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Course Overview

Fri, 18.9.2015 DB
Fri, 25.9.2015 DB
Fri, 2.10.2015 DB
Fri, 9.10.2015 AA
Fri, 16.10.2015 AA

Fri, 30.10.2015 AA
Fri, 6.11.2015 AA

16 - 20.11.2015

Date | JTopo

Introduction and Greedy Algorithms

Dynamic programming and Branch and Bound
Approximation Algorithms and Heuristics

Introduction to Continuous Optimization

End of Intro to Cont. Opt. + Gradient-Based Algorithms |

Gradient-Based Algorithms Il
Stochastic Algorithms and Derivative-free Optimization

Exam (exact date to be confirmed)

all classes + exam are from 14h till 17h15 (incl. a 15min break)

here in PUIO-D101/D103
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Further Detalls on Remaining Lectures

Introduction to Continuous Optimization
= examples (from ML / black-box problems)
= typical difficulties in optimization

Mathematical Tools to Characterize Optima
= reminders about differentiability, gradient, Hessian matrix
* unconstraint optimization
= first and second order conditions
= convexity
= constraint optimization

Gradient-based Algorithms
= guasi-Newton method (BFGS)
= DFO trust-region method

Learning in Optimization / Stochastic Optimization
= CMA-ES (adaptive algorithms / Information Geometry)
= PhD thesis possible on this topic
method strongly related to ML / new promising research area
Interesting open questions
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First Example of a Continuous Optimization Probie

Computer simulation teaches itself to walk upright (virtual robots (of
different shapes) learning to walk, through stochastic optimization
(CMA-ES)), by Utrecht University:

We present a control system based on 3D muscle actuation

https://www.youtube.com/watch?v=yci5Fullovk

T. Geitjtenbeek, M. Van de Panne, F. Van der Stappen: "Flexible Muscle-Based
Locomotion for Bipedal Creatures"”, SIGGRAPH Asia, 2013.
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Continuous Optimization

QcR*" >R
X = (X1, ., Xp) = f(X1, eer, Xp)

eER

=  Optimize f: {
unconstrained optimization

= Search space is continuous, i.e. composed of real vectors x € R"

. _ | dimension of the problem
"= dimension of the search space R™ (as vector space)

7 1D problem 2-D level sets

=/ M
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Unconstrained vs. Constrained Optimization

Unconstrained optimization
inf{f(x) | x € R"}

Constrained optimization
» Equality constraints: inf {f(x) | x € R*, gx(x) = 0,1 < k < p}

= |nequality constraints: inf{f(x) | x € R", gx(x) < 0,1 < k < p}

where always g;: R" - R
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Example of a Constraint

min f(x) = x? such that x < —1
XER
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Analytical Functions

Example: 1-D
filx) = alx —xp)*+b
where x,xo,b €E R,a €R

Generalization:
convex quadratic function

fz(x) - (x — xo)TA (x — xo) + b
where x,x,,b € R", A € R
and A symmetric positive definite (SPD)

Exercise:
What is the minimum of f,(x)?
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Levels Sets of Convex Quadratic Functions

Continuation of exercise:
What are the level sets of f,?

—

Reminder: level sets of a function
Le={x€eR"| f(x) =c}

(similar to topography lines /
level sets on a map)

PUBLIC
DOMAIN

© Anne Auger and Dimo Brockhoff, INRIA TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 9, 201¢



Levels Sets of Convex Quadratic Functions

Continuation of exercise:
What are the level sets of f,?

= Probably too complicated in general, thus an example here

= Consider A = (g g)b =0,n=2

a) Compute £, (x).
b) Plot the level sets of £, (x).

c) More generally, forn = 2, if A is SPD with eigenvalues 1, =
9 and 1, = 1, what are the level sets of £, (x)?
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Data Fitting — Data Calibration

Objective

= Given a sequence of data points (x;,y;) € RP X R,i =1, ..., N,
find a model "y = f(x)" that explains the data
experimental measurements in biology, chemistry, ...

= In general, choice of a parametric model or family of functions

(fo)oern

use of expertise for choosing model or simple models
only affordable (linear, quadratic)

= Try to find the parameter 6 € R" fitting best to the data

Fitting best to the data
Minimize the quadratic error:

N
min z|fe(xi) — yil?
=1

OERM
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Optimization and Machine Learning: Lin. Regre

Supervised Learning:
Predict y € Y from x € X, given a set of observations (examples)
Wi xitiz1,.N

(Simple) Linear regression
: . 1 p
Given a set of data: {yi,‘xi : ""xi’}i=1...N

|
X

T
i

WERP,LER ¢
\

N
2
min Z|wai+,8—yi
=1 ]
|

| XW — y||* X € RVX®+1) i e RP+1

same as data fitting with linear model, i.e. fi, 5 (x) = w'x + B,
6 € RPH1
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Optimization and Machine Learning: Regressi

Regression

= Data: N observations {y;,x;} E RX X

= ®(x;) € RP features of x;

= prediction as a linear function of the feature y = (8, ®(x))
= empirical risk minimization: find 8 solution of

N

1

min —2 1(y;,(6,D(x;)))
i=1

0er?P N

where I is a loss function [example: quadratic loss I(y,y) =
1/2(y — 9)* ]
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A Real-World Problem in Petroleum Engineering

Well Placement Problem

g 8

Expected NPV ($MM)
<

: Fluid flow

Oil flowsme (m3/day)

Time (days)
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What Makes a Function Difficult to Solve?

= dimensionality
(considerably) larger than three
= non-separability
dependencies between the objective variables
* jll-conditioning
" ruggedness

non-smooth, discontinuous, multimodal, and/or
noisy function

cut from 3D example,
solvable with an
evolution strategy
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Curse of Dimensionality

= The term Curse of dimensionality (Richard Bellman) refers to
problems caused by the rapid increase in volume associated
with adding extra dimensions to a (mathematical) space.

= Example: Consider placing 100 points onto a real interval, say
10,1]. To get similar coverage, in terms of distance between
adjacent points, of the 10-dimensional space [0,1]*° would
require 1001° = 102 points. The original 100 points appear now
as isolated points in a vast empty space.

= Consequently, a search policy (e.g. exhaustive search) that is
valuable in small dimensions might be useless in moderate or
large dimensional search spaces.
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Separable Problems

Definition (Separable Problem)
A function f is separable if

argmin f(xq, ..., x,) = (argmin f(xq,...),...,argmin f (..., xn))
(X1,Xn) X1 Xn

= it follows that f can be optimized in a sequence of
n independent 1-D optimization processes

3 NN N

Example: % %6
Additively decomposable functions 2.0 OGO © «

= 2\  e)))
fGoaetn) = ) i) 00O OO0 ¢

Rastrigin function © © . © 0 0 ©
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Non-Separable Problems

Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system
= f:x+— f(x) separable
= f:x+— f(Rx) non-separable
R rotation matrix

ar A 7 7 W T 3 "i-\o).. LIRS \ W T ;-'§J//-"

- ~ 7 AN = S (
(_I \..‘ I-A..:I i »... 7 ,_: \'| ‘ R ‘(9)\ "'\_ 2 = \9‘ ‘:_) S
'\9) /\\O/ S ;\\IO/,\\(? = l© -j) O)= ,J "@’ (@) @A

2 © O © O © ¢ Y05 290~ S
(@) O O (@) O O Q) ,(;:)\l = (O |@3 =7/l (0) o)
H) —‘ ‘N\"- » //-\\ o g I ,;" I\_,- o)A S (CUAN e |

1D © © @ ©) Q) ¢ R O O ~ @ &
() (O . . 0)) (o) 2SO s @)=l

@), ((C L0 (9 = (©) MO A0S
N AN A 7 7 Vi N~ O A

H © ©OO© © ¢ PO 0. ~O¢
@O X)) (00 (o) > ) (O g\ W
N~ (O @) @D @D @ RN O 2O

-1P _,-\© = @ \Q/ N - © =3 N -1F = /) O '@\ l\ Z/i(®) ’@, =
cO' / ) O { , “(\‘/ ' “\O)Y: ~ X I,\_ /". —~ \® / {“(’jﬁ
— - N . N B o) f \ = [ =
© ©. . © 0 © © Yo 5~ O~ Y

-3 5 R A= CA = 2 0)

-3 -2 -1 0 1 2 3 -93 -2 -1 0 1 2 3

[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in
evolution strategies: The generating set adaptation”. Sixth ICGA, pp. 57-64, Morgan Kaufmann

[2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark
Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278
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llI-Conditioned Problems: Curvature of Leve

Consider the convex-quadratic function
1 1 z 1 z
f(X) = — (x — x*)TH(x — x*) = — hi l-xl-z + — hl]xlx]
2 2 i 2 i ’

H is Hessian matrix of f and symmetric positive definite

gradient direction —f'(x)?
Newton direction —H~1f"(x)!

lll-conditioning means squeezed level sets (high curvature).

Condition number equals nine here. Condition numbers up to 100
are not unusual in real-world problems.

If H = I (small condition number of H) first order information (e.g.
the gradient) is sufficient. Otherwise second order information
(estimation of H~1) information necessary.

TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 9, 2(
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Different Notions of Optimum

Unconstrained case
= Jocal vs. global
= |ocal minimum x*: 3 a neighborhood V of x* such that
vx eV:f(x) = f(x¥)
= global minimum: vx € Q: f(x) = f(x*)
= strict local minimum if the inequality is strict
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Further Detalls on Remaining Lectures

Introduction to Continuous Optimization
= examples (from ML / black-box problems)
= typical difficulties in optimization

Mathematical Tools to Characterize Optima
= reminders about differentiability, gradient, Hessian matrix
* unconstraint optimization
= first and second order conditions
= convexity
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= guasi-Newton method (BFGS)
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= PhD thesis possible on this topic
method strongly related to ML / new promising research area
Interesting open questions
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Mathematical Characterization of Optima

Objective: Derive general characterization of optima

Example: if f: R — R derivable,
f'(x) = 0 at optimal points

= generalizationto f:R" > R ?
= generalization to constrained problems?

Remark: notion of optimum independent of notion of derivability

optima of such function can be easily
approached by certain type of methods
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A Few Reminders...

= (E,|l |]) will be a K-general vector space endowed with a norm
|| || and a corpus K.

= |f not familiar with this notion, think about E = R", x € R", K = R,

and||x||—\/Zl (xF=vVxTx

Linear Mapping:

» w:E - Eis alinear mapping if u(Ax + uy) = Au(x) + pu(y) for all
ALu€eKandforallx,y €eE

Exercise:

Let E = R", K = R and A € R™" be a matrix.
Show that x — Ax is a linear mapping.
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