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Course Overview

Fri, 18.9.2015 DB
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Fri, 9.10.2015 AA
Fri, 16.10.2015 AA

Fri, 30.10.2015  AA
Fri, 6.11.2015 AA

20.11.2015

Date | JTopo

Introduction and Greedy Algorithms

Dynamic programming and Branch and Bound
Approximation Algorithms and Heuristics
Introduction to Continuous Optimization
Introduction to Continuous Optimization Il

Gradient-Based Algorithms
Stochastic Algorithms and Derivative-free Optimization

Exam

all classes + exam are from 14h till 17h15 (incl. a 15min break)

here in PUIO-D101/D103

© Anne Auger and Dimo Brockhoff, INRIA

TC2: Introduction to Optimization, U. Paris-Saclay, Oct. 30



Constrained Optimization
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Equality Constraint

Objective:

Generalize the necessary condition of V'f(x) = 0 at the optima of f
when f isin 1, i.e. is differentiable and its differential is continuous

Theorem:
Be U anopensetof (E,|| ||),and f:U >R, g:U > Rinc.
Let a € E satisfy

{f (a) = inf {f(x) | x € R", g(x) = 0}
gla) =0
l.e. a IS optimum of the problem

If Vg(a) + 0, then there exists a constant A € R called Lagrange
multiplier, such that

‘ Vf(a) + AVg(a) = q Euler — Lagrange equation
|
l.e. gradients of f and g in a are colinear
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Geometrical Interpretation Using an Ex

Exercise:

Consider the problem
inf {f(x,y) | (x,¥) € R? g(x,y) = 0}

2 gley)=x*+y?-1=0

1) Plot the level sets of f, plot g =0
2) Compute IV'f and Vg
3) Find the solutions with Vf + AVg =0
equation solving with 3 unknowns (x, y, )
4) Plot the solutions of 3) on top of the level set graph of 1)
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Interpretation of Euler-Lagrange Equation

Intuitive way to retrieve the Euler-Lagrange equation:

= |n alocal minimum a of a constrained problem, the
hypersurfaces (or level sets) f = f(a) and g = 0 are necessarily
tangent (otherwise we could decrease f by moving along g = 0).

= Since the gradients Vf(a) and Vg(a) are orthogonal to the level
sets f = f(a) and g = 0, it follows that Vf(a) and Vg(a) are
colinear.
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Generalization to More than One Constraint

Theorem

= Assume f:U » Rand g,:U - R (1 <k <p)are cL.
= Let a be such that

f(a) =inf {f(x) | x € R", gx(x) =0, 1<k<p}
gr(@) =0 foralll<k<p

= |f (ng(a))1<k<p are linearly independent, then there exist p real
constants (Ax);<k<p Such that

p
Vf(a) + 2 AV gr(a) =0
k=1

|

Lagrange multiplier
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The Lagrangian

= Define the Lagrangian on R™ x R? as

p
LC (D = O+ ) Agic(0)
k=1

= To find optimal solutions, we can solve the optimality system

[ p

) Find (x, {1}) € R™ X RP such that V'f(x) + Z Vg5 (x) = 0
k=1

\ gr(x) =0 foralll1<k<p

Find (x,{1}) € R™ X R? such that V. L(x, {4;}) = 0
V1, L, {4 PDx) =0 foralll <k <p
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Inequality Constraint: Definitions

LetU ={x e R"| gr(x) =0 (fork € E), gr(x) <0 (for k € I)}.

Definition:
The points in R" that satisfy the constraints are also called feasible
points.

Definition:
Let a € U, we say that the constraint g, (x) < 0 (for k € I) is active
inaif g,(a) = 0.
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Inequality Constraint: Karush-Kuhn-Tucker T

Theorem (Karush-Kuhn-Tucker, KKT):

Let U be an open setof (E,|||]) and f:U - R, g,:U - R, all ¢1
Furthermore, let a € U satisfy

(f(@) = inf(f(x) | x € R™, g (x) = 0 (for k € E), g (x) < 0 (for k € 1)
3 gix(a) =0 (for k € E)

\ gr(a) <0 (fork €1)

Let 12 be the set of constraints that are active in a. Assume that
(Vs (a))k < L o are linearly independent.
a

Then there exist (A1 )1<k<p that satisfy
(

vf(a) + 2 LV gi(a) = 0

gr(a) = O (fork € E)
grx(a) <0 (fork €1)
Ay =0 (fork € 12)
\Akgr(a) =0 (fork e EUI)

AN
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Inequality Constraint: Karush-Kuhn-Tucker

Theorem (Karush-Kuhn-Tucker, KKT):

Let U be an open setof (E,|||]) and f:U - R, g,:U - R, all ¢1
Furthermore, let a € U satisfy

(f(@) = inf(f(x) | x € R™, g (x) = 0 (for k € E), g (x) < 0 (for k € 1)
3 gix(a) =0 (for k € E)

\ gr(a) <0 (fork €1)

Let 12 be the set of constraints that are active in a. Assume that
(Vs (a))k < L o are linearly independent.

Then there exist (A1 )1<k<p that satisfy
(

vf(a) + 2 LV gi(a) = 0

gi(a) = 0 (for k € E) either active constraint
gr(a) <0 (fork € 1) ord=0
Ay = 0 (fork-cid)

\Akgr(a) =0 (fork e EUI)

A
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Descent Methods
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Descent Methods

General principle
© choose an initial point x,, sett =1
® while not happy
» choose a descent directiond; # 0
* |ine search:
= choose a step size g; > 0
" setx;p1 =X +o0:d;
» sett=t+1

Remaining questions
= how to choose d;?
= how to choose g;?
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Gradient Descent

Rationale: d; = —Vf(x;) IS a descent direction
indeed for f differentiable

Flx = V() = fG0) = ollTF |+ 0(GITFIN)
< f(x) for ¢ small enough
Step-size

= optimal step-size: g; = argmin f(x; — aVf(x;))
o

= Line Search: total or partial optimization w.r.t. o
Total is however often too "expensive" (needs to be performed at
each iteration step)
Partial optimization: execute a limited number of trial steps until a
loose approximation of the optimum is found. Typical rule for

partial optimization: Armijo rule
see mid-term exam

Stopping criteria:
norm of gradient smaller than ¢
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Gradient Descent: Simple Theoretical Analy

Assume f is twice continuously differentiable, convex and that
uly < V4f(x) < L1z with u > 0 holds, assume a fixed step-size o, =

—hlb—\

Note: A < B means xTAx < xTBx for all x

Xep1 — X* =X — X" — 0.V f(y)(xe — x*) for some y; € [x;, x”]
1
Xepp — X = (Id — szf(Yt)) (x; —x%)

1
Hence |lxeq — x7 |12 < [[llg =2 V2 fOllI? [lxe — x7 ]2
2

<(1=5) Il — 27112

Linear convergence: ||x;+; — x*|| < (1 — %) || — x|

algorithm slower and slower with increasing condition number

Non-convex setting: convergence towards stationary point
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Newton Algorithm

Newton Method

= descent direction: —[V?f(x;)] 1V f(x;) [so-called Newton
direction]

= The Newton direction:
= minimizes the best (locally) quadratic approximation of f:
fla+Ax) = f(x) + Vf()TAx + = (M) V2 f (x) Ax

= points towards the optimum on f(x) = (x — x*)TA(x — x*)
= however, Hessian matrix is expensive to compute in general and
Its inversion is also not easy

guadratic convergence
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Affine Invariance

Affine Invariance: same behavior on f(x) and f(Ax + b) for A €
GLn(R)
= Newton method is affine invariant

see http://users.ece.utexas.edu/~cmcaram/EE381V_2012F/
Lecture 6 Scribe Notes.final.pdf

= same convergence rate on all convex-gquadratic functions
= Gradient method not affine invariant
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Quasi-Newton Method: BFGS

Xep1 = X — 0 H{Vf (x;) Where H; is an approximation of the inverse
Hessian

Key idea of Quasi Newton:

successive iterates x;, x;,, and gradients Vf (x;), Vf(x;+1) yield
second order information

Qe = V2 f (Xe1)De
where py = xt4q — x¢ and q; = Vf(xpyq) — V()

Most popular implementation of this idea: Broyden-Fletcher-
Goldfarb-Shanno (BFGS)

= default in MATLAB's £fminunc and python's
scipy.optimize.minimize
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