data and the output of a simulation
= why? using the (calibrated) model to predict the future

= Most simplest form: minimize mean square error between
observed data points and simulated data points
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Example 7: Interactive Optimization

Coffee Tasting Problem

= Find a mixture of coffee in order to keep the coffee taste from
one year to another

= QObjective function = opinion of one expert

D o )

Quasipalm

M. Herdy: “Evolution Strategies with subjective
selection”, 1996
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Many Problems, Many Algorithms?

Observation:

= Many problems with different properties
= For each, it seems a different algorithm?

In Practice:

= often most important to categorize your problem first in order
to find / develop the right method

= - problem types

Algorithm design is an art,
what is needed is skill, intuition, luck, experience,
special knowledge and craft

freely translated and adapted from Ingo Wegener (1950-2008)

© Anne Auger and Dimo Brockhoff, INRIA



Problem Types

=  discrete vs. continuous

= discrete: integer (linear) programming vs. combinatorial
problems

= continuous: linear, quadratic, smooth/nonsmooth,
blackbox/DFO, ...

» both discrete&continuous variables: mixed integer problem
»= constrained vs. unconstrained

Not covered in this introductory lecture:
= deterministic vs. stochastic
= one or multiple objective functions
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General Concepts in Optimization

= search domain
= discrete vs. continuous variables vs. mixed integer
= finite vs. infinite dimension
= constraints
= bounds
» |inear/quadratic/non-linear constraint
= pblackbox constraint

Further important aspects (in practice):

= deterministic vs. stochastic algorithms

= exact vs. approximation algorithms vs. heuristics

= anytime algorithms

» simulation-based optimization problem / expensive problem

© Anne Auger and Dimo Brockhoff, INRIA TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18



Excursion: The O-Notation
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Excursion: The O-Notation

Motivation:

= we often want to characterize how quickly a function f(x) grows
asymptotically

= e.g. when we say an algorithm takes quadratically many steps
(in the input size) to find the optimum of a problem with n

(binary) variables, it is most likely not exactly n?, but maybe n?+1
or (n+1)?

Big-O Notation
should be known, here mainly restating the definition:

Definition 1 We write f(x) = O(g(x)) iff there exists a constant ¢ > 0 and an
zo > 0 such that f(x) < clg(x)| holds for all x > xy.

we also view O(g(x)) as a set of functions growing at most as
quick as g(x) and write f(x) eO(g(x))

© Anne Auger and Dimo Brockhoff, INRIA
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Big-O: Examples

= f(x) + c=0O(f(x)) [if f(x) does not go to zero for x to infinity]
= c-f(x) = O(f(x))

= () - 9(x) = O(f(x) - 9(x))
= 3n*+n?2-7=0(n%

Intuition of the Big-O:

= if f(x) = O(g(x)) then g(x) gives an upper bound (asymptotically)
for f

=  With Big-O, you should have ‘<’ in mind
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Excursion: The O-Notation

Further definitions to generalize from ‘<’ to 2/, ‘=, '<’, and >":

= f(x) = Q(g(x)) if g(x) = O(f(x))
= f(x) = 0(g(x)) If f(x) = O(g(x)) and g(x) = O(f(x))

Definition 2 We write f(x) = o(g(x)) iff for every constant € > 0 there exists
an xo > 0 such that f(x) < €|g(x)| holds for all x > xy.

Note that “f(x) = o(g(x))” is equivalent to “lim,_,, f(x)/g(x) = 0" as
long as g(x) iIs nonzero after an x,

= f(x) = w(g(X) if g(x) = o(f(x)) only proving upper

bounds to compare
algorithms is not sufficient!

v

© Anne Auger and Dimo Brockhoff, INRIA TC2: Introduction to Optimization, U. Paris-Saclay, Sep. ‘l



Introduction to Discrete Optimization
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Discrete Optimization

Discrete optimization:

= discrete variables

= or optimization over discrete structures (e.g. graphs)

= search space often finite, but typically too large for enumeration
= - need for smart algorithms

Algorithms for discrete problems:
= typically problem-specific
= but some general concepts repeatably used:
= greedy algorithms (today)
= dynamic programming (next week)
= pranch&bound (next week)
» heuristics (lecture 3)
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Basic Concepts of Graph Theory

[following for example http://math.tut.fi/~ruohonen/GT_English.pdf]
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Definition 1 An undirected graph G is a tupel G = (V, E) of edges e = {u,v} €
E over the vertex set V (i.e., u,v € V).

= vertices = nodes

= edges =lines

= Note: edges cover two unordered vertices (undirected graph)
= |f they are ordered, we call G a directed graph
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Graphs: Basic Definitions

= G s called empty if E empty

= U andyv are end vertices of an edge {u,v} D
= Edges are adjacent if they share an end vertex
= Vertices u and v are adjacent if {u,v} isin E

= The degree of a vertex is the number of times it is an end vertex
= A complete graph contains all possible edges (once):

v AR
O 0

a loop
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Walks, Paths, and Circuits

Definition 1 A walk in a graph G = (V, F) is a sequence

alternating vertices and adjacent edges of G.

A walk 1s

© Anne Auger and Dimo Brockhoff, INRIA TC2: Introduction to O
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closed if first and last node coincide
a trail if each edge traversed at most once
a path if each vertex is visited at most once

a closed path is a circuit or cycle
a closed path involving all vertices of G is a Hamiltonian cycle

ptimization, U. Paris-Saclay, Sep. 18, 20



Graphs: Connectedness

= Two vertices are called connected if there is a walk between
themin G

= |f all vertex pairs in G are connected, G is called connected

= The connected components of G are the (maximal) subgraphs
which are connected.

o(0®
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Trees and Forests

= A forestis a cycle-free graph
= Atree is a connected forest

ts:

A spanning tree of a connected graph G is a tree in G which
contains all vertices of G
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Breadth-First Search (BFS)

Sometimes, we need to traverse a graph, e.g. to find certain vertices

Depth-first search and breadth-first search are two algorithms to do so
(here only BFS):

Breadth-first Search (for undirected, acyclic, and connected graphs)
O start at any node x, set i=0, and label x with value |
® as long as there are unvisited edges {x,y} which are adjacent to a

vertex X that is labeled with value i:
= |abel all vertices v with value i+1 (1)
Y D—2)

® seti=iI+1 and go to step 2
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Definition of Some Combinatorial Problems
Used Later on in the Lecture
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Shortest Paths (SP)

Shortest Path problem:
Given a graph G=(V,E) with edge weights w; for each edge e,.
Find the shortest path from a vertex v to a vertex u, i.e., the path
(v, e,={v, Vi}, V4, ..oy Vy, €,={V,,U}, U) such that w, + ... + w IS
minimized.

Obvious Applications
Google maps
Finding routes for packages in a computer network
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Minimum Spanning Trees (MST)

Minimum Spanning Tree problem:
Given a graph G=(V,E) with edge weights w; for each edge e,.
Find the spanning tree with the smallest weight among all
spanning trees.

Applications

Setting up a new wired telecommunication/water
supply/electricity network

Constructing minimal delay trees for broadcasting in networks
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Bin Packing (BP)

Bin Packing Problem

Given a set of n items with sizes a,, a,, ..., a,. Find an
assignment of the a;'s to bins of size V such that the number of
bins is minimal and the sum of the sizes of all items assigned to
each binis =V,

|

Applications
similar to multiprocessor scheduling of n jobs to m processors

© Anne Auger and Dimo Brockhoff, INRIA TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 20



Integer Linear Programming (ILP)

maximize clx

subject to Az < b
x>0
and x€Z"

= rather a problem class
= can be written as ILP: SAT, TSP, Vertex Cover, Set Packing, ...
* interesting relation between the algorithm for the continuous

case and integer solutions: if A is totally unimodular and b
iInteger, the ILP has an integer solution
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Preliminary Conclusions |

= many, many more problems out there
= typically in practice: need to solve very specific instances
= here only possible to provide you
» the basic algorithm design ideas
= applied to a few standard problem classes
= regular training (i.e. exercises) to gain intuition and experience

= a broad overview on optimization topics to potentially draw
your interest (e.g. towards a PhD on that topic)
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Preliminary Conclusions Il

| hope that, so far, it became clear...

...what optimization is about
...what is a graph, a node/vertex, an edge, ...
...and that designing a good algorithm is an important task
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Greedy Algorithms

From Wikipedia:

“A greedy algorithm is an algorithm that follows the problem
solving heuristic of making the locally optimal choice at each
stage with the hope of finding a global optimum.”

= Note: typically greedy algorithms do not find the global optimum

=  \We will see later when this is the case
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Greedy Algorithms: Overview

= Example 1. Money Change

= Example 2: Minimal Spanning Trees (MST) and the algorithm of
Kruskal
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Example 1. Money Change

Change-making problem

= Given n coins of distinct values w;=1, w,, ..., w,, and a total
change W (where wy, ..., w,, and W are integers).

= Minimize the total amount of coins 2x; such that 2wx, = W and
where Xx; is the number of times, coin i is given back as change.

Greedy Algorithm
Unless total change not reached:

add the largest coin which is not larger than the remaining
amount to the change

Note: only optimal for standard coin sets, not for arbitrary ones!

Related Problem:
finishing darts (from 501 to O with 9 darts)
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Example 2. Minimal Spanning Trees (MST)

Outline:

reminder of problem definition
Kruskal’s algorithm

analysis of its running time
proof of its correctness
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MST: Reminder of Problem Definition

A spanning tree of a connected graph G is a tree in G which
contains all vertices of G

Minimum Spanning Tree Problem (MST):

Given a (connected) graph G=(V,E) with edge weights w; for
each edge e,. Find a spanning tree T that minimizes the weights
of the contained edges, i.e. where

> w
einT
IS minimized.
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Kruskal’s Algorithm: Idea

Algorithm, see [1]

= Create forest F = (V,{}) with n components and no edge
Put sorted edges (such that w.l.o.g. w; <w, < ... <wg) into set S
= While S non-empty and F not spanning:

» delete cheapest edge from S

= additto F if no cycle is introduced

[1] Kruskal, J. B. (1956). "On the shortest spanning subtree of a graph and the
traveling salesman problem". Proceedings of the American Mathematical
Society 7: 48-50. doi:10.1090/S0002-9939-1956-0078686-7

© Anne Auger and Dimo Brockhoff, INRIA
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Kruskal’s Algorithm: Example




Kruskal’s Algorithm: Example
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Kruskal’s Algorithm: Runtime Consideratio

First question: how to implement the algorithm?
= sorting of edges needs O(|E| log |E|)

Algorithm
Create forest F = (V,{}) with n components and no edge

Put sorted edges (suc%wz <..<Wwg)intosetS
While S non-empty an ot spanning-

delete\cheapest

add it tp &1f no cycle is introyjuce

simple ’)

forest implementation:
Disjoint-set
data structure
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Disjoint-set Data Structure (“Union&Find™)

Data structure: ground set 1...N grouped to disjoint sets

Operations: @ @ @ @
= FIND(I): to which set does i belong?
=  UNION(i,}): union the sets of i and |! @ : @

Implemented as trees:
= UNION(T1, T2): hang root node of smaller tree under root
node of larger tree (constant time), thus

= FIND(u): traverse tree from u to root (to return a representative
of u’'s set) takes logarithmic time in total number of nodes
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Implementation of Kruskal’s Algorithm

Algorithm, rewritten with UNION-FIND:

Create Initial disjoint-set data structure, i.e. for each vertex v;,
store v, as representative of its set

Create empty forest F = {}
Sort edges such that w.l.o.g. w; <w, < ... < W
for each edge e={u,v} starting from i=1:
= if FIND(u) # FIND(v): # no cycle introduced?
» F=Fu{{uv}}
=  UNION(u,v)
return F
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Back to Runtime Considerations

= Sorting of edges needs O(|E]| log |E|)
= forest: Disjoint-set data structure

= |nitialization: O(|V|)

* |og |V] to find out whether the minimum-cost edge {u,v}
connects two sets (no cycle induced) or is within a set (cycle
would be induced)

= 2X FIND + potential UNION needs to be done O(|E|) times

= total O(|E| log |V])

= Qverall: O(|E| log |E|)
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Kruskal’s Algorithm: Proof of Correctness

Two parts needed:
© Algo always produces a spanning tree
final F contains no cycle and is connected by definition v/
® Algo always produces a minimum spanning tree
= argument by induction

= P:If Fis forest at a given stage of the algorithm, then there
IS some minimum spanning tree that contains F.

= clearly true for F = (V, {})

= assume that P holds when new edge e is added to F and
be T a MST that contains F

= feinT, fine
= fenotinT: T+ e has cycle C with edge f in C but not
In F (otherwise e would have introduced a cycle in F)

= now T —f+ eisatree with same weight as T (since
Tis a MST and f was not chosen to F)

" henceT—-f+eisMSTincludingT +e (i.e. P hcz}ds)
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Conclusion Greedy Algorithms |

What we have seen so far:
= two problems where a greedy algorithm was optimal
= money change
*  minimum spanning tree (Kruskal’s algorithm)
= put also: greedy not always optimal
* in particular for NP-hard problems

Obvious Question: when is greedy good?
Answer: If the problem is a matroid (not covered here)

From Wikipedia: [...] @ matroid is a structure that captures and
generalizes the notion of linear independence in vector
spaces. There are many equivalent ways to define a matroid,
the most significant being in terms of independent sets,
bases, circuits, closed sets or flats, closure operators, and
rank functions.
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Conclusions Greedy Algorithms |l

| hope it became clear...

...what a greedy algorithm is
...that it not always results in the optimal solution
...but that it does if and only if the problem is a matroid
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