Stochastic Methods for Continuous Optimization

Anne Auger et Dimo Brockhoff

Paris-Saclay Master - Master 2 Informatique - Parcours Apprentissage, Information et Contenu (AIC)

2016

Slides taken from Auger, Hansen, Gecco's tutorial

Problem Statement

Continuous Domain Search/Optimization

Task: minimize an objective function (*fitness* function, *loss* function) in continuous domain

$$f: \mathcal{X} \subseteq \mathbb{R}^n \to \mathbb{R}, \qquad \mathbf{x} \mapsto f(\mathbf{x})$$

Black Box scenario (direct search scenario)

- gradients are not available or not useful
- problem domain specific knowledge is used only within the black box, e.g. within an appropriate encoding
- Search costs: number of function evaluations

What Makes a Function Difficult to Solve?

Why stochastic search?

 non-linear, non-quadratic, non-convex on linear and quadratic functions much better search policies are available

- ruggedness non-smooth, discontinuous, multimodal, and/or noisy function
- dimensionality (size of search space)

(considerably) larger than three

non-separability

dependencies between the objective variables

ill-conditioning

gradient direction Newton direction

Ruggedness

non-smooth, discontinuous, multimodal, and/or noisy

cut from a 5-D example, (easily) solvable with evolution strategies

The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval [0,1]. Now consider the 10-dimensional space $[0,1]^{10}$. To get similar coverage in terms of distance between adjacent points requires $20^{10} \approx 10^{13}$ points. 20 points appear now as isolated points in a vast empty space.

Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in)

Consequence: a search policy that is valuable in small dimensions might be useless in moderate or large dimensional search spaces. Example: exhaustive search.

The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval [0, 1]. Now consider the 10-dimensional space $[0, 1]^{10}$. To get similar coverage in terms of distance between adjacent points requires $20^{10} \approx 10^{13}$ points. 20 points appear now as isolated points in a vast empty space.

Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in)

Consequence: a search policy that is valuable in small dimensions might be useless in moderate or large dimensional search spaces. Example: exhaustive search.

The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval [0, 1]. Now consider the 10-dimensional space $[0, 1]^{10}$. To get similar coverage in terms of distance between adjacent points requires $20^{10} \approx 10^{13}$ points. 20 points appear now as isolated points in a vast empty space.

Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in)

Consequence: a search policy that is valuable in small dimensions might be useless in moderate or large dimensional search spaces. Example: exhaustive search.

The term *Curse of dimensionality* (Richard Bellman) refers to problems caused by the rapid increase in volume associated with adding extra dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval [0, 1]. Now consider the 10-dimensional space $[0, 1]^{10}$. To get similar coverage in terms of distance between adjacent points requires $20^{10} \approx 10^{13}$ points. 20 points appear now as isolated points in a vast empty space.

Remark: distance measures break down in higher dimensionalities (the central limit theorem kicks in)

Consequence: a search policy that is valuable in small dimensions might be useless in moderate or large dimensional search spaces. Example: exhaustive search.

Separable Problems Definition (Separable Problem)

A function f is separable if

$$\arg\min_{(x_1,\ldots,x_n)} f(x_1,\ldots,x_n) = \left(\arg\min_{x_1} f(x_1,\ldots),\ldots,\arg\min_{x_n} f(\ldots,x_n)\right)$$

 \Rightarrow it follows that *f* can be optimized in a sequence of *n* independent 1-D optimization processes

Ъ.

 $\checkmark Q \bigcirc$

Non-Separable Problems

Building a non-separable problem from a separable one ^(1,2)

Rotating the coordinate system

- $f : \mathbf{x} \mapsto f(\mathbf{x})$ separable
- $f : \mathbf{x} \mapsto f(\mathbf{R}\mathbf{x})$ non-separable

R rotation matrix

¹Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies: The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278

III-Conditioned Problems

Curvature of level sets

Consider the convex-quadratic function

 $f(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^T \mathbf{H} (\mathbf{x} - \mathbf{x}^*) = \frac{1}{2} \sum_i h_{i,i} (x_i - x_i^*)^2 + \frac{1}{2} \sum_{i \neq j} h_{i,j} (x_i - x_i^*) (x_j - x_j^*)$

 \boldsymbol{H} is Hessian matrix of f and symmetric positive definite

gradient direction $-f'(\mathbf{x})^{T}$ Newton direction $-\mathbf{H}^{-1}f'(\mathbf{x})^{T}$

Ill-conditioning means squeezed level sets (high curvature). Condition number equals nine here. Condition numbers up to 10¹⁰ are not unusual in real world problems.

If $H \approx I$ (small condition number of H) first order information (e.g. the gradient) is sufficient. Otherwise second order information (estimation of H^{-1}) is necessary.

What Makes a Function Difficult to Solve?

... and what can be done

The Problem	Possible Approaches
Dimensionality	exploiting the problem structure separability, locality/neighborhood, encoding
III-conditioning	second order approach changes the neighborhood metric
Ruggedness	non-local policy, large sampling width (step-size) as large as possible while preserving a reasonable convergence speed
	population-based method, stochastic, non-elitistic
	recombination operator serves as repair mechanism
	restarts
	metaphors

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへぐ

Stochastic Search

A black box search template to minimize $f : \mathbb{R}^n \to \mathbb{R}$

Initialize distribution parameters θ , set population size $\lambda \in \mathbb{N}$ While not terminate

- **O** Sample distribution $P(\mathbf{x}|\boldsymbol{\theta}) \rightarrow \mathbf{x}_1, \dots, \mathbf{x}_{\lambda} \in \mathbb{R}^n$
- 2 Evaluate x_1, \ldots, x_{λ} on f
- 3 Update parameters $\theta \leftarrow F_{\theta}(\theta, x_1, \dots, x_{\lambda}, f(x_1), \dots, f(x_{\lambda}))$

Everything depends on the definition of *P* and F_{θ}

deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution *P* is implicitly defined via operators on a population, in particular, selection, recombination and mutation

Natural template for (incremental) *Estimation of Distribution Algorithms* ~

Evolution Strategies

New search points are sampled normally distributed

 $x_i \sim m + \sigma \mathcal{N}_i(\mathbf{0}, \mathbf{C})$ for $i = 1, \dots, \lambda$

as perturbations of m, where $x_i, m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\mathbf{C} \in \mathbb{R}^{n \times n}$

where

- the mean vector $m \in \mathbb{R}^n$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

here, all new points are sampled with the same parameters

The question remains how to update m, C, and σ .

Normal Distribution

probability density of the 1-D standard normal distribution

probability density of a 2-D normal distribution

E.

 $\checkmark Q (~$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Normal Distribution

1-D case

probability density of the 1-D standard normal distribution $\mathcal{N}(0,1)$

(expected (mean) value, variance) = (0,1)

$$p(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

General case

▶ Normal distribution $\mathcal{N}(\mathbf{m}, \sigma^2)$

(expected value, variance) = (\mathbf{m}, σ^2) density: $p_{\mathbf{m},\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mathbf{m})^2}{2\sigma^2}\right)$

《口》《四》《注》《注》 [] 正

MAC.

- A normal distribution is entirely determined by its mean value and variance
- The family of normal distributions is closed under linear transformations: if X is normally distributed then a linear transformation aX + b is also normally distributed
- Exercice: Show that $\mathbf{m} + \sigma \mathcal{N}(0, 1) = \mathcal{N}(\mathbf{m}, \sigma^2)$

Normal Distribution

General case

A random variable following a 1-D normal distribution is determined by its mean value m and variance σ^2 .

In the *n*-dimensional case it is determined by its mean vector and covariance matrix

Covariance Matrix

If the entries in a vector $\mathbf{X} = (X_1, \dots, X_n)^T$ are random variables, each with finite variance, then the covariance matrix Σ is the matrix whose (i, j) entries are the covariance of (X_i, X_j)

$$\Sigma_{ij} = \operatorname{cov}(X_i, X_j) = \operatorname{E}\left[(X_i - \mu_i)(X_j - \mu_j)\right]$$

where $\mu_i = E(X_i)$. Considering the expectation of a matrix as the expectation of each entry, we have

$$\Sigma = \mathrm{E}[(X - \mu)(X - \mu)^{T}]$$

 Σ is symmetric, positive definite

<ロ> <四> <四> <四> <三</td>

The Multi-Variate (*n*-Dimensional) Normal Distribution

Any multi-variate normal distribution $\mathcal{N}(\mathbf{m}, \mathbf{C})$ is uniquely determined by its mean value $\mathbf{m} \in \mathbb{R}^n$ and its symmetric positive definite $n \times n$ covariance matrix \mathbf{C} .

density: $p_{\mathcal{N}(\boldsymbol{m},\mathbf{C})}(\boldsymbol{x}) = \frac{1}{(2\pi)^{\boldsymbol{n}/2}|\mathbf{C}|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{m})^{\mathrm{T}}\mathbf{C}^{-1}(\boldsymbol{x}-\boldsymbol{m})\right),$

The mean value *m*

- determines the displacement (translation)
- value with the largest density (modal value)
- the distribution is symmetric about the distribution mean

$$\mathcal{N}(\boldsymbol{m},\mathbf{C}) = \boldsymbol{m} + \mathcal{N}(\mathbf{0},\mathbf{C})$$

イロト イヨト イヨト イヨト

うくぐ

The covariance matrix C

- determines the shape
- geometrical interpretation: any covariance matrix can be uniquely identified with the iso-density ellipsoid {x ∈ ℝⁿ | (x − m)^TC⁻¹(x − m) = 1}

... any covariance matrix can be uniquely identified with the iso-density ellipsoid $\{x \in \mathbb{R}^n \mid (x - m)^T \mathbf{C}^{-1} (x - m) = 1\}$

where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable for separable problems) and $A \times \mathcal{N}(0, I) \sim \mathcal{N}(0, AA^{T})$ holds for all A.

 \mathcal{A}

The ($\mu/\mu, \lambda$)-ES

Non-elitist selection and intermediate (weighted) recombination Given the *i*-th solution point $x_i = m + \sigma \mathcal{N}_i(\mathbf{0}, \mathbf{C}) = m + \sigma \mathbf{y}_i$

Let $x_{i:\lambda}$ the *i*-th ranked solution point, such that $f(x_{1:\lambda}) \leq \cdots \leq f(x_{\lambda:\lambda})$. The new mean reads

$$\boldsymbol{m} \leftarrow \sum_{i=1}^{\mu} w_i \boldsymbol{x}_{i:\lambda} = \boldsymbol{m} + \sigma \sum_{\substack{i=1 \ \dots \ i=: y_w}}^{\mu} w_i \boldsymbol{y}_{i:\lambda}$$

where

$$w_1 \ge \dots \ge w_\mu > 0, \quad \sum_{i=1}^{\mu} w_i = 1, \quad \frac{1}{\sum_{i=1}^{\mu} w_i^2} =: \mu_w \approx \frac{\lambda}{4}$$

The best μ points are selected from the new solutions (non-elitistic) and weighted intermediate recombination is applied.

Invariance Under Monotonically Increasing Functions

Rank-based algorithms

Update of all parameters uses only the ranks

 $f(x_{1:\lambda}) \leq f(x_{2:\lambda}) \leq \dots \leq f(x_{\lambda:\lambda})$

Basic Invariance in Search Space

• translation invariance

is true for most optimization algorithms

Identical behavior on f and f_a

$$f: \mathbf{x} \mapsto f(\mathbf{x}), \qquad \mathbf{x}^{(t=0)} = \mathbf{x}_0$$

$$f_{\mathbf{a}}: \mathbf{x} \mapsto f(\mathbf{x} - \mathbf{a}), \quad \mathbf{x}^{(t=0)} = \mathbf{x}_0 + \mathbf{a}$$

No difference can be observed w.r.t. the argument of f

Invariance Under Rigid Search Space Transformations

for example, invariance under search space rotation (separable \Leftrightarrow non-separable)

Invariance Under Rigid Search Space Transformations

for example, invariance under search space rotation (separable \Leftrightarrow non-separable)

Invariance

The grand aim of all science is to cover the greatest number of empirical facts by logical deduction from the smallest number of hypotheses or axioms. — Albert Einstein

- Empirical performance results
 - from benchmark functions
 - from solved real world problems

are only useful if they do generalize to other problems

Invariance is a strong non-empirical statement about generalization generalizing (identical) performance from a single function to a whole class of functions

consequently, invariance is important for the evaluation of search algorithms

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, separable with varying condition number α

Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)
DE (Storn & Price 1996)
PSO (Kennedy & Eberhart 1995)
CMA-ES (Hansen & Ostermeier 2001)

$$f(\mathbf{x}) = g(\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x})$$
 with

H diagonal *g* identity (for BFGS and NEWUOA)

g any order-preserving = strictly increasing function (for all other)

SP1 = average number of objective function evaluations¹⁴ to reach the target function value of $g^{-1}(10^{-9})$

Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, non-separable (rotated) with varying condition number α

Rotated Ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970) NEWUAO (Powell 2004) DE (Storn & Price 1996) PSO (Kennedy & Eberhart 1995) CMA-ES (Hansen & Ostermeier 2001)

$$f(\mathbf{x}) = g(\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x})$$
 with

H full

g identity (for BFGS and NEWUOA)

g any order-preserving = strictly increasing function (for all other)

SP1 = average number of objective function evaluations¹⁵ to reach the target function value of $g^{-1}(10^{-9})$

Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA < 🚊 🕨 🛓 🖉 🖉 🖉

Comparison to BFGS, NEWUOA, PSO and DE

f non-convex, non-separable (rotated) with varying condition number α

Sqrt of sqrt of rotated ellipsoid dimension 20, 21 trials, tolerance 1e-09, eval max 1e+07

BFGS (Broyden et al 1970) NEWUAO (Powell 2004) DE (Storn & Price 1996) PSO (Kennedy & Eberhart 1995) CMA-ES (Hansen & Ostermeier 2001) $f(\mathbf{x}) = g(\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x})$ with

H full

 $g: x \mapsto x^{1/4}$ (for BFGS and NEWUOA)

g any order-preserving = strictly increasing function (for all other)

SP1 = average number of objective function evaluations¹⁶ to reach the target function value of $g^{-1}(10^{-9})$

Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA < 🚊 🕨 🛓 🖉 🔍 🔍

Zoom on ESs: Objectives

Illustrate why and how sampling distribution is controlled

step-size control (overall standard deviation) allows to achieve linear convergence

covariance matrix control allows to solve ill-conditioned problems

Why Step-Size Control?

Methods for Step-Size Control

• 1/5-th success rule^{*ab*}, often applied with "+"-selection

increase step-size if more than 20% of the new solutions are successful, decrease otherwise

• σ -self-adaptation^c, applied with ","-selection

mutation is applied to the step-size and the better, according to the objective function value, is selected

simplified "global" self-adaptation

path length control^d (Cumulative Step-size Adaptation, CSA)^e self-adaptation derandomized and non-localized

E

^aRechenberg 1973, *Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen Evolution*, Frommann-Holzboog

^bSchumer and Steiglitz 1968. Adaptive step size random search. *IEEE TAC*

^CSchwefel 1981, *Numerical Optimization of Computer Models*, Wiley

^dHansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies, *Evol. Comput. 9(2)*

eOstermeier *et al* 1994, Step-size adaptation based on non-local use of selection information, PPSN IV

Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

 $\begin{array}{rcl} \boldsymbol{x}_i &=& \boldsymbol{m} + \sigma \, \boldsymbol{y}_i \\ \boldsymbol{m} &\leftarrow& \boldsymbol{m} + \sigma \, \boldsymbol{y}_w \end{array}$

< ∃ >

 $\checkmark Q (~$

loosely speaking steps are

- perpendicular under random selection (in expectation)
- perpendicular in the desired situation (to be most efficient)

Path Length Control (CSA)

The Equations

Initialize $m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, evolution path $p_{\sigma} = 0$, set $c_{\sigma} \approx 4/n$, $d_{\sigma} \approx 1$.

$$m \leftarrow m + \sigma y_{w} \text{ where } y_{w} = \sum_{i=1}^{\mu} w_{i} y_{i:\lambda} \text{ update mean}$$

$$p_{\sigma} \leftarrow (1 - c_{\sigma}) p_{\sigma} + \sqrt{1 - (1 - c_{\sigma})^{2}} \sqrt{\mu_{w}} y_{w}$$

$$accounts \text{ for } 1 - c_{\sigma} \text{ accounts for } w_{i}$$

$$\sigma \leftarrow \sigma \times \exp\left(\frac{c_{\sigma}}{d_{\sigma}}\left(\frac{\|p_{\sigma}\|}{\mathbb{E}\|\mathcal{N}(\mathbf{0},\mathbf{I})\|} - 1\right)\right) \text{ update step-size}$$

$$>1 \iff \|p_{\sigma}\| \text{ is greater than its expectation}$$

Path Length Control (CSA)

The Equations

Initialize $m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, evolution path $p_{\sigma} = 0$, set $c_{\sigma} \approx 4/n$, $d_{\sigma} \approx 1$.

$$m \leftarrow m + \sigma y_{w} \text{ where } y_{w} = \sum_{i=1}^{\mu} w_{i} y_{i:\lambda} \text{ update mean}$$

$$p_{\sigma} \leftarrow (1 - c_{\sigma}) p_{\sigma} + \underbrace{\sqrt{1 - (1 - c_{\sigma})^{2}}}_{\text{accounts for } 1 - c_{\sigma}} \underbrace{\sqrt{\mu_{w}}}_{\text{accounts for } w_{i}} y_{w}$$

$$\sigma \leftarrow \sigma \times \exp\left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{\|p_{\sigma}\|}{\mathsf{E}\|\mathcal{N}(\mathbf{0},\mathbf{I})\|} - 1\right)\right) \text{ update step-size}$$

$$>1 \iff \|p_{\sigma}\| \text{ is greater than its expectation}$$

Evolution Strategies

Recalling

New search points are sampled normally distributed

 $\mathbf{x}_i \sim \mathbf{m} + \sigma \, \mathcal{N}_i(\mathbf{0}, \mathbf{C})$ for $i = 1, \dots, \lambda$

as perturbations of m, where $x_i, m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, $\mathbb{C} \in \mathbb{R}^{n \times n}$ where

- the mean vector $m \in \mathbb{R}^n$ represents the favorite solution
- the so-called step-size $\sigma \in \mathbb{R}_+$ controls the step length
- the covariance matrix $\mathbf{C} \in \mathbb{R}^{n \times n}$ determines the shape of the distribution ellipsoid

The remaining question is how to update C.

Rank-One Update

initial distribution, $\mathbf{C} = \mathbf{I}$

... equations

Rank-One Update

initial distribution, $\mathbf{C} = \mathbf{I}$

...equations ▲□▶▲□▶▲■▶▲≣▶ ■ ⑦९ペ

Rank-One Update

 y_w , movement of the population mean *m* (disregarding σ)

... equations

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽��♡

Rank-One Update

$$\boldsymbol{m} \leftarrow \boldsymbol{m} + \sigma \boldsymbol{y}_{w}, \quad \boldsymbol{y}_{w} = \sum_{i=1}^{\mu} \boldsymbol{w}_{i} \boldsymbol{y}_{i:\lambda}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\boldsymbol{0}, \boldsymbol{C})$$

mixture of distribution C and step y_w , C $\leftarrow 0.8 \times C + 0.2 \times y_w y_w^T$

... equations

 $\checkmark Q (~$

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Rank-One Update

new distribution (disregarding σ)

... equations

▲□▶▲□▶▲≣▶▲≣▶ ≣ 釣�?

Rank-One Update

new distribution (disregarding σ)

... equations

▲□▶▲□▶▲≣▶▲≣▶ ≣ 釣�?

Rank-One Update

movement of the population mean *m*

... equations

▲□▶▲□▶▲≣▶▲≣▶ ≣ 釣�?

Rank-One Update

mixture of distribution C and step y_w , C $\leftarrow 0.8 \times C + 0.2 \times y_w y_w^T$

... equations

Rank-One Update

$$\boldsymbol{m} \leftarrow \boldsymbol{m} + \sigma \boldsymbol{y}_{w}, \quad \boldsymbol{y}_{w} = \sum_{i=1}^{\mu} \boldsymbol{w}_{i} \boldsymbol{y}_{i:\lambda}, \quad \boldsymbol{y}_{i} \sim \mathcal{N}_{i}(\boldsymbol{0}, \mathbf{C})$$

new distribution,

 $\mathbf{C} \leftarrow 0.8 \times \mathbf{C} + 0.2 \times \mathbf{y}_w \mathbf{y}_w^{\mathrm{T}}$

the ruling principle: the adaptation increases the likelihood of successful steps, y_w , to appear again another viewpoint: the adaptation follows a natural gradient approximation of the expected fitness

Rank-One Update Initialize $m \in \mathbb{R}^n$, and $\mathbf{C} = \mathbf{I}$, set $\sigma = 1$, learning rate $c_{cov} \approx 2/n^2$ While not terminate

$$\begin{aligned} \mathbf{x}_{i} &= \mathbf{m} + \sigma \mathbf{y}_{i}, \qquad \mathbf{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathbf{C}), \\ \mathbf{m} \leftarrow \mathbf{m} + \sigma \mathbf{y}_{w} \qquad \text{where } \mathbf{y}_{w} = \sum_{i=1}^{\mu} w_{i} \mathbf{y}_{i:\lambda} \\ \mathbf{C} \leftarrow (1 - c_{\text{cov}})\mathbf{C} + c_{\text{cov}} \mu_{w} \underbrace{\mathbf{y}_{w} \mathbf{y}_{w}^{\text{T}}}_{\text{rank-one}} \qquad \text{where } \mu_{w} = \frac{1}{\sum_{i=1}^{\mu} w_{i}^{2}} \geq 1 \end{aligned}$$

The rank-one update has been found independently in several domains^{6 7 8 9}

46

⁸Ljung 1999. System Identification: Theory for the User

⁹Haario et al 2001. An adaptive Metropolis algorithm, JSTOR

⁶Kjellström&Taxén 1981. Stochastic Optimization in System Design, IEEE TCS

⁷Hansen&Ostermeier 1996. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation, ICEC

The CMA-ES

Input: $m \in \mathbb{R}^n$, $\sigma \in \mathbb{R}_+$, λ Initialize: $\mathbf{C} = \mathbf{I}$, and $p_{\mathbf{c}} = \mathbf{0}$, $p_{\sigma} = \mathbf{0}$, Set: $c_{\mathbf{c}} \approx 4/n$, $c_{\sigma} \approx 4/n$, $c_1 \approx 2/n^2$, $c_{\mu} \approx \mu_w/n^2$, $c_1 + c_{\mu} \le 1$, $d_{\sigma} \approx 1 + \sqrt{\frac{\mu_w}{n}}$, and $w_{i=1...\lambda}$ such that $\mu_w = \frac{1}{\sum_{i=1}^{\mu} w_i^2} \approx 0.3 \lambda$

While not terminate

$$\begin{aligned} \mathbf{x}_{i} &= \mathbf{m} + \sigma \mathbf{y}_{i}, \quad \mathbf{y}_{i} \sim \mathcal{N}_{i}(\mathbf{0}, \mathbf{C}), \quad \text{for } i = 1, \dots, \lambda & \text{sampling} \\ \mathbf{m} \leftarrow \sum_{i=1}^{\mu} w_{i} \mathbf{x}_{i:\lambda} &= \mathbf{m} + \sigma \mathbf{y}_{w} \quad \text{where } \mathbf{y}_{w} = \sum_{i=1}^{\mu} w_{i} \mathbf{y}_{i:\lambda} & \text{update mean} \\ \mathbf{p}_{c} \leftarrow (1 - c_{c}) \mathbf{p}_{c} + \mathbf{1}_{\{||\mathbf{p}_{\sigma}|| < 1.5\sqrt{n}\}} \sqrt{1 - (1 - c_{c})^{2}} \sqrt{\mu_{w}} \mathbf{y}_{w} & \text{cumulation for } \mathbf{C} \\ \mathbf{p}_{\sigma} \leftarrow (1 - c_{\sigma}) \mathbf{p}_{\sigma} + \sqrt{1 - (1 - c_{\sigma})^{2}} \sqrt{\mu_{w}} \mathbf{C}^{-\frac{1}{2}} \mathbf{y}_{w} & \text{cumulation for } \sigma \\ \mathbf{C} \leftarrow (1 - c_{1} - c_{\mu}) \mathbf{C} + c_{1} \mathbf{p}_{c} \mathbf{p}_{c}^{\mathrm{T}} + c_{\mu} \sum_{i=1}^{\mu} w_{i} \mathbf{y}_{i:\lambda} \mathbf{y}_{i:\lambda}^{\mathrm{T}} & \text{update } \mathbf{C} \\ \sigma \leftarrow \sigma \times \exp\left(\frac{c_{\sigma}}{d_{\sigma}} \left(\frac{||\mathbf{p}_{\sigma}||}{\mathsf{E}||\mathcal{N}(\mathbf{0},\mathbf{I})||} - 1\right)\right) & \text{update of } \sigma \end{aligned}$$

Not covered on this slide: termination, restarts, useful output, boundaries and encoding

Experimentum Crucis (0)

What did we want to achieve?

reduce any convex-quadratic function

$$f(\boldsymbol{x}) = \boldsymbol{x}^{\mathrm{T}} \boldsymbol{H} \boldsymbol{x}$$

e.g.
$$f(\mathbf{x}) = \sum_{i=1}^{n} 10^{6\frac{i-1}{n-1}} x_i^2$$

to the sphere model

$$f(\boldsymbol{x}) = \boldsymbol{x}^{\mathrm{T}}\boldsymbol{x}$$

without use of derivatives

Ines of equal density align with lines of equal fitness

 $\mathbf{C} \propto \boldsymbol{H}^{-1}$

in a stochastic sense

Experimentum Crucis (1)

f convex quadratic, separable

Experimentum Crucis (2)

f convex quadratic, as before but non-separable (rotated)

