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© H.-P. Schwefel

Maly LOLek



3TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2017© Dimo Brockhoff, Inria 3

Mastertitelformat bearbeiten

Typically, we aim at

 finding solutions x which minimize f(x) in the shortest time possible

(maximization is reformulated as minimization)

 or finding solutions x with as small f(x) in the shortest time possible

(if finding the exact optimum is not possible)

What is Optimization?
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Date Topic

Mon, 18.9.2017 Introduction and Group Project

Wed, 20.9.2017 Benchmarking with the COCO Platform (Group Project)

Fri, 22.9.2017 Introduction to Continuous Optimization

Fri, 29.9.2017 Gradient-Based Algorithms

Fri, 6.10.2017 Stochastic Algorithms and Derivative-free Optimization

Fri, 13.10.2017 Graph Theory, Greedy Algorithms and Dynamic 

programming

Fri, 20.10.2017 Dynamic Programming, Branch and Bound and Heuristics

vacation

Fri, 10.11.2017 Exam

Course Overview

all classes + exam are from 14h till 17h15 (incl. a 15min break)

here in D101 (except for E210 this Wednesday)
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 possibly not clear yet what the lecture is about in detail

 but there will be always examples and small exercises to learn 

“on-the-fly” the concepts and fundamentals

Overall goals:

 give a broad overview of where and how optimization is used

 understand the fundamental concepts of optimization algorithms

 be able to apply common optimization algorithms on real-life 

(engineering) problems

Remarks
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 open book: take as much material as you want

 (most likely) multiple-choice

 Friday, 10th of November 2017

 counts 2/3 of overall grade

The Exam
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 we will have one group project with 4-5 students per group

 counts as 1/3 of overall grade 

 the basic ideas: each group...

 reads a scientific paper about an optimization algorithm

 implements this algorithm

 connects it to the benchmarking platform COCO

 runs the algorithm with COCO to produce benchmarking data

 compares their algorithm with others

Group Project (aka “contrôle continu”)
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 counts as 1/3 of overall grade 

 grading mainly based on

 a technical report (10 pages) to be handed in by October 21

 an oral (group) presentation in the week November 7-11

 grading partly based on

 each student's contribution to the group (via a written 

document to be signed by each student)

 the online documentation (in a provided wiki)

 the submitted source code

 the timely submission of all required documents

Group Project: Grading

looks a lot ;-)

but: important to go out of your comfort zone to learn!
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1

2

3

Mon, 18.9.2017

Tue, 19.9.2017

Wed, 20.9.2017

Fri, 22.9.2017

today's lecture: more infos in the end

groups defined via wiki

everybody went (actively!) through the Getting Started part of

github.com/numbbo/coco

lecture "Benchmarking", final adjustments of groups

everybody can run and postprocess the example experiment (~1h for 

final questions/help during the lecture)

lecture "Introduction to Continuous Optimization"

4 Fri, 29.9.2017 lecture "Gradient-Based Algorithms"

5 Fri, 6.10.2017 lecture "Stochastic Algorithms and DFO"

6 Fri, 13.10.2017 lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr."

deadline for submitting data sets

7

Wed, 18.10.2017

Fri, 20.10.2017

deadline for paper submission

final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"

Thu, 26.10.2017 /

Fri, 27.10.2017

oral presentations (individual time slots)

after 30.10.2017 vacation aka learning for the exams

Fri, 10.11.2017 written exam

Course Overview

All deadlines:

23:59pm Paris time
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 more detailed information in the end of today's lecture

Group Project (aka “contrôle continu”)

All information also available at 

http://www.cmap.polytechnique.fr/

~dimo.brockhoff/optimizationSaclay/2017/

(group project info + link to wiki, lecture slides, ...)

http://www.cmap.polytechnique.fr/~dimo.brockhoff/optimzationSaclay/2017/
http://www.cmap.polytechnique.fr/~dimo.brockhoff/optimzationSaclay/2017/
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Permanent members:
Anne Auger, Dimo Brockhoff, Nikolaus Hansen
https://team.inria.fr/randopt/team-members/

Master's theses available (PhD theses possible) :
• start anytime
• 6 months
• paid via Inria
• many topics around

blackbox optimization
• theory  algorithm design

http://randopt.gforge.inria.fr/thesisprojects/

RandOpt team
Inria and Ecole Polytechnique

blackbox
optimization

constrained
large-scale

expensive

multiobjective

theory

algorithm design
benchmarking

applications

CMA-ES
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 More examples of optimization problems

 introduce some basic concepts of optimization problems 

such as domain, constraint, ...

 Beginning of continuous optimization part

 typical difficulties in continuous optimization 

 basics of benchmarking blackbox optimization algorithms 

with the COCO platform

 basics needed for group project (more on Wednesday)

Overview of Today’s Lecture
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Given:

set of possible solutions

quality criterion

Objective:

Find the best possible solution for the given criterion

Formally:

Maximize or minimize

General Context Optimization

Search space

Objective function
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Maximize or minimize

Constraints explicitely or implicitely define the feasible solution set

[e.g. ||x|| - 7 ≤ 0 vs. every solution should have at least 5 zero entries]

Hard constraints must be satisfied while soft constraints are preferred 

to hold but are not required to be satisfied

[e.g. constraints related to manufactoring precisions vs. cost constraints]

Constraints

Maximize or minimize

unconstrained example of a

constrained O
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Knapsack Problem

 Given a set of objects with

a given weight and value (profit)

 Find a subset of objects whose

overall mass is below a certain

limit and maximizing the

total value of the objects

[Problem of ressource allocation

with financial constraints]

Example 1: Combinatorial Optimization

Dake



16TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 18, 2017© Dimo Brockhoff, Inria 16

Mastertitelformat bearbeiten

Traveling Salesperson Problem (TSP)

 Given a set of cities and their

distances

 Find the shortest path going

through all cities

Example 2: Combinatorial Optimization
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A farmer has 500m of fence to fence off a rectangular field that is 

adjacent to a river. What is the maximal area he can fence off?

Example 3: Continuous Optimization

Exercise:

a) what is the search space?

b) what is the objective function?
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A farmer has 500m of fence to fence off a rectangular field that is 

adjacent to a river. What is the maximal area he can fence off?

solution can be found analytically:

exercise for the weekend ;-)

Example 3: Continuous Optimization

Ω = ℝ+
2 ∶

max 𝑥𝑦
where 𝑥 + 2𝑦 ≤ 500
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Optimizing a Two-Phase Nozzle [Schwefel 1968+]

 maximize thrust under constant starting conditions

 one of the first examples of Evolution Strategies

copyright Hans-Paul Schwefel

[http://ls11-www.cs.uni-dortmund.de/people/schwefel/EADemos/]

all possible nozzles of given number of slices

initial design:

final design:

http://ls11-www.cs.uni-dortmund.de/people/schwefel/EADemos
http://ls11-www.cs.uni-dortmund.de/people/schwefel/EADemos
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Computer simulation teaches itself to walk upright (virtual robots (of 

different shapes) learning to walk, through stochastic optimization

(CMA-ES)), by Utrecht University:

https://www.youtube.com/watch?v=yci5FuI1ovk

T. Geitjtenbeek, M. Van de Panne, F. Van der Stappen: "Flexible Muscle-Based

Locomotion for Bipedal Creatures", SIGGRAPH Asia, 2013.

Example 5: Continuous Optimization Problem

https://www.youtube.com/watch?v=yci5FuI1ovk
https://www.youtube.com/watch?v=yci5FuI1ovk
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Design of a Launcher

 Scenario: multi-stage launcher brings a 

satellite into orbit

 Minimize the overall cost of a launch

 Parameters: propellant mass of each stage / 

diameter of each stage / flux of each engine / 

parameters of the command law

23 continuous parameters to optimize

+ constraints

Example 6: Constrained Continuous Optimization

Vol atmosphérique
- efforts généraux

- pilotage

retombée d’étage

visibilité

120km

fragmentation

flux thermiquelargage coiffe
(flux thermique)

station 1
station 2

Injection en 
orbite

- position
- vitesse

pas de tir

Séparations
(pression 

dynamique)

Poppy

copyright by Astrium
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well

pipeline

structure + ℝ+
3 ⋅ #wells

𝜎 ∈ Ω: variable length!

for a given structure,

per well:

• angle & distance to 

previous well

• well depth 

platform
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Objective

 Given a sequence of data points 𝒙𝑖, 𝑦𝑖 ∈ ℝ𝑝 × ℝ, 𝑖 = 1,… , 𝑁, 

find a model "𝑦 = 𝑓(𝒙)" that "explains" the data

experimental measurements in biology, chemistry, ...

 In general, choice of a parametric model or family of functions 

𝑓𝜃 𝜃∈ℝ𝑛

use of expertise for choosing model

or only a simple model is affordable (e.g. linear, quadratic)

 Try to find the parameter 𝜃 ∈ ℝ𝑛 fitting best to the data

Fitting best to the data

Minimize the quadratic error:

min
𝜃∈ℝ𝑛

 

𝑖=1

𝑁

𝑓𝜃 𝒙𝑖 − 𝑦𝑖
2

Example 8: Data Fitting – Data Calibration
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Supervised Learning:

Predict 𝑦 ∈ 𝒴 from 𝒙 ∈ 𝒳, given a set of observations (examples) 

𝑦𝑖 , 𝒙𝑖 𝑖=1,…,𝑁

(Simple) Linear regression where all the 𝒚𝒊 and 𝒙𝒊 are from ℝ

Given a set of data: 𝑦𝑖 , 𝑥𝑖
1 , … , 𝑥𝑖

𝑝

𝑖=1…𝑁

min
𝒘∈ℝ𝑝 ,𝛽∈ℝ

 

𝑖=1

𝑁

|  𝒘𝑇𝒙𝑖 + 𝛽 − 𝑦𝑖

2

 𝑿 ∈ ℝ𝑁×(𝑝+1),  𝒘 ∈ ℝ𝑝+1

same as data fitting with linear model, i.e. 𝑓 𝒘,𝛽 𝒙 = 𝒘𝑇𝒙 + 𝛽,

𝜃 ∈ ℝ𝑝+1

Example 9: Lin. Regression in Machine Learning

𝒙𝑖
𝑇

|| 𝑿 𝒘 − 𝐲||2
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Actually the same idea:

match model best to given data

Model here:

artificial neural nets

with many hidden layers

(aka deep neural networks)

Parameters to tune:

 weights of the connections (continuous parameter)

 topology of the network (discrete)

 firing function (less common)

Example 10: Deep Learning

Glosser.ca
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Coffee Tasting Problem

 Find a mixture of coffee in order to keep the coffee taste from 

one year to another

 Objective function = opinion of one expert

Example 11: Interactive Optimization

M. Herdy: “Evolution Strategies with subjective 

selection”, 1996

1
3

2

Quasipalm

4
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Observation:

 Many problems with different properties

 For each, it seems a different algorithm?

In Practice:

 often most important to categorize your problem first in order 

to find / develop the right method

  problem types

Many Problems, Many Algorithms?

Algorithm design is an art, 

what is needed is skill, intuition, luck, experience,

special knowledge and craft

freely translated and adapted from Ingo Wegener (1950-2008)
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 discrete vs. continuous

 discrete: integer (linear) programming vs. combinatorial 

problems

 continuous: linear, quadratic, smooth/nonsmooth, 

blackbox/DFO, ...

 both discrete&continuous variables: mixed integer problem

 unconstrained vs. constrained (and then which type of constraint)

 one or multiple objective functions

Not covered in this introductory lecture:

 deterministic vs. stochastic outcome of objective function(s)

Problem Types
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Optimize 𝑓: Ω ⊂ ℝ𝑛 ↦ ℝ𝑘

derivatives not available or not useful

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Example: Numerical Blackbox Optimization

Typical scenario in the continuous, unconstrained case:
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 search domain

 discrete vs. continuous variables vs. mixed integer

 finite vs. infinite dimension

 constraints

 bound constraints (on the variables only)

 linear/quadratic/non-linear constraints

 blackbox constraints

 many more

(see e.g. Le Digabel and Wild (2015), https://arxiv.org/abs/1505.07881)

Further important aspects (in practice):

 deterministic vs. stochastic algorithms

 exact vs. approximation algorithms vs. heuristics

 anytime algorithms

 simulation-based optimization problem / expensive problem

General Concepts in Optimization



continuous optimization
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 Optimize 𝑓:  
Ω ⊂ ℝ𝑛 → ℝ

𝑥 = 𝑥1 , … , 𝑥𝑛 → 𝑓(𝑥1 , … , 𝑥𝑛)

 Search space is continuous, i.e. composed of real vectors 𝑥 ∈ ℝ𝑛

 𝑛 =

Continuous Optimization

∈ ℝ unconstrained optimization

dimension of the problem

dimension of the search space ℝ𝑛 (as vector space)

1-D problem 2-D level sets
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Unconstrained optimization

inf 𝑓 𝑥 𝑥 ∈ ℝ𝑛}

Constrained optimization

 Equality constraints: inf {𝑓 𝑥 | 𝑥 ∈ ℝ𝑛 , 𝑔𝑘 𝑥 = 0, 1 ≤ 𝑘 ≤ 𝑝}

 Inequality constraints: inf {𝑓 𝑥 | 𝑥 ∈ ℝ𝑛 , 𝑔𝑘 𝑥 ≤ 0, 1 ≤ 𝑘 ≤ 𝑝}

where always 𝑔𝑘 : ℝ𝑛 → ℝ

Unconstrained vs. Constrained Optimization
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feasible

domain

min
𝑥∈ℝ

𝑓 𝑥 = 𝑥2 such that 𝑥 ≤ −1

Example of a Constraint
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Example: 1-D

𝑓1 𝑥 = 𝑎 𝑥 − 𝑥0
2 + 𝑏

where 𝑥, 𝑥0 , 𝑏 ∈ ℝ,𝑎 ∈ ℝ

Generalization:

convex quadratic function

𝑓2 𝑥 = 𝑥 − 𝑥0
𝑇𝐴 𝑥 − 𝑥0 + 𝑏

where 𝑥, 𝑥0 , 𝑏 ∈ ℝ𝑛, 𝐴 ∈ ℝ n×𝑛

and 𝐴 symmetric positive definite (SPD)

Analytical Functions

Exercise:

What is the minimum of 𝑓2(𝑥)?
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Reminder: level sets of a function

𝐿𝑐 = 𝑥 ∈ ℝ𝑛 𝑓 𝑥 = 𝑐}

(similar to topography lines /

level sets on a map)

Levels Sets of Convex Quadratic Functions

Continuation of exercise:

What are the level sets of 𝑓2?
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 Probably too complicated in general, thus an example here

 Consider 𝐴 =
9 0
0 1

, 𝑏 = 0,𝑛 = 2

a) Compute 𝑓2 𝑥 .

b) Plot the level sets of 𝑓2 𝑥 .

c) More generally, for 𝑛 = 2, if 𝐴 is SPD with eigenvalues 𝜆1 =
9 and 𝜆2 = 1, what are the level sets of 𝑓2 𝑥 ? 

Levels Sets of Convex Quadratic Functions

Continuation of exercise:

What are the level sets of 𝑓2?
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 dimensionality

(considerably) larger than three

 non-separability

dependencies between the objective variables

 ill-conditioning

 ruggedness

non-smooth, discontinuous, multimodal, and/or 

noisy function

What Makes a Function Difficult to Solve?

a narrow ridge

cut from 3D example, 

solvable with an 

evolution strategy
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 The term Curse of dimensionality (Richard Bellman) refers to 

problems caused by the rapid increase in volume associated 

with adding extra dimensions to a (mathematical) space.

 Example: Consider placing 100 points onto a real interval, say 

0,1 . To get similar coverage, in terms of distance between

adjacent points, of the 10-dimensional space 0,1 10 would

require 10010 = 1020 points. The original 100 points appear now

as isolated points in a vast empty space. 

 Consequently, a search policy (e.g. exhaustive search) that is 

valuable in small dimensions might be useless in moderate or 

large dimensional search spaces.

Curse of Dimensionality
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Definition (Separable Problem)

A function 𝑓 is separable if

argmin
(𝑥1,…,𝑥𝑛)

𝑓(𝑥1,… , 𝑥𝑛) = argmin
𝑥1

𝑓 𝑥1, … , … , argmin
𝑥𝑛

𝑓(… , 𝑥𝑛)

⟹ it follows that 𝑓 can be optimized in a sequence of

𝑛 independent 1-D optimization processes

Example:

Additively decomposable functions

𝑓 𝑥1, … , 𝑥𝑛 =  
𝑖=1

𝑛

𝑓𝑖(𝑥𝑖)

Rastrigin function
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Building a non-separable problem from a separable one [1,2]

Rotating the coordinate system

 𝑓:𝒙 ⟼ 𝑓(𝒙) separable

 𝑓:𝒙 ⟼ 𝑓(𝑅𝒙) non-separable

𝑅 rotation matrix

𝑅
⟶

[1] N. Hansen, A. Ostermeier, A. Gawelczyk (1995). "On the adaptation of arbitrary normal mutation distributions in 

evolution strategies: The generating set adaptation". Sixth ICGA, pp. 57-64, Morgan Kaufmann
[2] R. Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark 
Functions; A survey of some theoretical and practical aspects of genetic algorithms." BioSystems, 39(3):263-278
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Consider the convex-quadratic function

𝑓 𝒙 =
1

2
𝒙 − 𝒙∗ 𝑇𝐻 𝒙 − 𝒙∗ =

1

2
 

𝑖
ℎ𝑖,𝑖𝑥𝑖

2 +
1

2
 

𝑖,𝑗
ℎ𝑖,𝑗𝑥𝑖𝑥𝑗

H is Hessian matrix of 𝑓 and symmetric positive definite

Ill-conditioning means squeezed level sets (high curvature). 

Condition number equals nine here. Condition numbers up to 1010

are not unusual in real-world problems. 

If 𝐻 ≈ 𝐼 (small condition number of 𝐻) first order information (e.g. 

the gradient) is sufficient. Otherwise second order information 

(estimation of 𝐻−1) information necessary.

gradient direction −𝑓′ 𝑥 𝑇

Newton direction −𝐻−1𝑓′ 𝑥 𝑇
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Unconstrained case

 local vs. global

 local minimum 𝒙∗: ∃ a neighborhood 𝑉 of 𝒙∗ such that

∀𝒙 ∈ V: 𝑓(𝒙) ≥ 𝑓(𝒙∗)

 global minimum: ∀𝒙 ∈ Ω: 𝑓 𝒙 ≥ 𝑓 𝒙∗

 strict local minimum if the inequality is strict

Constrained case

 a bit more involved

 hence, later in the lecture 

Different Notions of Optimum



Blackbox optimization benchmarking

...and some more details on the group project



Optimize 𝑓: Ω ⊂ ℝ𝑛 ↦ ℝ𝑘

derivatives not available or not useful

Not clear:

which of the many algorithms should I use on my problem?

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Numerical Blackbox Optimization



Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]

Simplex downhill [Nelder & Mead 1965] 

Pattern search [Hooke and Jeeves 1961] 

Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain) 

• Differential Evolution [Storn & Price 1997] 

• Particle Swarm Optimization [Kennedy & Eberhart 1995] 

• Evolution Strategies, CMA-ES
[Rechenberg 1965, Hansen & Ostermeier 2001] 

• Estimation of Distribution Algorithms (EDAs) 
[Larrañaga, Lozano, 2002] 

• Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004] 

• Genetic Algorithms [Holland 1975, Goldberg 1989] 

Simulated annealing [Kirkpatrick et al. 1983]

Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000] 

Numerical Blackbox Optimizers



Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]

Simplex downhill [Nelder & Mead 1965] 

Pattern search [Hooke and Jeeves 1961] 

Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain) 

• Differential Evolution [Storn & Price 1997] 

• Particle Swarm Optimization [Kennedy & Eberhart 1995] 

• Evolution Strategies, CMA-ES
[Rechenberg 1965, Hansen & Ostermeier 2001] 

• Estimation of Distribution Algorithms (EDAs) 
[Larrañaga, Lozano, 2002] 

• Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004] 

• Genetic Algorithms [Holland 1975, Goldberg 1989] 

Simulated annealing [Kirkpatrick et al. 1983]

Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000] 

Numerical Blackbox Optimizers

choice typically not immediately clear although practitioners

have knowledge about which difficulties their problem has

(e.g. multi-modality, non-separability, ...)



• understanding of algorithms

• algorithm selection

• putting algorithms to a standardized test
• simplify judgement

• simplify comparison

• regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

• choosing (and implementing) problems, performance 
measures, visualization, stat. tests, ...

• running a set of algorithms

Need: Benchmarking



that's where COCO comes into play

Comparing Continuous Optimizers Platform

https://github.com/numbbo/coco



automatized benchmarking



How to benchmark algorithms

with COCO?



https://github.com/numbbo/coco



https://github.com/numbbo/coco
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https://github.com/numbbo/coco



requirements 

& download

https://github.com/numbbo/coco



installation I: experiments

https://github.com/numbbo/coco



installation II: postprocessing

https://github.com/numbbo/coco



coupling algo + COCO

https://github.com/numbbo/coco



Simplified Example Experiment in Python
import cocoex

import scipy.optimize

### input

suite_name = "bbob"

output_folder = "scipy-optimize-fmin"

fmin = scipy.optimize.fmin

### prepare

suite = cocoex.Suite(suite_name, "", "")

observer = cocoex.Observer(suite_name,

"result_folder: " + output_folder)

### go

for problem in suite:  # this loop will take several minutes

problem.observe_with(observer)  # generates the data for

# cocopp post-processing

fmin(problem, problem.initial_solution)

Note: the actual example_experiment.py contains more 

advanced things like restarts, batch experiments, other 

algorithms (e.g. CMA-ES), etc.



running the experiment

https://github.com/numbbo/coco

tip:

start with small #funevals (until bugs fixed )

then increase budget to get a feeling

how long a "long run" will take



postprocessing

https://github.com/numbbo/coco

tip to reduce time:
use parameter –-omit-single

(will become the default in v2.2)



Result Folder



Automatically Generated Results



Automatically Generated Results



Automatically Generated Results



Automatically Generated Results



doesn't look too complicated, does it?

[the devil is in the details ]
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Mastertitelformat bearbeitenDate Topic

1

2

3

Mon, 18.9.2017

Tue, 19.9.2017

Wed, 20.9.2017

Fri, 22.9.2017

today's lecture: more infos in the end

groups defined via wiki

everybody went (actively!) through the Getting Started part of

github.com/numbbo/coco

lecture "Benchmarking", final adjustments of groups

everybody can run and postprocess the example experiment (~1h for 

final questions/help during the lecture)

lecture "Introduction to Continuous Optimization"

4 Fri, 29.9.2017 lecture "Gradient-Based Algorithms"

5 Fri, 6.10.2017 lecture "Stochastic Algorithms and DFO"

6 Fri, 13.10.2017 lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr."

deadline for submitting data sets

7

Wed, 18.10.2017

Fri, 20.10.2017

deadline for paper submission

final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"

Thu, 26.10.2017 /

Fri, 27.10.2017

oral presentations (individual time slots)

after 30.10.2017 vacation aka learning for the exams

Fri, 10.11.2017 written exam

Course Overview

All deadlines:

23:59pm Paris time
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both report and talk should be in English
[at the time being, THE scientific language]

Group Project: Remark
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http://randopt.gforge.inria.fr/teaching/optimization-Saclay/groupproject2017/

Group Project Wiki
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 to be found at

 http://randopt.gforge.inria.fr/teaching/optimization-

Saclay/groupproject2017/

 also via a link on the home page

 please use this to interact within the groups

 document what you do

 document who is doing what

 document what still needs to be done

 and coordinate the assignments of all of you to groups with 

paper/algorithm and programming language (by tomorrow!)

 6 algorithms available

 0, 1, or 2 groups per algorithm

 if 2 groups: choose different programming language!

easiest: choose among python, C/C++, Java, Matlab/Octave

Group Project Wiki
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 Do not start working last minute.

Understanding an algorithm, implementing and testing it always takes time.

 Get an overview of what COCO is and does by reading the 

General Introduction to COCO and the documents on 

performance assessment with COCO to get an idea of how to 

read the main plots.

 Consider using a version control system for your code (and 

potentially for your final report and slides as well). 

Github/Gitlab might come in handy

 Test your software extensively. Optimally, write (unit) tests 

before the actual code.

 Again: run (very) short experiments first, then increase budget.

Group Project: Recommendations

http://numbbo.github.io/coco-doc/
http://numbbo.github.io/coco-doc/
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Version_control
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Mastertitelformat bearbeitenDate Topic

1

2

3

Mon, 18.9.2017

Tue, 19.9.2017

Wed, 20.9.2017

Fri, 22.9.2017

today's lecture: more infos in the end

groups defined via wiki

everybody went (actively!) through the Getting Started part of

github.com/numbbo/coco

lecture "Benchmarking", final adjustments of groups

everybody can run and postprocess the example experiment (~1h for 

final questions/help during the lecture)

lecture "Introduction to Continuous Optimization"

4 Fri, 29.9.2017 lecture "Gradient-Based Algorithms"

5 Fri, 6.10.2017 lecture "Stochastic Algorithms and DFO"

6 Fri, 13.10.2017 lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr."

deadline for submitting data sets

7

Wed, 18.10.2017

Fri, 20.10.2017

deadline for paper submission

final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"

Thu, 26.10.2017 /

Fri, 27.10.2017

oral presentations (individual time slots)

after 30.10.2017 vacation aka learning for the exams

Fri, 10.11.2017 written exam

Course Overview

All deadlines:

23:59pm Paris time
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I hope it became clear...

...what kind of optimization problems we are interested in

...what are the requirements for the group project and the exam

...and what are the next important steps to do:

by tomorrow: build the groups and decide on an algorithm

by Wednesday: 

 go through the "Getting Started" of COCO

 collect the things that don't work (concrete questions)

Conclusions


