
Introduction to Optimization:
Benchmarking

September 20, 2017

TC2 - Optimisation

Université Paris-Saclay, Orsay, France

Dimo Brockhoff

Inria Saclay – Ile-de-France

2TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 20, 2017© Dimo Brockhoff, Inria 2

Mastertitelformat bearbeitenDate Topic

1

2

3

Mon, 18.9.2017

Tue, 19.9.2017

Wed, 20.9.2017

Fri, 22.9.2017

first lecture

groups defined via wiki

everybody went (actively!) through the Getting Started part of

github.com/numbbo/coco

today's lecture: "Benchmarking", final adjustments of groups

everybody can run and postprocess the example experiment (~1h for

final questions/help during the lecture)

lecture "Introduction to Continuous Optimization"

4 Fri, 29.9.2017 lecture "Gradient-Based Algorithms"

5 Fri, 6.10.2017 lecture "Stochastic Algorithms and DFO"

6 Fri, 13.10.2017 lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr."

deadline for submitting data sets

7

Wed, 18.10.2017

Fri, 20.10.2017

deadline for paper submission

final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"

Thu, 26.10.2017 /

Fri, 27.10.2017

oral presentations (individual time slots)

after 30.10.2017 vacation aka learning for the exams

Fri, 10.11.2017 written exam

Course Overview

All deadlines:

23:59pm Paris time

3TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 20, 2017© Dimo Brockhoff, Inria 3

Mastertitelformat bearbeitenDate Topic

1

2

3

Mon, 18.9.2017

Tue, 19.9.2017

Wed, 20.9.2017

Fri, 22.9.2017

first lecture

groups defined via wiki

everybody went (actively!) through the Getting Started part of

github.com/numbbo/coco

 today's lecture "Benchmarking",  final adjustments of groups

everybody can run and postprocess the example experiment ( ~1h for

final questions/help during the lecture)

lecture "Introduction to Continuous Optimization"

4 Fri, 29.9.2017 lecture "Gradient-Based Algorithms"

5 Fri, 6.10.2017 lecture "Stochastic Algorithms and DFO"

6 Fri, 13.10.2017 lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr."

deadline for submitting data sets

7

Wed, 18.10.2017

Fri, 20.10.2017

deadline for paper submission

final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"

Thu, 26.10.2017 /

Fri, 27.10.2017

oral presentations (individual time slots)

after 30.10.2017 vacation aka learning for the exams

Fri, 10.11.2017 written exam

Course Overview

All deadlines:

23:59pm Paris time

challenging optimization problems

appear in many

scientific, technological and industrial domains

Optimize 𝑓: Ω ⊂ ℝ𝑛 ↦ ℝ𝑘

derivatives not available or not useful

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Numerical Blackbox Optimization

Given:

Not clear:

which of the many algorithms should I use on my
problem?

𝑥 ∈ ℝ𝑛 𝑓(𝑥) ∈ ℝ𝑘

Practical Blackbox Optimization

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]

Simplex downhill [Nelder & Mead 1965]

Pattern search [Hooke and Jeeves 1961]

Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)

• Differential Evolution [Storn & Price 1997]

• Particle Swarm Optimization [Kennedy & Eberhart 1995]

• Evolution Strategies, CMA-ES
[Rechenberg 1965, Hansen & Ostermeier 2001]

• Estimation of Distribution Algorithms (EDAs)
[Larrañaga, Lozano, 2002]

• Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]

• Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]

Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

Numerical Blackbox Optimizers

Deterministic algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]

Simplex downhill [Nelder & Mead 1965]

Pattern search [Hooke and Jeeves 1961]

Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)

• Differential Evolution [Storn & Price 1997]

• Particle Swarm Optimization [Kennedy & Eberhart 1995]

• Evolution Strategies, CMA-ES
[Rechenberg 1965, Hansen & Ostermeier 2001]

• Estimation of Distribution Algorithms (EDAs)
[Larrañaga, Lozano, 2002]

• Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]

• Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]

Simultaneous perturbation stochastic approx. (SPSA) [Spall 2000]

Numerical Blackbox Optimizers

choice typically not immediately clear although practitioners

have knowledge about which difficulties their problem has

(e.g. multi-modality, non-separability, ...)

• understanding of algorithms

• algorithm selection

• putting algorithms to a standardized test
• simplify judgement

• simplify comparison

• regression test under algorithm changes

Kind of everybody has to do it (and it is tedious):

• choosing (and implementing) problems, performance
measures, visualization, stat. tests, ...

• running a set of algorithms

Need: Benchmarking

that's where COCO comes into play

Comparing Continuous Optimizers Platform

https://github.com/numbbo/coco

automatized benchmarking

benchmarking is non-trivial
[remember the tutorial of Antonio]

hence, COCO implements a

reasonable, well-founded, and

well-documented

pre-chosen methodology

How to benchmark algorithms

with COCO?

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

https://github.com/numbbo/coco

requirements

& download

https://github.com/numbbo/coco

installation I: experiments

https://github.com/numbbo/coco

installation II: postprocessing

https://github.com/numbbo/coco

coupling algo + COCO

https://github.com/numbbo/coco

Simplified Example Experiment in Python
import cocoex

import scipy.optimize

input

suite_name = "bbob"

output_folder = "scipy-optimize-fmin"

fmin = scipy.optimize.fmin

prepare

suite = cocoex.Suite(suite_name, "", "")

observer = cocoex.Observer(suite_name,

"result_folder: " + output_folder)

go

for problem in suite: # this loop will take several minutes

problem.observe_with(observer) # generates the data for

cocopp post-processing

fmin(problem, problem.initial_solution)

Note: the actual example_experiment.py contains more

advanced things like restarts, batch experiments, other

algorithms (e.g. CMA-ES), etc.

running the experiment

https://github.com/numbbo/coco

tip:

start with small #funevals (until bugs fixed )

then increase budget to get a feeling

how long a "long run" will take

postprocessing

https://github.com/numbbo/coco

tip to reduce time:
use parameter –-omit-single

(will become the default in v2.2)

Result Folder

Automatically Generated Results

Automatically Generated Results

Automatically Generated Results

Automatically Generated Results

so far:

data for about 170 algorithm variants

(some of which on noisy or multiobjective test functions)

132 workshop papers

by 101 authors from 28 countries

On

• real world problems
• expensive

• comparison typically limited to certain domains

• experts have limited interest to publish

• "artificial" benchmark functions
• cheap

• controlled

• data acquisition is comparatively easy

• problem of representativeness

Measuring Performance

• define the "scientific question"

the relevance can hardly be overestimated

• should represent "reality"

• are often too simple?

remind separability

• a number of testbeds are around

• account for invariance properties

prediction of performance is based on “similarity”,
ideally equivalence classes of functions

Test Functions

Available Test Suites in COCO

bbob 24 noiseless fcts 140+ algo data sets

bbob-noisy 30 noisy fcts 40+ algo data sets

bbob-biobj 55 bi-objective fcts 16 algo data sets

Meaningful quantitative measure
• quantitative on the ratio scale (highest possible)

"algo A is two times better than algo B" is a meaningful
statement

• assume a wide range of values

• meaningful (interpretable) with regard to the real world

possible to transfer from benchmarking to real world

How Do We Measure Performance?

runtime or first hitting time is the prime candidate
(we don't have many choices anyway)

Two objectives:

• Find solution with small(est possible)
function/indicator value

• With the least possible search costs (number of
function evaluations)

For measuring performance: fix one and measure the
other

How Do We Measure Performance?

convergence graphs is all we have to start with...

Measuring Performance Empirically
fu

n
c
ti
o
n

 v
a
lu

e
 o

r

ECDF:

Empirical Cumulative Distribution Function of the
Runtime

[aka data profile]

A Convergence Graph
A Convergence Graph

First Hitting Time is Monotonous

15 Runs

target

15 Runs ≤ 15 Runtime Data Points

Empirical CDF
1

0.8

0.6

0.4

0.2

0

the ECDF of run
lengths to reach
the target

● has for each
data point a
vertical step of
constant size

● displays for
each x-value
(budget) the
count of
observations to
the left (first
hitting times)

Empirical Cumulative Distribution

Empirical CDF
1

0.8

0.6

0.4

0.2

0

interpretations
possible:

● 80% of the runs
reached the
target

● e.g. 60% of the
runs need
between 2000
and 4000
evaluations

Empirical Cumulative Distribution

Reconstructing A Single Run

50 equally
spaced targets

Reconstructing A Single Run

Reconstructing A Single Run

Reconstructing A Single Run

the empirical CDF
makes a step for
each star, is
monotonous and
displays for
each budget the
fraction of
targets achieved
within the
budget

1

0.8

0.6

0.4

0.2

0

Reconstructing A Single Run

the ECDF recovers
the monotonous
graph,
discretized and
flipped

1

0.8

0.6

0.4

0.2

0

Reconstructing A Single Run

1

0.8

0.6

0.4

0.2

0

Reconstructing A Single Run

the ECDF recovers
the monotonous
graph,
discretized and
flipped

Aggregation

15 runs

Aggregation

15 runs

50 targets

Aggregation

15 runs

50 targets

15 runs

50 targets

ECDF with 750
steps

Aggregation

50 targets from
15 runs

...integrated in a
single graph

Aggregation

area over the
ECDF curve

=
average log

runtime
(or geometric avg.
runtime) over all

targets (difficult and
easy) and all runs

50 targets from
15 runs
integrated in a
single graph

Interpretation

Fixed-target: Measuring Runtime

Fixed-target: Measuring Runtime

• Algo Restart A:

• Algo Restart B:

𝑹𝑻𝑨
𝒓

ps(Algo Restart A) = 1

𝑹𝑻𝑩
𝒓

ps(Algo Restart B) = 1

Fixed-target: Measuring Runtime

• Expected running time of the restarted algorithm:

𝐸 𝑅𝑇𝑟 =
1 − 𝑝𝑠
𝑝𝑠
𝐸 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 + 𝐸[𝑅𝑇𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙]

• Estimator average running time (aRT):

 𝑝𝑠 =
#successes

#runs

 𝑅𝑇𝑢𝑛𝑠𝑢𝑐𝑐 = Average evals of unsuccessful runs

 𝑅𝑇𝑠𝑢𝑐𝑐 = Average evals of successful runs

𝑎𝑅𝑇 =
total #evals

#successes

ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated
restarted algorithms:

Worth to Note: ECDFs in COCO

In COCO, ECDF graphs

• never aggregate over dimension

• but often over targets and functions

• can show data of more than 1 algorithm at a time

150 algorithms

from BBOB-2009

till BBOB-2015

...comparing aRT values over several algorithms

Another Interesting Plot...

...comparing aRT values over several algorithms

Another Interesting Plot...

aRT value

[if < ∞]
to reach

given target

precision

a star indicates statistically

significant results compared

to all other displayed algos

median runlength

of unsuccessful runs

...comparing aRT values over several algorithms

Another Interesting Plot...

artificial best

algorithm

from

BBOB-2016

scaling with

dimension
linear

...are scatter plots

Interesting for 2 Algorithms...

aRT for algorithm A

a
R

T
fo

r
a
lg

o
ri

th
m

 B

dimensions:

one marker

per target

...but they are probably less interesting for us here

There are more Plots...

The single-objective BBOB functions

• 24 functions in 5 groups:

• 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

bbob Testbed

• All COCO problems come in form of instances

• e.g. as translated/rotated versions of the same
function

• Prescribed instances typically change from year to
year

• avoid overfitting

• 5 instances are always kept the same

Plus:

• the bbob functions are locally perturbed by non-
linear transformations

Notion of Instances

• All COCO problems come in form of instances

• e.g. as translated/rotated versions of the same
function

• Prescribed instances typically change from year to
year

• avoid overfitting

• 5 instances are always kept the same

Plus:

• the bbob functions are locally perturbed by non-
linear transformations

Notion of Instances

f10 (Ellipsoid) f15 (Rastrigin)

the recent extension to

multi-objective optimization

78TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 20, 2017© Dimo Brockhoff, Inria 78

Mastertitelformat bearbeitenA Brief Introduction to Multiobjective Optimization

better

worse

incomparable

500 1000 1500 2000 2500 3000 3500

cost

performance

5

10

15

20

Multiobjective Optimization (MOO)

Multiple objectives that have to be optimized simultaneously

max

min

incomparable

79TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 20, 2017© Dimo Brockhoff, Inria 79

Mastertitelformat bearbeitenA Brief Introduction to Multiobjective Optimization

better

worse

incomparable

500 1000 1500 2000 2500 3000 3500

cost

performance

5

10

15

20

Observations:  there is no single optimal solution, but

 some solutions () are better than others ()

max

min

incomparable

80TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 20, 2017© Dimo Brockhoff, Inria 80

Mastertitelformat bearbeitenA Brief Introduction to Multiobjective Optimization

better

worse

incomparable

500 1000 1500 2000 2500 3000 3500

cost

performance

5

10

15

20

max

min

incomparable

81TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 20, 2017© Dimo Brockhoff, Inria 81

Mastertitelformat bearbeitenA Brief Introduction to Multiobjective Optimization

dominating

dominated

incomparable

500 1000 1500 2000 2500 3000 3500

cost

performance

5

10

15

20

max

min

incomparable

82TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 20, 2017© Dimo Brockhoff, Inria 82

Mastertitelformat bearbeitenA Brief Introduction to Multiobjective Optimization

500 1000 1500 2000 2500 3000 3500

cost

performance

5

10

15

20

Pareto set: set of all non-dominated solutions (decision space)

Pareto front: its image in the objective space

currently non-

dominated front

(approximation)

Vilfredo Pareto

(1848 –1923)

wikipedia

max

min

83TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 20, 2017© Dimo Brockhoff, Inria 83

Mastertitelformat bearbeitenA Brief Introduction to Multiobjective Optimization

500 1000 1500 2000 2500 3000 3500

cost

performance

5

10

15

20
true Pareto front

(Pareto efficient

frontier)

Vilfredo Pareto

(1848 –1923)

wikipedia

Pareto set: set of all non-dominated solutions (decision space)

Pareto front: its image in the objective space

max

min

84TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 20, 2017© Dimo Brockhoff, Inria 84

Mastertitelformat bearbeitenA Brief Introduction to Multiobjective Optimization

f2

f1

x3

x1

decision space objective space

solution of Pareto-optimal set

non-optimal decision vector

vector of Pareto-optimal front

non-optimal objective vector

x2

max

min

85TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 20, 2017© Dimo Brockhoff, Inria 85

Mastertitelformat bearbeitenA Brief Introduction to Multiobjective Optimization

f2

f1

f2

f1

nadir point

ideal pointShape Range

min

min

min

min

ideal point: best values

nadir point: worst values
obtained for Pareto-optimal points

86TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 20, 2017© Dimo Brockhoff, Inria 86

Mastertitelformat bearbeiten

Idea:

 transfer multiobjective problem into a set problem

 define an objective function (“quality indicator”) on sets

Important:

 Underlying dominance relation (on sets) should be reflected by

the resulting set comparisons!

Quality Indicator Approach to MOO

max

min

max

min

𝑨 ≼ 𝑩
neither 𝑨 ≼ 𝑩
nor 𝑩 ≼ 𝑨

87TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 20, 2017© Dimo Brockhoff, Inria 87

Mastertitelformat bearbeitenExamples of Quality Indicators

I(A)
A

A

I(A) = volume of the

weakly dominated area

in objective space

I(A,B) = how much needs A to

be moved to weakly dominate B

A B : I(A)  I(B) A B : I(A,B)  I(B,A)

unary hypervolume indicator binary epsilon indicator

A’

max

max

max

max

88TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 20, 2017© Dimo Brockhoff, Inria 88

Mastertitelformat bearbeitenExamples of Quality Indicators II

R

A

I(A,R) = how much needs A to

be moved to weakly dominate R

A B : I(A,R)  I(B,R)

unary epsilon indicator

A’ A

I(A) =
1

Λ

𝜆∈Λ

min
𝑎∈A
max
𝑗=1..𝑚
𝜆𝑗 |𝑧𝑗
∗ − 𝑎𝑗 |

A B : I(A)  I(B)

unary R2 indicator

max

max

max

max

𝒛∗

slope

based

on 𝜆

89TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 20, 2017© Dimo Brockhoff, Inria 89

Mastertitelformat bearbeitenExamples of Quality Indicators II

R

A

I(A,R) = how much needs A to

be moved to weakly dominate R

A B : I(A,R)  I(B,R)

unary epsilon indicator

A’ A

I(A) =
1

Λ

𝜆∈Λ

min
𝑎∈A
max
𝑗=1..𝑚
𝜆𝑗 |𝑧𝑗
∗ − 𝑎𝑗 |

A B : I(A)  I(B)

unary R2 indicator

max

max

max

max

𝒛∗

• 55 functions by combining 2 bbob functions

bbob-biobj Testbed





















• 55 functions by combining 2 bbob functions

bbob-biobj Testbed





















• 55 functions by combining 2 bbob functions

• 15 function groups with 3-4 functions each
• separable – separable, separable – moderate, separable -

ill-conditioned, ...

• 6 dimensions: 2, 3, 5, 10, 20, (40 optional)

• instances derived from bbob instances:

• no normalization (algo has to cope with different
orders of magnitude)

• for performance assessment: ideal/nadir points
known

bbob-biobj Testbed

• Pareto set and Pareto front unknown
• but we have a good idea of where they are by running

quite some algorithms and keeping track of all non-
dominated points found so far

• Various types of shapes

bbob-biobj Testbed (cont'd)

bbob-biobj Testbed (cont'd)
s
e
a
rc

h
 s

p
a
c
e

o
b

je
c
tiv

e
 s

p
a
c
e

disconnected

multi-modal

connected

uni-modal

algorithm quality =

normalized* hypervolume (HV)

of all non-dominated solutions

if a point dominates nadir

closest normalized* negative distance

to region of interest [0,1]2

if no point dominates nadir

* such that ideal=[0,0] and nadir=[1,1]

Bi-objective Performance Assessment

We measure runtimes to reach (HV indicator) targets:

• relative to a reference set, given as the best Pareto
front approximation known (since exact Pareto set
not known)

• actual absolute hypervolume targets used are

HV(refset) – targetprecision

with 58 fixed targetprecisions between +1 and -10-4

(same for all functions, dimensions, and instances) in
the displays

Bi-objective Performance Assessment

97TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 20, 2017© Dimo Brockhoff, Inria 97

Mastertitelformat bearbeitenDate Topic

1

2

3

Mon, 18.9.2017

Tue, 19.9.2017

Wed, 20.9.2017

Fri, 22.9.2017

first lecture

groups defined via wiki

everybody went (actively!) through the Getting Started part of

github.com/numbbo/coco

 today's lecture "Benchmarking",  final adjustments of groups

everybody can run and postprocess the example experiment ( ~1h for

final questions/help during the lecture)

lecture "Introduction to Continuous Optimization"

4 Fri, 29.9.2017 lecture "Gradient-Based Algorithms"

5 Fri, 6.10.2017 lecture "Stochastic Algorithms and DFO"

6 Fri, 13.10.2017 lecture "Discrete Optimization I: graphs, greedy algos, dyn. progr."

deadline for submitting data sets

7

Wed, 18.10.2017

Fri, 20.10.2017

deadline for paper submission

final lecture "Discrete Optimization II: dyn. progr., B&B, heuristics"

Thu, 26.10.2017 /

Fri, 27.10.2017

oral presentations (individual time slots)

after 30.10.2017 vacation aka learning for the exams

Fri, 10.11.2017 written exam

Course Overview

All deadlines:

23:59pm Paris time

98TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 20, 2017© Dimo Brockhoff, Inria 98

Mastertitelformat bearbeiten

I hope it became clear...

...what are the important issues in algorithm benchmarking

...which functionality is behind the COCO platform

...and how to measure performance in particular

...what are the basics of multiobjective optimization

...and what are the next important steps to do:

read the assigned paper and implement the algorithm

document everything on the wiki

run COCO experiment with your algorithm and share your

data until Friday 13th of October, 2017

Conclusions Benchmarking Continuous Optimizers

99TC2: Introduction to Optimization, U. Paris-Saclay, Sep. 20, 2017© Dimo Brockhoff, Inria 99

Mastertitelformat bearbeiten

And now...

...time for your questions and problems

around COCO

